
On-Line Routing in WDM-TDM Switched Optical Mesh Networks

Arun Vishwanath and Weifa Liang
Department of Computer Science

The Australian National University
Canberra, ACT-0200, Australia

Email: {arunv,wliang}@cs.anu.edu.au

Abstract

This paper considers the on-line traffic grooming problem in
WDM-TDM switched optical mesh networks without wavelength
conversion capability. The objective is to efficiently route con-
nection requests with fractional wavelength capacity requirements
onto high-capacity wavelengths and balance the load on the links
in the network at the same time. To do so, we propose a cost
function, which not only encourages grooming new connection re-
quests onto the wavelengths that are being used by existing traf-
fic, but also performs load balancing by intelligently increasing
the cost of using wavelengths on links. The performance results
obtained by experiments on a representative sized mesh network
show that the proposed algorithm outperforms the existing algo-
rithms.

1. Introduction
Wavelength Division Multiplexing (WDM) optical net-

works provide enormous bandwidth, and are promising candi-

dates for information transmission in high-speed networks [1].

The bandwidth available on each wavelength in commer-

cial WDM systems is in the order of OC-48/OC-192/OC-768

(2.48Gbps/10Gbps/40Gbps). However, as most applications re-

quire only sub-wavelength capacities, the available bandwidth on

a single wavelength far exceeds the capacity requirement of a typ-

ical connection request. For example, HDTV works well with just

20Mbps.

To overcome the disparity between the bandwidth required by

connection requests and the available bandwidth on wavelengths,

a technique called traffic grooming has been proposed. One ap-

proach to provisioning sub-wavelength capacity requests (traffic

grooming) is to divide a wavelength into multiple time slots and

multiplex different requests onto different time slots [2, 3]. Thus,

upto p connection requests can share the same wavelength, as-

suming each request occupies one time slot and each wavelength

is divided into p time slots. The resulting multiwavelength optical

time division multiplexed network is referred to as a WDM-TDM
network or a WDM grooming network. A connection between a

source node and a destination node is setup by assigning time slots

on every link in the routing path. Intermediate nodes along the path

then switch time slots from one link to the next [4].

On-line traffic grooming in WDM-TDM switched networks

was first investigated in [5]. The work examines the effect of

wavelength conversion and time slot interchange on the perfor-

mance of WDM-TDM networks. Their study concludes that, in

networks with small number of wavelengths and large number of

time slots per wavelength, significant performance gains can be

achieved without the use of wavelength conversion but with the

use of time slot interchange alone. In [6], the authors consider on-

line traffic grooming in time division multiplexed WDM networks

under the assumption that the nodes in the network do not have

time slot interchangers. As a result, a connection request between

a source node and a destination node must occupy the same time

slot(s) along the links in the path. This can lead to a high block-

ing probability when compared to networks that incorporate time

slot interchange functionality. The problem is solved by first par-

titioning it into three sub-problems: routing, wavelength assign-

ment and time slot allocation. For every new incoming connection

request, each of these sub-problems is then solved separately to

determine the route, wavelength and time slot on which to route

the request. In [2, 3], the authors consider the general problem

of on-line routing in WDM-TDM switched networks with Optical

Time Slot Interchangers (OTSIs), while in [4], the authors pro-

pose a generalized network model called the Trunk Switched Net-

work (TSN) to facilitate the modeling and analysis of WDM-TDM

switched networks. An analytical model is developed to evaluate

the blocking performance of TSNs.

In this paper, we introduce a novel exponential cost function

and propose an on-line routing algorithm for traffic grooming in

WDM-TDM switched mesh networks. The algorithm integrates

traffic grooming and load balancing with the aim of maximiz-

ing the network throughput. We show through experimental re-

sults that the proposed heuristic algorithm outperforms the other

well-known algorithms discussed and analyzed in [2, 3] for traffic

grooming in WDM-TDM switched networks.

The rest of the paper is organized as follows. The node ar-

chitecture and the problem definition are introduced in Section 2.

The proposed heuristic algorithm is presented in Section 3 and the

simulation results are discussed and analyzed in Section 4. We

conclude the paper in Section 5.

