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ABSTRACT
Recent studies have shown that in social networks, users
who bridge different communities, known as structural hole
spanners, have great potentials to acquire available resources
from these communities and gain access to multiple sources
of information flow. Structural hole spanners are crucial in
many applications such as community detections, diffusion
controls, and viral marketing. In spite of their importance,
not much attention has been paid to them. Particularly,
how to characterize the structural hole spanner properties
and how to devise efficient yet scalable algorithms to find
them are fundamental issues. In this paper, we formulate
the problem as the top-k structural hole spanner problem.
Specifically, we first provide a generic model to measure the
quality of structural hole spanners, by exploring their prop-
erties, and show that the problem is NP-hard. We then
devise efficient and scalable algorithms, by exploiting the
bounded inverse closeness centralities of vertices and making
use of articulation points of the network. We finally eval-
uate the performance of the proposed algorithms through
extensive experiments on real and synthetic datasets, and
validate the effectiveness of the proposed model. Our ex-
perimental results demonstrate that the proposed model can
capture the characteristics of structural hole spanners accu-
rately, and the proposed algorithms are very promising.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications;
J.4 [Social and Behavioral Sciences]: Miscellaneous

Keywords
Social networks, Top-k structural hole spanners, Linear-time
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1. INTRODUCTION
The last decade experienced an exponential growth of a

variety of large-scale networks such as social networks, ci-
tation networks, biological networks, wireless networks, etc.
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Thus, there are high demands for developing efficient al-
gorithms to explore some unique properties of such net-
works. Most social networks exhibit the so-called commu-
nity structure property, that is, the vertices in a network
can be grouped into different sets of cohesive groups (com-
munities) [10], where vertices in the same community share
similar attributes. The communities play a significant role in
information diffusion within the network, information within
a community circulates very quickly and diffuses to other
communities through community boundaries or bridges. On
the other hand, there is a consensus among social scientists
[7] that a person who plays a bridge role between differ-
ent communities can acquire more potential resources from
these communities and has more control over the informa-
tion that is being transmitted. Burt [7] studied social struc-
tures of many organizations and introduced the notion of
structural holes as positions that can bridge diverse groups
and bring benefits to the beholder. It is shown that informa-
tion within a single community tends to be homogeneous.
Non-redundant information is often obtained through the
contacts between different communities [23]. Therefore, a
person who develops relations with people from multiple
communities will gain more benefits. Structural hole span-
ners were studied initially by Lou et al. [19], as a few peo-
ple who fill the structural holes can bridge different com-
munities. For example, a community in an academic col-
laboration network represents the group of people with the
similar research interests, and people (structural hole span-
ners) who bridge different communities are more potent to
combine ideas from different research groups and create in-
terdisciplinary works. Structural hole spanners have a wide
range of applications. For example, in community detection,
identifying central hubs that connect different groups can
help isolate and identify communities [2, 29]. In Epidemic
diseases and rumors spreading, quarantining structural hole
spanners can stop the spread of infection and rumors into
other communities [6, 12, 20]. In viral marketing, the most
influential structural hole spanners can speed-up the new
product marketings to different groups [15, 26, 25, 31].

Since structural hole spanners are fundamental in many
applications, several models have been proposed for it [11,
17, 19, 24]. For example, Lou et al. [19] introduced a model
for structural hole spanners, and proposed two algorithms
based on the model, by assuming that communities are given
already. However, their work relies on communities while
finding communities in a large-scale network is painstaking.
Moreover, the quality of the solution delivered by their algo-
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rithm is determined by the chosen communities. There are
other studies that aim to discover the structural hole span-
ners from a social network, using the topological structure
of the network. Goyal et al. [11] considered a structural hole
spanner as a vertex that lies on a large number of shortest
paths, which is similar to betweenness centrality. Tang et
al. [24] formulated structural hole spanners as the vertices
which lie on a large number of shortest paths of length two
only. These models however failed to capture some essential
properties of structural hole spanners, which is illustrated
by Fig. 1. As can be seen, vertex v1, rather than vertex v2,
lies on a large number of shortest paths of length two, vertex
v2, instead of vertex v1 is a better structural hole spanner
as it bridges more communities.

v1v1

v2v2

Figure 1: Illustration of structural hole spanners;
each closed area represents a community, and ver-
tices v1, v2 represent structural hole spanners that
span multiple communities.

One of the implications of structural hole spanners is that
they bridge different communities and the shortest paths be-
tween those communities go through them. Therefore, their
removal will increase the length of shortest path between
other vertices. For example, vertex v1 in Fig. 1 plays a key
role in the shortest paths between the nodes in different com-
munities and its removal can significantly change the length
between the other nodes, while the impact of the removal
of other vertices on shortest paths is insignificant. In this
paper, we propose a model based on the mean distance of
the network [5] for modeling the structural hole spanners,
which is the average of the lengths of all pairs of vertices
in the network. We consider the structural hole spanners
problem as a set of vertices whose removal will result in
the maximum increase on the mean distance of the network,
and we term the top-k structural holes problem as the prob-
lem of finding a set of k vertices whose removal will make
the increase on the mean distance maximized. To the best
of our knowledge, this is the first time that a novel, top-k
structural hole spanner problem is formulated and its NP-
hardness is proven. Unlike most existing works that assume
that either all communities are given or rely on community
detection algorithms to find them first, our model relies on
the network topological structure only.

The main contributions of this paper are as follows. We
study the top-k structural hole spanner problem in a large-
scale social network. We first formulate the problem as
an optimization problem and show its NP-hardness. We
then devise two efficient, yet scalable algorithms, by ex-
ploiting the small-world phenomenon and using the bounded
inverse of closeness centrality of vertices and using articu-
lation points in the network. We finally evaluate the per-
formance of the proposed algorithms by extensive experi-
ments on real and synthetic datasets. Experimental results

show that the structural hole spanners delivered by the pro-
posed algorithms can connect more and larger communities
in comparison with that by other existing methods in real
datasets. Moreover, using a synthetic datasets, we show
that the proposed algorithms can accurately find the struc-
tural hole spanners. Furthermore, our evaluations show that
the proposed algorithms outperform the other heuristics in
terms of accuracy and running time.

The rest of this paper is organized as follows. Section 2
introduces basic notations, and the problem definition. Sec-
tion 3 shows the NP-hardness of the problem. Section 4
proposes algorithms for the problem. Section 5 evaluates
the performance of the proposed algorithms, using real and
synthetic datasets. Section 6 reviews related works on struc-
tural hole spanners, and Section 7 concludes the paper.

2. PRELIMINARIES AND DEFINITIONS

2.1 Network Model
A social network can be modeled as an undirected con-

nected graph G = (V,E), where V is the set of vertices
representing individuals and E is the set of edges represent-
ing the relationships between individuals. Let n = |V | and
m = |E|. The degree of a vertex v is the number of its
neighbors, denoted by deg(v). Maximum degree of vertices
in G is denoted by ∆(G).

Given two vertices u, v ∈ V , the vertex connectivity κG(u, v)
inG between them is the minimum number of vertex-disjoint
paths. Vertices u and v are referred to as k-vertex-connected
if they are still connected after the removal of no more than
k vertices from G. A graph G is k-vertex-connected if any
pair of vertices in it is k-vertex-connected. A vertex is an ar-
ticulation point of G if its removal will disconnect the graph.

As G is an unweighted graph, we assume that each edge
has a weight of 1, and we term each edge e ∈ E as a real
edge. The distance dGuv between two vertices u and v in G is
the length of the shortest path between them. We assume
that dGvv = 0 for any vertex v ∈ V . Given a subset VS of V ,
let G[V \ VS ] be the induced subgraph of G by the vertices
in V \ VS . We abbreviate G[V \ VS ] by G \ VS . The inverse
closeness centrality of a vertex v in G is the average distance
between vertex v and other vertices [5], i.e.,

c(v) =

∑
u∈V

dGuv

n− 1
. (1)

The mean distance of a graph G thus is defined as follows.

c(G) =

∑
v∈V

c(v)

|V | =

∑
v∈V

∑
u∈V

dGuv

(n− 1)|V | =

∑
v∈V

∑
u∈V

dGuv

n(n− 1)
. (2)

The sum of lengths of all pairs shortest paths in G is

C(G) =
∑
u∈V

∑
v∈V

dGuv = n(n− 1)c(G). (3)

Note that if G is disconnected, to make the mean distance
of G still be valid, the distance between two vertices not in
the same connected component is defined by a sufficiently
large value ζ to avoid the infinite distance. This value should
be larger than the sum of lengths of all pairs of shortest paths
in any connected component of G, e.g., ζ = n3, as the upper
bound on the sum of lengths of all pairs shortest paths in a
n-vertex graph is no more than ζ/3 [22].
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2.2 Problem Definition
Given a social network G = (V,E) and a positive integer

k, the top-k structural hole spanner problem in G is to find
a subset of vertices VS (VS ⊂ V ) with |VS | = k, such that
the removal of the vertices in VS from G will result in the
maximum increase on the sum of the lengths of all pairs of
shortest paths among the vertices in the induced subgraph
G \ VS , i.e., the problem objective is to

max
VS⊂V, |VS |=k

{C(G \ VS)− C(G)}, (4)

which is equivalent to

max
VS⊂V, |VS |=k

{C(G \ VS)}. (5)

Since communities are dense, the distance between vertices
within each community is small and the member removal
does not change the distance between the other members
considerably. In contrast, the removal of top-k structural
hole spanners in a network will result in the maximum num-
ber of communities disconnected in comparison with other
k-vertex removals, thereby significantly increasing the mean
distance of network. Fig. 1 illustrates the impact of removal
of structural hole spanners on the distances. Specifically, the
proposed model captures three important characteristics of
structural hole spanners.

1. Given an individual u who bridges multiple communi-
ties and another individual v who contacts with people
only in his/her community, individual u is considered
by the model to be a better structural hole spanner
than individual v, since the connections among indi-
viduals within the communities to which individual v
belongs are strong, and the absence of v only slightly
increases the distance among other individuals in the
network. In contrast, individual u connects people who
are in different communities, thus the absence of u can
dramatically increase the distance between them, as
they are loosely connected.

2. Given an individual u who bridges large communities
and an individual v who bridges small communities,
individual u is considered to be a better structural hole
spanner than individual v, since the removal of u will
disconnect more people in the network.

3. Given an individual u who bridges many communities
and an individual v who bridges only a few, individual
u is considered to be a better structural hole span-
ner, since the removal of u can increase the distance
between more communities (even if they are smaller).

3. NP-HARDNESS
In this section we show that the top-k structural hole span-

ner problem is NP-hard by a reduction from an NP-hard
problem - the Most Vital Node Problem (MVNP) [4], defined
as follows. Given an undirected graph G = (V ∪{s, t}, E), a
pair of nodes s and t, and a positive integer k, assume that
there is no edge in G connecting vertices s and t and the
vertex connectivity κG(s, t) between vertices s and t is no
less than k+ 1, the problem is to find a subset VS of V with
|VS | = k such that the length of the shortest path between s
and t in subgraph G[(V \VS)∪{s, t}] of G is maximized. The
rest is to show that the problem is NP-hard by a reduction
from the MVNP by the following theorem.

Theorem 1. The top-k structural hole spanner problem
is NP-hard.

Sketch of the Proof. Given an instance of MVNP in an
undirected graph G = (V ∪ {s, t}, E) with n = |V ∪ {s, t}|,
a pair of vertices s and t in G, and a positive integer k, an
instance of top-k structural hole spanner problem in another
undirected graph G′ = (V ∪ S ∪ T,E′) can be constructed
as follows. Let l = 4n6. Sets of vertices S and T are ob-
tained by duplicating vertices s and t, each l times, i.e., S =
{s1, s2, . . . , sl} and T = {t1, t2, . . . , tl}. For any two differ-
ent vertices u, v ∈ V , an edge (u, v) is added to E′ if an edge
(u, v) ∈ E. For each vertex v ∈ V , l edges (v, s1), (v, s2), . . . ,
and (v, sl) (or (v, t1), (v, t2), . . . , and (v, tl)) are added to E′

if edge (v, s) (or (v, t)) is contained in E. The construction
of G′ is illustrated in Fig. 2. Clearly, it can be verified that

κG′
(sj , tj) = κG(s, t) for any vertex sj ∈ S and any vertex

tj ∈ T and dG
′

uv = dGuv for every pair of vertices u and v.

s t

(a) G

s2 t2

s1

sl

t1

tl

...