2. Preliminaries
In this section, we first introduce the node architecture used

in our study and then formally define the on-line traffic grooming

problem. We then provide a brief overview of the existing algo-

rithms for the concerned problem.

2.1. Node Architecture
A WDM-TDM switched mesh network consists of switching

nodes with communication fiber links interconnecting the nodes.

Each fiber link carries a certain number of wavelengths and each

wavelength is further divided into a number of time slots. The

node architecture for sub-wavelength demand traffic grooming in

such a WDM-TDM switched mesh network is shown in Fig. 1

The figure represents a node supporting three links (A, B, C),

two wavelengths per link (λ1, λ2) and three time slots per wave-

length (t0, t1, t2). S1, S2, S3, S4, S5, and S6 are sessions utilizing

3, 1, 2, 2, 1, and 2 time slots of bandwidth respectively. Session

S1 occupying the full bandwidth on λ1 is switched from input link

A to the same output link. S2 occupying time slot t0 is switched to

the same time slot from input link A to output link B on λ2. Ses-

sion S3 arriving on λ2 from input fiber link B is dropped locally

1

Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’05)
0-7695-2405-2/05 $20.00 © 2005 IEEE

Unit

Switching

and
OTSIsS2

A

DMUX

λ2

λ1

C

DMUX λ2

λ1

SWITCH

OPTICAL

λ2

λ1

S1S1S1 S1S1S1

t0t1t2

λ2

λ1

λ2

λ1

λ2

λ1

MUX

B

MUX

A

C

MUX

S4 S2S4

DMUX

B

S3

S4

S3

S5

t1 t0

ADD DROP

t2

S4 S5

S6S6

Figure 1. Node architecture

at the node while session S6 is added at the node and switched

to output link B on λ1. As there are three time slots per wave-

length, the optical switch can be set in only three possible settings

at any given time. When the switch is set to time slots t0 and t1,

the signal S4 occupying these time slots on λ2 is switched from

input link C to output link B. Signals can be delayed using Op-

tical Time Slot Interchangers (OTSIs), therefore, time slots on an

incoming signal can be mapped on to different time slots on the

outgoing signal. Thus, before signal S4 is sent on output link B,

it undergoes a delay of one time slot duration so that time slots t0
and t1 on the incoming signal are mapped on to time slots t1 and

t2 on the outgoing signal respectively. When the switch is set to

time slot t2, S5 is switched on λ2 to the same time slot on the out-

put link C. As wavelength conversion is not incorporated in this

architecture, the wavelength of an outgoing signal is the same as

its incoming wavelength.

2.2. Problem Definition
The physical topology of a WDM-TDM switched mesh net-

work can be represented by an undirected graph G = (V, E), con-

sisting of |V | = n nodes and |E| = m links interconnecting the

nodes. Each link is bidirectional and is modeled as a pair of unidi-

rectional links. W = {λ1, λ2, , λw} is the set of available

wavelengths in the network. A connection request i is represented

by a quadruple (si, di, βi, ∆i), where si ∈ V is the source node,

di ∈ V is the destination node, βi is the required bandwidth and

∆i is the duration of the request.

Given the current network state (routes and wavelengths be-

ing used by existing traffic), the on-line traffic grooming problem
is to construct a minimum cost bandwidth guaranteed path P λ

i on

wavelength λ ∈ W that connects the source node si to the destina-

tion node di. The aim is to maximize the network throughput. We

assume that the established requests cannot be interrupted. The

connection requests arrive one after the other and the arrival se-

quence is not known in advance.

2.3. Routing Algorithms
Based on the information used for establishing a path between

the source node and the destination node [7], on-line routing al-

gorithms can be classified into two types, (i) destination-specific

routing algorithms, and (ii) request-specific routing algorithms.

Destination-specific routing algorithms try to establish the best

possible routing path between the source node and the destination

node without any knowledge of the incoming connection request.