...

(b) G′

Figure 2: G′ is constructed from G by replicating
vertices s and t and their incident edges l times.

The MVNP in G = (V ∪ {s, t}, E) can be reduced to the
structural hole spanner problem in G′ as follows. We first
show that the optimal solution to the problem in G′ does
not contain any vertex si or ti. We prove so by showing
that for every given solution VS of the problem for G′, if
VS contains a vertex si or tj , we can construct another set
V ′S such that the mean distance of G′ \ V ′S is strictly larger

than G \ VS . Since, κG′
(si, tj) > k, therefore, there exist

at least one path from si to tj in G′ \ VS , thus we replace
one si or tj in VS by a vertex that lies on the shortest path
between si and tj in G\VS to obtain V ′S . We then prove that
every feasible solution VS of the MVNP problem is optimal
if and only if it is the optimal solution for the problem in
G′, otherwise, we show a contradiction to the optimality by

finding another set V ′S such that d
G\V ′

S
st > d

G\VS
st .

Due to space limit, the detailed version of the proof is
deferred to the full version of this paper.

4. ALGORITHMS FOR TOP-k STRUCTURAL
HOLE SPANNER PROBLEM

In this section, we devise efficient algorithms for the top-k
structural hole spanner problem. We first consider a greedy
approach for the problem and improve the efficiency by sim-
plifying the objective function. We start with a basic algo-
rithm, using the inverse closeness centrality of vertices. We
then develop a faster algorithm, by exploring the bounded
inverse closeness centrality of vertices. We finally propose a
fast, scalable algorithm by utilizing both articulation points
and the bounded inverse closeness centrality of vertices.

4.1 The basic Algorithm
A structural hole spanner in a social network usually spans

multiple communities, thus the sum of distances between the
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spanner and the other vertices should not be larger than the
sum of distances between an ordinary vertex and the other
members in the network. The mean distance of the network
after the removal of a vertex v ∈ V thus is

c(G \ {v}) =
n(n− 1)c(G)− 2

∑
u∈V d

G
uv

(n− 1)(n− 2)

+

∑
u,w∈V (d

G\{v}
uw − dGuw)

(n− 1)(n− 2)
, (6)

where the value of n(n − 1)c(G) is the same for every ver-
tex in G. If we only consider the first term in Eq. (6) as
the dominant term, it can be implied that the shorter the
distance between v and others, the more likely vertex v is
to maximize the mean distance in the graph - the inverse
closeness centrality of a vertex. We will use this metric as
a measure to find the top-k structural hole spanners in G.
Specifically, the algorithm proceeds iteratively. The set of
hole spanners VS is empty initially, within each iteration,
a new hole spanner v ∈ V \ VS is found and added to VS ,
if its inverse closeness centrality c(v) is the smallest among
vertices in V \ VS . This procedure continues until the num-
ber of vertices in VS becomes k. The detailed algorithm is
described as follows.

Algorithm 1 ICC

Input: G = (V,E), k
Output: The set VS of top-k structural hole spanners
1: VS ← ∅;
2: build a priority queue Q of top k hole spanners with the key

of each element in Q; is its inverse closeness centrality;
3: for each vertex v ∈ V do
4: calculate the inverse closeness centrality c(v) of v;
5: if |Q| < k then
6: add v to Q;
7: else if c(v) is less than the largest key in Q then
8: remove the largest key element from Q;
9: add v to Q;

10: VS ← Q.

We refer to Algorithm 1 based the Inverse Closeness Centrality
of vertices as Algorithm ICC for short.

The dominant running time of Algorithm 1 is to find a sin-
gle source shortest path tree for each source vertex v ∈ V ,
which takes O(m + n) time, using the BFS traversal on G.
Algorithm 1 thus takes O(nm + n log k) = O(mn) time,
where the log k factor in the second term is the time of each
priority operation in priority queue Q. Despite Algorithm 1
is efficient, its time complexity is still quite high for a large-
scale network that contains millions or billion of vertices.
A challenging question then is whether this time complex-
ity can be further significantly improved, e.g. a linear-time
complexity, while the solution quality is not inversely com-
promised. In the following we answer this question affirma-
tively by devising two efficient algorithms for the problem.

4.2 Algorithm based on the bounded inverse
closeness centrality

Most real world social networks follow two important facts:
one is the sparsity. The number of neighbors of each ver-
tex is constant, which does not proportionally grow with the
network size [3]; another follows the small world law: the ex-
pected distance between any pair of vertices is a small con-
stant, not proportional to the network size [16, 30]. Thus,
instead of finding the single source shortest path tree for

each vertex that includes all vertices in G, it suffices to find
a partial shortest path tree for the vertex that reaches up to a
given level of neighbors, where the neighbors of a vertex is its
level-1 neighbors, the neighbors of its neighbors is its level-2
neighbors, and so on. We term the partial shortest path tree
spanning up to level-l neighbors of v as the l-bounded short-
est tree Tl(v), and the l-bounded inverse closeness centrality
of v thus is defined as

cl(v) =
∑

u∈Tl(v)

dGuv/(n− 1). (7)

We here adopt the similar metric as Algorithm 1, the only
difference between this algorithm and Algorithm 1 is to
chooseK vertices with top-K largest l-bounded inverse close-
ness centrality, rather than the k vertices with top-k smallest
inverse closeness centralities in Algorithm 1, assuming that
K ≥ k. The rationale behind is that if a vertex (as a source)
can reach a larger portion of vertices in a network within a
small distance l, then its average distance to other vertices
is shorter. To explore the diversity among vertices and to
mitigate two neighbors to be chosen as the top-k structural
hole spanners at the same time, the number of candidates
K for the top-k hole spanners can be larger than k, e.g.,
K = ck (c ≥ 1). We then calculate the inverse closeness
centralities of these K vertices in G, and choose the top-k
smallest ones as the top-k structural hole spanners of the
network. Specifically, the proposed algorithm proceeds as
follows.