On the other hand, request-specific routing algorithms aim to es-

tablish the best possible routing path between the two endpoints

0 2

4 4 3

20

3

11

(a) (b)S1: 0 − 2, BW = 0.5

S2: 0 − 2, BW = 0.5

S3: 1 − 2, BW = 0.5

S3: (λ0, 0.5)S2: (λ0, 0.5)

S2: (λ0, 0.5)

S1: (λ0, 0.5) S1: (λ0, 0.5)

Figure 2. Example illustrating the ASP and the pro-
posed routing schemes

taking into account the bandwidth requirement of the incoming

connection request. In [2, 3], the authors propose and study a new

request-specific routing algorithm called Available Shortest Path
(ASP) and compare its performance with two other destination-

specific routing algorithms - Widest Shortest Path (WSP) and

Shortest Widest Path (SWP). Their results indicate the importance

of using request-specific routing algorithms for improving the per-

formance of WDM-TDM switched networks. ASP outperforms

the two destination-specific routing algorithms not just in terms

of blocking probability but also with respect to other metrics such

as fairness and utilization. For completeness, we briefly outline

these algorithms below. It must be noted that, since wavelength

conversion is not allowed, the routing algorithms are iteratively

executed for each λ ∈ W to determine the best possible path and

wavelength on which to route the request.

(i) Widest Shortest Path (WSP). Dijkstra’s algorithm is used

to find the widest path between the source node and the destination

node. If two or more paths are the same with respect to this metric,

the path with the minimum hop count is selected. If two paths have

the same hop count, then the tie is broken by choosing the path

corresponding to the first-fit wavelength assignment policy.

(ii) Shortest Widest Path (SWP). This is similar to the con-

ventional shortest path routing based on the hop count. If the hop

count of two or more paths are the same, then the widest one

among them is chosen. In case of a tie, the path corresponding

to the first-fit wavelength assignment policy is selected.

(iii) Available Shortest Path (ASP). In this approach, only
links with sufficient bandwidth capacity to accommodate the re-

quest are considered for route computation. Dijkstra’s algorithm

is then used to determine the shortest path between the source node

and the destination node. If two or more paths can accommodate

the request, then the path with the minimum hop count is chosen.

If there is a tie, then the tie is broken by using the first-fit wave-

length assignment policy.

To illustrate how heuristic ASP works, we consider the exam-

ple shown in Fig. 2(a), which represents a five node subnet - 0, 1,

2, 3, 4, of a large mesh network. Assume that the current network

configuration of this subnet is as follows. One wavelength λ0 is

available on links 0−1 and 1−2, and two wavelengths λ0, λ1 are

available on links 0 − 4, 4 − 3 and 3 − 2 respectively. We further

assume that the total capacity available on a wavelength is 1, with

sessions requiring fractional wavelength capacities. The order of

sessions arriving are: S1: 0 → 2, S2: 0 → 2 and S3: 1 → 2.

Each session requests bandwidth equivalent to half of the wave-

length capacity. The values within the parenthesis along the links

in the figure indicate the wavelength and the amount of bandwidth

used by the sessions.

S1 is routed along the links 0 − 1 − 2 as shown in Fig. 2 (a)

on λ0. To facilitate full-duplex communication, the bandwidth re-

quested by sessions is reserved along the links in either direction.

Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’05)
0-7695-2405-2/05 $20.00 © 2005 IEEE

Thus, following the establishment of S1, S2 is is also routed along

the links 0 − 1 − 2 on λ0. As a result, node 1 is logically discon-
nected from the network along with the links 0−1 and 1−2, since

no further wavelengths are available on these links while S1 and

S2 continue to remain active. By logical disconnection we mean,

the links incident to a node cannot be used by future connection

requests as they do not have any more wavelengths available. In

provisioning high speed connections, traffic requests are expected

to have long holding times. Thus, logical disconnection of nodes

result in fewer routing paths for each subsequent connection re-

quest, increasing the number of blocked requests, and in turn lead-

ing to significant loss of revenue. Consequently, the new session

S3 is blocked due to the lack of available wavelengths to route it.

3. On-Line Traffic Grooming Algorithm
We propose an On-Line Traffic Grooming Algorithm (OTGA),

which (i) encourages grooming new sub-wavelength connection

requests onto the wavelengths that are being used by existing traf-

fic, and (ii) incorporates load balancing functionality simultane-

ously. To do so, we introduce a cost function that takes into

consideration the total load on a link and the residual available
bandwidth on each wavelength. For every new incoming connec-

tion request, Dijkstra’s algorithm is used to establish the routing

path between the source node and the destination node. As each

connection request can only be routed on a single wavelength, at

most w shortest paths can be generated, where w is the total num-

ber of wavelengths available in the network. Out of all the re-

sulting wavelengths that can be used to establish the request, the

wavelength corresponding to the least cost routing path is selected.

Here, the cost of establishing the request is the sum of the cost of

all the wavelength-links in the routing path. If two paths have the

same cost, then the first-fit wavelength assignment policy is em-

ployed to break the tie. The bandwidth required by the connection

request is then reserved along the links in the path. In the follow-

ing, we use an example (see Fig. 2(b)) to explain the idea behind

the proposed algorithm.

As in the ASP scheme, S1 is routed along the links 0 − 1 −
2 as shown in Fig. 2(b) on λ0. This increases the load on the

links 0 − 1 and 1 − 2. Since links 0 − 4, 4 − 3, and 3 − 2 have

more wavelengths, it is desirable to use these links to route future

connection requests and prevent the depletion of wavelengths on

links 0 − 1 and 1 − 2. Therefore, higher costs are assigned to λ0

on links 0 − 1 and 1 − 2 for subsequent connection requests. As

a result, S2 is routed on λ0 along the shortest path 0 − 4 − 3 − 2.

Now S3 can be successfully established on λ0 along the direct

link 1−2. Therefore, unlike in the Available Shortest Path routing

strategy, S3 is not blocked in the proposed routing scheme. Note

that if links 0 − 1 and 1 − 2 had two wavelengths instead of one,

then it might be desirable to groom connection S2 along with the

already established connection S1.

We define distance as the minimum number of hops needed

by any routing algorithm to route a connection request between

the source node and the destination node. In other words, dis-

tance is the number of hops in the shortest path between the two

endpoints in G = (V, E) without considering the availability of

wavelengths on links. The shortest path between nodes 0 and 2 in

the mesh network (Fig. 2) consists of only 2 hops. Therefore, the

distance between nodes 0 and 2 is 2. The number of hops used

by OTGA to establish connection request S2 between nodes 0 and

2 is 3 (see Fig. 2(b)). From these two hop counts we note that,

in some cases, the number of hops needed by OTGA, and hence

the amount of wavelength resources used by it is greater than the

corresponding resources needed by the ASP routing scheme. To

minimize the utilization of additional wavelength resources, we

introduce the following connection admission policy. Let Di be

the distance (computed a priori) between the nodes si and di, and

ε be the additional number of hops OTGA can take to establish the

connection request between the nodes si and di. This implies that,

even if sufficient bandwidth is available on wavelength λ ∈ W to

route request i, the request is blocked if the total number of hops

in the resulting routing path is greater than (Di + ε). Note that ε

is independent of the two endpoints of the connection request and

the associated bandwidth requirement. Instead, it is an experimen-

tal parameter that is tuned depending on the physical topology of

the network.

3.1. Cost Function
The cost function used in the algorithm is described as follows.

We denote Ω as the total available bandwidth per wavelength. Let

µu,v represent the total available bandwidth on a link between its

two end-points u and v. Therefore, we have

∀(u, v) ∈ E : µu,v = w × Ω. (1)

For convenience, we normalize the requested bandwidth to the to-

tal available bandwidth on a link. Therefore,

β̂i(u, v) =
βi

µu,v

. (2)

Let P = {P1, P2, P3, · · · · · · · · · , Pk} be the set of routing

paths assigned to connection requests 1 through k. If a request j

is rejected, or terminates before the arrival of a new request, then

P j = ∅, where Pj is the routing path for request j (1 ≤ j ≤ k).

Therefore, the load on link (u, v) ∈ E after considering request k

is defined as

l
k
u,v =

kX
j=1

(u, v) ∈ Pj

β̂j(u, v). (3)

In WDM-TDM switched networks, bandwidth requirements of

connection requests are expressed in terms of the number of time

slots. In this work, we assume that each wavelength is sub-divided

into 16 time slots and the capacity of each time slot is equivalent to

1 OC-3 channel. Therefore, the total capacity of each wavelength

is equivalent to 1 OC-48 channel, and we have Ω = 16 OC-3s.