Algorithm 2 BICC

Input: G = (V,E), k,K, l
Output: The set of top-k structural hope spanners VS
1: build a priority queue H with the bounded inverse closeness

as the key of each element in H;
2: build a priority queue VS with the inverse closeness as the

key of each element in VS ;
3: for each vertex v ∈ V do
4: calculate the bounded inverse closeness centrality cl(v) of

v, using BFS search;
5: if |H| < K then
6: add v to H;
7: else if cl(v) is larger than the smallest key in H then
8: remove the smallest key element from H;
9: add v to H;

10: for each vertex v ∈ H do
11: calculate the inverse closeness centrality c(v) of v;
12: if |VS | < k then
13: add v to VS ;
14: else if c(v) is less than the largest key in VS then
15: remove the largest key element from VS ;
16: add v to VS ;

return VS .

It first identifies K vertices with top-K largest l-bounded
inverse closeness centralities, starting at each vertex v ∈ V ,
using the BFS traversal on G. Assume that cl(v) is the sum
of the lengths of shortest paths from each vertex within the l-
neighborhood of vertex v. Let H be the set of top-K vertices
with top-K largest bounded inverse closeness centralities. It
then calculates the inverse closeness centrality c(v) of v, for
each vertex v ∈ H, using the BFS technique on G. It finally
identifies the k vertices from the K chosen vertices with top-
k smallest inverse closeness centralities of the vertices. We
refer to Algorithm 2 based the Bounded Inverse Closeness
Centrality of vertices as algorithm BICC for short. The rest
is to analyze its time complexity by the following theorem.
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Theorem 2. Given an undirected connected graph G =
(V,E) with constant maximum degree and positive integers
k and l, there is a fast, scalable algorithm, Algorithm 2, for
the bounded inverse closeness centrality in G, which takes
O(m+ n) time, where n = |V | and m = |E|.
Proof. Assume that G is represented by adjacency lists
of its vertices. Following Algorithm 2, it first constructs a
partial shortest path tree Tl(v) rooted at v for each vertex

v ∈ V using BFS, which takes O(
∑l

i=1 d
i
max) = O(dl+1

max)
time, where dmax is the maximum degree of vertices in
G. It then identifies the top-K vertices with the largest
bounded inverse closeness centrality, which takes O(logK)
time for each vertex insertion into the priority queue H.
Therefore, it takes O(ndl+1

max) = O(m + n) time for finding
the set H as both dmax and l are small constants, in com-
parison with the network size n. Identifying set VS takes
O(K(n+m)+K log k) time, due to the BFS search in G for
each candidate vertex in H, and the addition of the candi-
date vertex to set VS , where VS is maintained as a priority
queue. Therefore, the time complexity of Algorithm 2 is
O(K(n + m) + K logK) = O(m + n) as K = ck usually is
constant.

Note that in real social networks the number of neighbours
of an individual is a small constant which is not proportional
to the network size.

4.3 A fast and scalable algorithm
So far, we have provided an algorithm based on the inverse

closeness centrality and devised an efficient algorithm by ap-
proximating the inverse closeness centrality of each vertex,
through the introduction of l-bounded inverse closeness cen-
trality concept. In the following, we take the second term of
Eq. (6) into account and devise another efficient algorithm
which further speeds up the running time in practice, by
exploring articulation points of G.

One of the instinct properties of structural hole spanners
in most real social networks is their tendency to connect mul-
tiple isolated communities. Such hole spanners are referred
to the articulation points in graph theory. Thus, a top-k
structural hole spanner usually is an articulation point too.
However, the number of articulation points in real social net-
works is quite large, e.g., the number of articulation points in
each network of Table 1 is at least 10% of the number of ver-
tices in the network. How to identify top-k structural hole
spanners from all articulation points in a large-scale network
is a challenging issue. In the following, we shall devise a fast
yet scalable algorithm for the top-k structural hole spanner
problem, by exploring the articulation points and using the
bounded inverse closeness centrality of vertices.

Lemma 1. [22] Let G be an unweighted graph G = (V,E)
with n = |V | vertices, then the sum of lengths of all pairs
shortest paths in G is no more than n3/3.

Given two vertices u and v that are not in the same con-
nected component of G, we assume that there is a virtual
edge in G between them with weight larger than the sum
of lengths of all pairs of shortest paths in G, and we assign
this virtual edge with a weight w(u, v) = cn3 with c ≥ 1/3.
For the sake of convenience, we set c = 1 in the rest of dis-
cussion. Assume that v is an articulation point in G, we
distinguish into two cases as follows.

Case one: if the removal of v results in two connected
components CC1 and CC2. Let CCi contain ni vertices.

The weighted sum of all virtual edges resulting from the
removal of v is n1×(n−n1)cn3+n2×(n−n2)cn3 = cn3(nn1+
nn2−n2

1−n2
2). Clearly, when n1 ≈ n2, the weighted sum is

maximized. This implies that an articulation point is likely
to be a top-k hole spanner if its removal results in two large
connected components.

Case two: if the removal of v results in l connected com-
ponents CC1, CC2, . . . , CCl with l > 2. Let CCi contain ni

vertices (1 ≤ i ≤ l). Let n =
∑l

i=1 ni. Then, the weighted
sum of virtual edges between vertices in CCi and CCj is∑l

i=1

∑l
j=1 ninjcn

3 = cn3 ∑l
i=1 ni(n − ni), which is maxi-

mized when all components have roughly equal sizes.
Following the analysis of these two cases, it can be seen

that an articulation point in G is likely to be one of top-k
structural hole spanner if its inverse closeness centrality is
maximized, which approximately equals the weighted sum of
virtual edges resulting from its removal, since the sum of all
pairs shortest paths in each connected component is much
less than the weight of each virtual edge. We now propose
a fast, scalable algorithm by exploring the inverse closeness
centralities of articulation points. Specifically, the algorithm
consists of two stages. Let A be the set of articulation points
in G. If |A| < k, the algorithm will proceed the second
stage after the first stage. Within the first stage, there is
a number of iterations. An articulation point within each
iteration will be chosen as a top-k hole spanner. In the
second stage, Algorithm 2 will be invoked to find the rest
of top-k structural hole spanners. The detailed algorithm is
described in Algorithm 3.