Let τ
j,λ

′ (u,v) be the number of OC-3 channels being used on

link (u, v) by request j on wavelength λ
′

∈ W . Then, after con-

sidering request k, the total number of λ
′

OC-3 channels being

used on link (u, v) is

U
k,λ

′

u,v =

kX
j=1

(u, v) ∈ Pj

τ
j,λ

′ (u,v). (4)

When a new connection request i arrives, we assign costs to

each wavelength λ
′

∈ W on the links in E as follows.

(i) If the capacity of λ
′

available on link (u, v) is equal to Ω,

i.e. λ
′

is not being used by any existing connection request, then

the cost of using λ
′

on it is

Ψλ
′

u,v = a
lk

u,v

a
β̂i(u, v)

− 1

!
. (5)

(ii) Otherwise, λ
′

is currently being used by the existing traffic,

and two cases arise.

Case 1. If the residual capacity of λ
′

on link (u, v) is less than

Ω, but no less than the requested bandwidth βi, then the cost of

Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’05)
0-7695-2405-2/05 $20.00 © 2005 IEEE

using λ
′

on it is

Ψλ
′

u,v =

a
lk

u,v

a
β̂i(u, v)

− 1

!

b

R
λ
′ (u, v)

, (6)

where a and b are appropriately chosen constants. Here, R
λ
′ (u, v)

is the residual capacity of λ
′

on link (u, v) after considering the

first k requests, and is given by

R
λ
′ (u, v) = 1 −

U
k,λ

′

u,v

Ω
. (7)

Importantly, observe that, to realize load balancing and grooming

interests, the constants a and b in the cost function must be greater

than 1.

Case 2. If the residual capacity of λ
′

on link (u, v) is less than

βi, then Ψλ
′

u,v = ∞, which means it cannot be used to establish

the routing path.

Note that, from Equation (5), if λ
′

is not being used by any

existing connection request on link (u, v) (i.e. full wavelength ca-

pacity of λ
′

is available on link (u, v)), then the cost assigned to

it represents the change in its relative load that would occur if it

were to be used by the new connection request [8]. From Equation

(6), if the residual capacity of λ
′

on link (u, v) is less than Ω, but

no less than the requested bandwidth βi, then the cost of λ
′

on this

link is expressed as a function of the change in its relative load and

the residual capacity of λ
′

. In other words, load balancing is real-

ized by increasing the cost of using wavelengths on heavily loaded

links, thus discouraging them from being used by new connection

requests. To encourage grooming new connection requests onto

the wavelengths that are already being used by existing traffic,

the costs of these wavelengths are further decreased by a factor of

their residual capacities. Therefore, among the wavelengths that

are currently being used on a link, we encourage grooming on the

wavelength that has the highest residual capacity. This minimizes

the logical disconnection of nodes from the network and achieves

our objective.

3.2. Algorithm
We are now ready to introduce the detailed algorithm as fol-

lows. Once a new connection request arrives, the algorithm is ex-

ecuted to determine whether the request should be accepted.

Algorithm OTGA(si, di, βi, Di, ε)
begin
CMAX ← ∞, λ ← nil, P λ

i ← nil,

/* CMAX is the total cost to establish request i, λ is the resulting */

/* wavelength on which to route request i, P λ
i is the routing */

/* path for request i, Ω is the total capacity per wavelength, */

/* Num Hops (P λ
i) returns the number of hops in P λ

i */

Step 1. Tear down and free the wavelength resources used by all

the connection requests that terminate before the arrival

of connection request i.

∀(u, v) ∈ E : β̂i(u, v) ← βi
µu,v

Step 2. for each wavelength λ
′

∈ W do
Step 3. Compute RC (u, v, λ

′

), the residual capacity of λ
′

on

link (u, v) ∈ E

Step 4. if RC (u, v, λ
′

) = Ω

then Ψλ
′

u,v ← cost from Equation (5)

else if βi ≤ RC (u, v, λ
′

) < Ω

then Ψλ
′

u,v ← cost from Equation (6)

else Ψλ
′

u,v ← ∞
endif;

endif;
Step 5. Using Dijkstra’s algorithm, find a shortest path P(λ

′
,i)

from si to di w.r.t costs Ψλ
′

u,v. Let ci be the sum of the

cost of all the links in P(λ
′
,i).

Step 6. if ci < CMAX then
CMAX ← ci; λ ← λ

′

; P λ
i ← P(λ

′
,i)

endif;
endfor;

Step 7. if CMAX �= ∞ then
if Num Hops(P λ

i) ≤ (Di + ε) then
for each link (u, v) ∈ P λ

i do
RC (u, v, λ) ← RC (u, v, λ) − βi

RC (v, u, λ) ← RC (v, u, λ) − βi

endfor;
return P λ

i

endif;
endif;

Step 8. return “request blocked”
end.
The computational complexity of the proposed algorithm can be

analyzed as follows. The shortest path from the source node to the

destination node can be found using Dijkstra’s algorithm, which

takes O (m+ n log n) time using Fibonacci heaps. Therefore, the

time complexity of the algorithm is O (w (m + n log n)) as it is

run once for each λ
′

∈ W with w = |W |.

4. Simulation Study
To evaluate the performance of the proposed algorithm, we

conducted experiments on a representative sized mesh network

shown in Fig. 3, which consists of 24 nodes and 43 fiber links.

Each fiber link carries 16 wavelengths. All the nodes in the net-

work have the architecture shown in Fig. 1. We further assume

that the wavelength continuity constraint is imposed.

Figure 3. A 24 node telecom network

The bandwidth required by connection requests is uniformly

distributed between 1 OC-3 and 16 OC-3s. The request arrival

follows a Poisson process with the traffic uniformly distributed

between all node pairs. The connection holding time is exponen-

tially distributed. The load (in Erlangs) on the network is varied

by increasing the average connection holding time. We simulate

200,000 connection requests to obtain the network performance

under a certain network load. The simulations were performed on

a Linux PC with a 2.8 GHz Pentium IV processor and 512 MB

of memory. The average running time to simulate 200,000 con-

nection requests is about 20 minutes. In all our experiments, the

constants a, b and ε are fixed at 4, 2 and 2 respectively. We also

experimented with other set of values and found the above com-

bination to give consistently good network performance across all

the loads.

4.1. Experimental Results
We compared the performance of OTGA with the existing al-

gorithms - WSP, SWP and ASP. The metrics used to measure the

Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’05)
0-7695-2405-2/05 $20.00 © 2005 IEEE

Bandwidth Blocking Ratio

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

250 275 300 325 350 375 400 425 450 475 500 525 550

Load in Erlangs

%
 o

f
T

o
ta

l
B

a
n

d
w

id
th

 B
lo

c
k

e
d

WSP

SWP

ASP

OTGA

Figure 4. Bandwidth blocking ratio

Average Network Utilization

30.00%

33.00%

36.00%

39.00%

42.00%

45.00%

48.00%

51.00%

250 275 300 325 350 375 400 425 450 475 500 525 550

Load in Erlangs

A
v
e
ra

g
e
 N

e
tw

o
rk

 U
ti

li
z
a
ti

o
n

WSP

SWP

ASP

OTGA

Figure 5. Average network utilization

performance of the algorithms are (i) the bandwidth blocking ratio,

and (ii) the average network utilization.

(i) Bandwidth blocking ratio. Fig. 4 compares the bandwidth

blocking ratio of different routing algorithms. It represents the

percentage of the amount of blocked traffic over the total amount

of bandwidth required by all the connection requests during the

entire simulation period. As bandwidth requirements of different

connection requests are different, just comparing the overall re-

quest blocking probability does not reflect the effectiveness of the

routing algorithms. Instead, bandwidth blocking ratio is a more

suitable metric to compare the network performance and through-

put. It can be observed from the figure that, at low network loads

(in Erlangs), the percentage of bandwidth blocked by OTGA and

ASP is similar. This is because, at low loads, the average connec-

tion holding time is less. The costs assigned to all the links derived

from the cost function are nearly identical. Therefore, the perfor-

mance of OTGA and ASP are similar. With the increase in the

average connection holding time, the network load also increases.