Algorithm 3 AP_BICC

Input: G = (V,E), k,K, l
Output: The set of top-k structural hole spanners VS
1: build a priority queue VS of top-K approximate inverse close-

ness candidates with the key of each element in VS ;
2: let A be the set of articulation points in G, which can be

found by invoking Procedure 1;
3: for each vertex v ∈ A do
4: find the approximate inverse closeness centrality c′(v);
5: if |VS | < k then
6: add v to VS ;
7: else if c′(v) is larger than the smallest key in VS then
8: remove the smallest key element from VS ;
9: add v to VS ;

10: if |VS | < k then /* the number of APs is less than k */
11: U ← V \A;
12: k′ ← k − |VS |;
13: build a priority queue Q of K elements with the key of

each element in U being its l-bounded inverse closeness cen-
trality;

14: while |VS | 6= k do
15: extract the the element v with largest key from Q;
16: add v to VS ;

return VS .

We refer to Algorithm 3 based on Articulation Points and
Bounded Inverse Closeness Centrality of vertices as Algo-
rithm AP_BICC for short. We now show the articulation
point finding and their approximate inverse closeness cen-
trality, c′(v), for each v ∈ A can be efficiently calculated,
using a Depth-First Search (DFS) traversal on G.

Let v be an articulation point of G, in the DFS tree con-
struction starting from a vertex v, assume that u1, u2, . . . , up

be the children of vertex v in the DFS tree. Let Vi be the set
of vertices in the subtree Ti rooted at ui and CCi the con-
nected component of G induced by the vertices in Vi with
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1 ≤ i ≤ p. Let CC0 be the connected component contain-
ing the ancestors of v in the DFS tree. Following the DFS
search property, all edges in G can be partitioned into “tree
edges” and “non-tree edges”, respectively. And all non-tree
edges are “back edges”, which means that one endpoint of
the edge is a descendant while another endpoint of the edge
is a proper ancestor of v in the DFS tree. Clearly, there is no
edges between any two connected components CCi and CCj

with i 6= j and 1 ≤ i, j ≤ p, by the DFS traversal property.
If there is a back edge between a vertex in Vi and a vertex
in CC0, then both CCi and CC0 are the same connected
component when the removal of v from G, 1 ≤ i ≤ p. An
illustration of this case is shown in Fig 3.

...

CC0

CC1 CC2
CCp

T1 T2
Tp

ba
ck

 e
d

ge back edge

v

u1 u2
up

Figure 3: An illustration of exploring an articulation
point v and its p children u1, u2, . . . , up during a DFS
traversal on G.

Assume that there are p′ CCs among the p CCs derived
from p children of v have back edges. Then, the removal of
v will result in p− p′ CCs. For the sake of convenience, we
assume that these p−p′ CCs are CC′1, CC

′
2, . . . , CC

′
p−p′ with

each having n′i vertices. The approximate inverse closeness
centrality of v then is

c′(v) ≈
p−p′∑
i=1

|CC′i| · (n− |CC′i| − 1) · n3. (8)

The linear-time procedure of detecting each articulation point
and the calculation of its approximate inverse closeness cen-
trality is then detailed as follows. A vertex v is identified
as an articulation point of G if a subtree rooted at one of
its children does not contain any back edges. The induced
subgraph by the set of vertices in this subtree is a connected
component after the removal of vertex v from G. The num-
ber of vertices contained in each such connected component
is the number of descendants of that child in the DFS tree.
To keep track of the number of descendants of each vertex
when performing the DFS traversal on G and to identify
those children of the vertex without any back edges, the ap-
proximate inverse closeness centrality of v (as an articulation
point) can be easily calculated. The detailed implementa-
tion of this is given in Procedure 1 and Procedure 2.

Theorem 3. Given a graph G(V,E) with constant max-
imum degree and an integer k > 0, Algorithm 3 takes time
O(n log k +m) = O(m+ n) as k is a constant.

Proof. Following Algorithm 3, the detection of all articula-
tion points and the calculation of their approximate inverse
closeness centralities takes O(n + m) time by Procedure 1.

Procedure 1 Articulation points and their approximate in-
verse closeness centrality calculation

1: for each vertex u ∈ V do
2: /* the number of children of u */
3: u.child← 0;
4: /* each vertex has 3 colors white/grey/black */
5: u.color ← white;
6: c′(u)← 0;

7: time← 0;
8: for each vertex u ∈ V do
9: if u.color == white then

10: call Modified-DFS(G,u) /* Procedure 2 */;

Procedure 2 Modified-DFS(G, u)

1: u.color ← black;
2: time← time+ 1;
3: /* the discovered time of vertex u */
4: u.discovered← time;
5: /* the smallest discovered time of any neighbor of u’s descen-

dants (through a back-edge) */
6: u.lowest← time;
7: /* the number of vertices in CC0 after removing u */
8: cc0 ← n;
9: /* the number of descendants of u in DFS tree */

10: u.descendant← 0;
11: for all (u, v) ∈ E do
12: if u.color == white then
13: u.color ← grey;
14: v.π ← u /* u is the parent of v */;
15: u.child← u.child+ 1;
16: call Modified-DFS(G,v);
17: u.descendant← u.descendant+ v.descendant;
18: u.lowest← min (u.lowest, v.lowest);
19: if (v.lowest ≥ u.discovered) OR (u is root AND

u.child > 1) then
20: /* v will be disconnected without u */
21: c′(u)← c′(u)+(v.descendant×(n−v.descendant−

1));
22: cc0 ← cc0 − v.descendant /* subtree of v is not

part of CC0 */;

23: else if v 6= u.π then
24: u.lowest← min (u.lowest, v.discovered);

25: c′(u)← c′(u) + (cc0 × (n− cc0 − 1)).

For each vertex u, its adjacency list is traversed exactly once
and the number of descendants and children are calculated
in the post-traversal in DFS. The maintenance of the prior-
ity queue Q takes O(|A| log k) = O(n log k) time, where A
is the set of all articulation points in G. The total amount
of time for calculating the number of descendants of each
vertex in the DFS tree is O(n). Thus, the time complexity
of Algorithm 3 is O(n+m).

5. PERFORMANCE EVALUATION
In this section we evaluate the performance of the pro-

posed algorithms for the structural hole spanner problem,
using different datasets. We start with the experimental en-
vironment settings, we then investigate the effectiveness of
the proposed models of structural hole spanners, compared
with other models using both real and synthetic datasets.
We finally study the performance of the proposed algorithms
and the impacts of parameters on the performance using the
datasets in Table 1 and in the end, we discuss the results.

5.1 Experimental environment setting
To evaluate the performance of the proposed algorithms,

we adopt the real-world datasets, which are listed in Table 1,
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where GR-QC is the collaboration network from arXiv1, cov-
ering collaborations between authors of papers submitted
to General Relativity and Quantum Cosmology category.
Epinions is an online social network of a general consumer
review site Epinions2. The Twitter dataset was obtained
from [19]. Email-EuAll is the anonymous email network
of a large European research institution for an 18-month
period [18]. The DBLP-2011 dataset is the collaboration net-
work obtained from the DBLP web site3, and the Live-

Journal dataset describes the social network of free on-line
blogging community4.

Recall that Algorithms 1, 2, 3 are denoted by ICC, BICC
and AP_BICC, respectively. To evaluate their performance
on the mentioned datasets, we will use the following state-
of-the-art algorithms for benchmark purposes.

• Algorithm PathCount [11] is similar to betweenness
centrality and assigns each vertex a score that is the
average number of shortest paths (between all pairs
of vertices) on which the vertex lies, then selects the
top-k vertices with the highest scores.

• Algorithm 2-Step [24] assigns each vertex a score that
is the number of pairs of its neighbors without edges
between them, then selects the top-k highest scores.

• Algorithm PageRank [21] assigns each vertex v a PageR-
ank score r(v) that is the visiting probability of v
by a random surfer, r(v) = 1/n initially. The al-
gorithm then updates r(v) with a new value r(v) =
(1 − α)/n + α

∑
(u,v)∈E r(u)/deg(u), where α = 0.85

is the random jump parameter. It finally chooses the
top-k vertices with the highest PageRank scores.

• Algorithm MaxD [19] is to find a set of k vertices such
that the minimum cut of communities will be reduced
significantly, after removing these vertices, assuming
that l communities are given. For any pair of commu-
nities, the algorithm selects d2k/(l(l − 1))e vertices as
structural hole spanners using a greedy strategy. In
each round, it chooses the vertex whose removal will
result in a maximum decrease of the minimum cut.

• Algorithm HIS [19] assigns each vertex v a score that
simulates the likelihood of v as a structural hole span-
ner across the given subset of communities, assuming
that l communities are given.

Notice that all our experiments were conducted based on
a Linux desktop with GenuineIntel Core i7-3370 (3.40GHz)
CPU and 8GB main memory.

Dateset |V | |E| % APs ∆(G) Diam

GR-QC 5,242 28,980 15% 81 17

Epinions 75,879 508,837 14% 1,551 14

Twitter 92,180 188,971 14% 233 26

Email-euAll 265,214 420,045 2% 7,636 14

DBLP-2011 986,324 6,707,236 9% 979 12

LiveJournal 5,363,260 79,023,142 16% 2,469 14

Table 1: Six different real datasets, where APs
stands for Articulation Points in the corresponding
network and Diam stands for Diameter.
1http://arxiv.org/
2http://epinions.com/
3http://www.informatik.uni-trier.de/∼ley/db/
4http://livejournal.com/

5.2 Effectiveness of the proposed model
We first evaluate the effectiveness of the proposed model

using the definition proposed by Burt [7] such as: (1) the size
of communities that each individual spans, (2) the number
of communities and (3) the number of neighbours of that
individuals. Burt [7] suggested that a good structural hole
spanner is connected to many communities, but to be in-
fluential, the ratio of the number of its communities to the
number of its neighbors should be large. This definition im-
plies a metric for evaluating the structural hole spanners in a
setting where the communities are given in advance. Given
a graph G = (V,E), suppose S is the set of structural holes
found by an algorithm, then, the quality of the solution S is

ρ(S) =

∑
v∈S

# of communities that v is connected to
deg(v)

|S| . (9)

We evaluate the performance of different algorithms using
this metric in order to find out the degree to which our model
maps the real structural hole spanners. We use the DBLP

dataset which has been used for the same purpose in [19].
The communities in this network are publication venues, e.g,
journal or conference; authors who published to a certain
journal or conference form a community. We evaluate two
algorithms by MaxD and HIS proposed by Lou et al. [19].

Fig. 4(a) shows that Algorithm AP_BICC significantly out-
performs all the other algorithms in terms of the average
community size by varying k. Fig. 4(a) verifies our claim in
Section 2.2 that our model can identify the vertices connect-
ing with larger communities. Similarly, it can be observed
in Fig. 4(b) that algorithm AP_BICC outperforms the other
algorithms in the benchmark at least 50%, using the metric
in Eq. (9). In a nutshell, Algorithm AP_BICC can guarantee
to find efficient structural hole spanners connecting to larger
communities in this dataset while the other algorithms pro-
duce the results with less number of communities compared
to the number of their neighbors. Also, the running time of
Algorithm AP_BICC is a few milliseconds, while Algorithm
MaxD takes minutes and Algorithm HIS takes a few seconds.