The exponential nature of the cost functions in Equations (5) and

(6) prevent the depletion of wavelengths on heavily loaded links

by assigning to it, costs, that are significantly higher than the costs

assigned to lightly loaded links. This in turn leads to the creation

of routing paths that are distributed among the links evenly. From

the figure it can be seen that, as the network load increases, the

bandwidth blocking ratio increases as well. However, the percent-

age of total bandwidth blocked by OTGA is lower than that of the

other three heuristics. OTGA delivers higher network throughput,

and thus offers better performance.

(ii) Average network utilization. The average network uti-

lization is determined as follows. Consider a connection request

i between nodes si and di with the capacity requirement βi. Let

the distance between them be Di. Now, if connection request i is

to be established, then irrespective of the routing algorithm used,

the minimum capacity required in the network is βi × Di. This is

called the effective capacity requirement of the request. Depend-

ing on the routing algorithm employed, the number of hops taken

by it to establish the connection request may be greater than Di.

Denote by ENC, the effective network capacity utilized at any in-

stant of time. ENC is defined as the sum of the effective capacity

requirement of all the connection requests that are active at that

instant. The total network capacity is defined as m × |W | × Ω.

The network utilization is then determined as the ratio of the ef-

fective network capacity utilized to the total network capacity as
ENC

m×|W |×Ω
. We compute the network utilization at intervals of ev-

ery 250 incoming requests, and average it over 200, 000 connec-

tion requests. The resulting curves are plotted in Fig. 5.

WSP achieves the least network utilization because it routes

connection requests over longer paths. This results in over usage

of wavelength resources. The connection admission policy intro-

duced in OTGA leads to effective utilization of bandwidth, thereby

achieving the maximum network utilization.

5. Conclusion
In this paper, we investigated the on-line traffic grooming in a

WDM-TDM switched optical mesh network without wavelength

conversion capability. Using a novel exponential cost function,

we proposed a routing algorithm for the concerned problem. We

compared and analyzed the performance of the proposed algorithm

with the other known heuristics. The experimental results showed

that the proposed algorithm outperforms the existing algorithms -

ASP, SWP and WSP with respect to bandwidth blocking ratio and

network utilization.

6. Acknowledgment
It is acknowledged that the work by the authors was supported

by research grant #DP0449431, funded by the Australian Research

Council under its Discovery Schemes.

References

[1] R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical

Perspective, Morgan Kaufmann Publishers, 1998

[2] R. Srinivasan and A. K. Somani, Request-specific routing in WDM

grooming networks, Proc. IEEE ICC’02, vol. 5, pp. 2876 - 2880,

April/May 2002

[3] R. Srinivasan and A. K. Somani, Dynamic routing in WDM grooming

networks, Photonic Network Communications, vol. 5, no. 2, pp. 123-

135, March 2003

[4] R. Srinivasan and A. K. Somani, A generalized framework for analyz-

ing time-space switched optical networks, IEEE Journal on Selected

Areas in Communications, vol. 20, no. 1, pp. 202-215, Jan. 2002

[5] J. Yates, J. Lacey and D. Everitt, Blocking in multiwavelength TDM

networks, Proc. 4th International Conference on Telecommunication,

Systems, Modeling and Analysis, pp. 535-541, March 1996

[6] B. Wen and K. Sivalingam, Routing, wavelength and time-slot as-

signment in time division multiplexed wavelength routed optical net-

works, Proc. IEEE INFOCOM’02, vol. 3, pp. 1442-1450, June 2002

[7] R. Sriram, G. Manimaran and C. S. R Murthy, Preferred link based

delay-constrained least-cost routing in wide area networks, Computer

Communications, vol. 21, no. 18, pp. 1655-1669, Nov. 1998

[8] J. Aspnes et al., On-line routing of virtual circuits with applications to

load balancing and machine scheduling, Journal of the ACM, vol. 44,

no. 3, pp. 486-504, May 1997

Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’05)
0-7695-2405-2/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