5 15 25 35 45

k

1200

1600

A
v
er

ag
e 

co
m

m
u
n
it

y
 s

iz
e

ICC
BICC
2-Step

PathCount
PageRank
HIS

MaxD
AP_BICC

(a) Average community size

5 15 25 35 45

k

0

0.4

0.8

ρ
(S
)

ICC
BICC
2-Step

PathCount
PageRank
HIS

MaxD
AP_BICC

(b) Community membership

Figure 4: Effectiveness of different algorithms on
dataset DBLP using different quality metrics.

5.3 Performance on synthetic datasets
We then evaluate the quality of structural hole spanners

found by different algorithms. We generate a random graph
of 211 vertices using SSCA method5. SSCA generates cliques
of random size with average size 27 and random inter-clique
edges. We then place a ground-truth structural hole span-
ner si for every clique i. For every edge (u, v), such that
u is in clique i and v is in clique j, we replace it with two
edges (u, si) and (si, v). Fig. 5 shows the performance im-
provement made by Algorithm AP_BICC in empirical results.

5http://www.cse.psu.edu/∼madduri/software/GTgraph/
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Fig. 5 demonstrates that the solution accuracy delivered by
Algorithm AP_BICC is at least 20% of the others for k > 5.
The reason for such significant improvement is that algo-
rithm AP_BICC finds more meaningful structural hole span-
ners that play a significant role in the connectivity of com-
munities (cliques) and vertices in the network.
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Figure 5: Running time and precision improvement
by Algorithm AP_BICC using synthetic dataset.

5.4 Performance on real datasets
We thirdly evaluate the performance of the proposed algo-

rithms ICC, BICC, and AP_BICC, against benchmark structure-
based algorithms PathCount, PageRank, and 2-Step against
different datasets listed in Table 1. We avoid comparing
community-based algorithms MaxD and HIS, since using any
community detection method is subject to unfairness.

Fig. 6 and Fig. 7 show the performance of different algo-
rithms in terms of the optimization objective in Eq. (4), i.e.,
C(G\S)−C(G) and their running times. Specifically, it can
be seen from Fig. 6(a) that Algorithm AP_BICC significantly
outperforms all the other algorithms by at least 100% for
dataset GR-QC, while its running time is only 6% of the best
of the three benchmark algorithms as shown in Fig. 7(a). It
can be observed from Fig. 6(e) to Fig. 6(f) that Algorithm
AP_BICC has the similar performance and running time for
other datasets. That is, it outperforms all the other algo-
rithms at least 50% while its running time is only around
7% and 65% of the fastest benchmark algorithm for datasets
DBLP-2011 and LiveJournal, respectively. Fig. 6(b) and
Fig. 6(d) show that it is superior in comparison with bench-
mark algorithms such as PageRank and PathCount on both
performance and running time for datasets Epinions and
Email-EuAll when k is small (k < 20). With the increase
of k, the performance gap between Algorithm AP_BICC and
other algorithms increases, too. Furthermore, it can be seen
from Fig. 7(b) and Fig. 7(d) that the running time of Algo-
rithm AP_BICC is less than 7% of the fastest benchmark Algo-
rithm PageRank and 0.01% of Algorithms ICC and PathCount

for dataset DBLP-2011 as shown in Fig. 7(e). Moreover, Al-
gorithm AP_BICC significantly outperforms Algorithm BICC,
which means that the second term in Eq. (6) is dominant.
Furthermore, since the number of articulation points is large,
Algorithm AP_BICC never reaches to the second phase, caus-
ing it to run considerably faster than Algorithm BICC.

5.5 Impact of parameters on the performance
We finally evaluate the impact of parameters on the per-

formance of the proposed Algorithms AP_BICC and BICC. As
the number of articulation points in each mentioned dataset
is far larger than k, the second stage of Algorithm AP_BICC,
the bounded inverse closeness centrality of vertices will not
be invoked. Therefore, we only investigate the impact of
parameters l and K on the performance of algorithm BICC.

Fig. 8 plots the performance curves of Algorithm BICC

by varying the value of l, based on two representative large
datasets LiveJournal and DBLP-2011 in Table 1. As the ex-
perimental results indicate that algorithm BICC will deliver
the similar performance for other datasets, we focus only
on these two large datasets. Fig. 8(b) implies that when l
is small with 2 ≤ l ≤ 6, Algorithm BICC has the best per-
formance for dataset LiveJournal. It also exhibits similar
behavior for dataset DBLP-2011 as shown in Fig. 8(a). How-
ever, its performance degrades chromatically when l = 6,
i.e., its performance decreases by at least 80% compared
with its performance when l = 2. This implies that its per-
formance dramatically drops with the growth of l. The rea-
son behind is that algorithm BICC always chooses the top-K
vertices with the largest l-bounded inverse closeness cl(v).
By continuously increasing the value of l, the value of cl(v)
will be closer to the value of its inverse closeness centrality
c(v). Since the top-K vertices with the “largest” l-bounded
inverse closeness centrality (that is indeed almost the same
as inverse closeness centrality for large l) will be chosen, the
algorithm performance drops. Fig. 8 suggests that the value
of l in practice should be small, otherwise the quality of
the solution is not promising, this further verifies the small-
world phenomenon that causes l-bounded closeness central-
ity to be very close to inverse closeness centrality, since the
small-world phenomenon states that the largest distance in
the network is expected to be a constant. Fig. 8(d) plots the
running times of algorithm BICC for different k using dataset
LiveJournal, from which it can be seen that it takes more
time on finding a solution with the growth of l. Specifically,
its running time when l = 2 is a tiny fraction of its running
time when l = 10 (0.001%). Fig. 8(c) further shows that it
has the similar behavior for dataset DBLP-2011.

Fig. 9(a) shows that the performance of algorithm BICC

for dataset DBLP is stable, with the increase of K. The ra-
tionale behind is that social networks follow the small-world
law that individuals can reach each other with a few num-
ber of hops, thus the l-bounded inverse closeness centrality
of vertices can approximately represent closeness centrality.
Fig. 9(b) demonstrates that algorithm BICC leads to a better
performance for dataset LiveJournal with the growth of K.
Fig. 9(d) shows its running time, using different values of K
for dataset LiveJournal, from which it can be seen that the
running time of algorithm BICC linearly increases, with the
growth of K. The reason is that by increasing the value of
K, algorithm BICC will examine more candidate vertices.

5.6 Discussion
We now turn to the discussion of the experimental re-

sults. Fig. 6 shows that in co-authorship datasets GR-QC

and DBLP-2011, the performance gain of Algorithm AP_BICC

over Algorithm PageRank is significant. The reason is that
Algorithm AP_BICC finds the individuals who bridge differ-
ent communities, while Algorithm PageRank detects the in-
dividuals with high reputation. In other words, within co-
authorship networks, opinion leaders have a high reputation
as they collaborate with many people in their own commu-
nity, however, the structural hole spanners connect different
communities and their absence is more tangible. Similarly,
in dataset LiveJournal, bloggers produce contents within a
few subjects gain high reputation. The bloggers who publish
in multiple subjects however, have a wider perspective, more
sources of information and hold more significant positions.
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Figure 6: Performance of various algorithms, using different datasets.
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Figure 7: Running times of various algorithms, using different datasets.
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Figure 8: Impact of parameter l on performance of
algorithm BICC.

Moreover, Fig. 6 shows that the performance of Algorithm
AP_BICC is similar to PageRank for dataset Email-EuAll.
Dataset Email-EuAll is the email network of an organiza-
tion in which high level managers gain a high reputation.
The high level managers communicate with the operation
managers in each separate division and act as the only com-
munication link between each separate division. Thus, they
are also structural hole spanners. A similar explanation can
be applied to dataset Twitter, where people who have higher
reputation are directly followed by a larger portion of users
and their content is forwarded by their followers.

6. RELATED WORK
Over last few years, the size of real networks has increased

enormously, developing efficient algorithms for finding influ-
ential individuals in such large-scale networks with unique
properties such as structural hole spanners has become a
challenging task. Moreover, building accurate models that
truly reflect the properties of structural hole spanners is cru-
cial to identify such individuals. Nevertheless, researchers
take lots of effort towards this aim.

The notion of structural hole spanners was first introduced
by Burt [7] to find the key employees in organizations for in-
tegrating operations across functional and business bound-
aries. This concept later was further refined in [1, 8, 9]. A
few studies have exploited the concept of structural holes in
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Figure 9: Impact of parameter K on performance of
algorithm BICC.

order to design strategic games for network formation [11,
17]. Goyal et al. [11] presented a network formation model
that a vertex u serves as an intermediary between many
vertices. However, this strategy leads to the star network
and real networks do not follow a star topology. In order to
tackle this problem, Kleinberg et al. [17] designed a game
by building a model of the payoffs that arise from filling
structural holes. This payoff is a decreasing function of the
number of paths with length two between each pair of neigh-
bors to avoid the star topology. One of the limitations of
the model presented by Kleinberg et al. [17] is that this
model needs careful tuning of parameters such as the link
maintenance cost that is not easily achieved in large-scale
networks. Another line of research in computer science is to
find structural hole spanners in order to incorporate them in
contagion, and can be divided in two categories as follows.

Structural-based Models: Goyal et al. [11] formulated
a structural hole spanner as a vertex that resides on more
shortest paths between different pairs of vertices. Since
counting the number of shortest paths in large networks is
time-consuming, Tang et al. [24] proposed to only count the
number of shortest paths with length two on which a ver-
tex lies. In this model, any shortest path of length greater
than two will be ignored, thus the model suggests candidates
that are connected to smaller rather than larger, richer and
more influential communities. A fairly common case under
this model is its failure of finding good quality structural
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hole spanners when a vertex is densely connected to two
communities. For example, in Fig. 1, vertex v1 forms more
length-2 paths than that of v2, while v2 is connected to more
communities and is a better structural hole based on Burt’s
theory [7]. However, this model suggests v1 as a better struc-
tural hole spanner. In order to address this problem, Ugan-
der et al. [28] defined the structural diversity of an individ-
ual as the number of connected components in its contact
neighborhood, which is a similar notion as structural hole
spanners, and studied the role of structural diversity in con-
tagion of information within real social networks. Huang et
al. [14] studied the top-k structural diversity search in large
networks and developed efficient algorithms for massive dy-
namic networks. However, only a small number of vertices in
each community can be part of contact neighborhood, and
they can form multiple connected components. Similarly,
Tong et al. [27] defined the gateway-ness of a vertex v, pro-
portional to the paths between source vertices S and target
vertices T , on which v lies. In addition, each path is given
a score, which is inversely proportional to its length. Yang
et al. [31] studied the role of structural holes in diffusion.

Community-based Models: Lou et al. [19] proposed a
model to find structural holes in a network, assuming that
communities in the network are given. The objective in their
model is to maximize a utility function that measures the de-
gree to which vertices span communities. One instantiation
is to find a set of vertices whose removal leads to the max-
imum decreases on the number of inter-community edges.
One major concern about this model is that communities
usually are not known, thus the quality of the solution relies
on the quality of communities found. Moreover in Fig. 1,
the removal of v1 decreases the number of inter-community
edges by 8 and the removal v2 decreases the inter-community
edges by 6. Therefore, this model implies v1 as the preferred
structural hole spanner. However, v2 should be a better
structural hole as it bridges more communities.

7. CONCLUSION
In this paper we studied the top-k structural hole spanner

problem in a large-scale social network. We first proposed
a novel model to measure the quality of structural holes.
We then formulated a novel top-k structural hole spanner
problem and showed its NP-hardness. We thirdly devised
two fast yet scalable linear-time algorithms for the problem
by using both the bounded inverse closeness centrality of
vertices and articulation points of the network. We finally
evaluated the performance of the proposed algorithms and
validated the effectiveness of the proposed model through ex-
tensive experiments on real and synthetic datasets. Exper-
imental results demonstrated that the proposed model can
capture the characteristics of structural hole spanners, and
the proposed algorithms outperform several other heuristics.
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