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Abstract—In this paper we study data collection in an energy
harvesting sensor network where sensors are deployed along a
given path and a mobile sink travels along the path periodically
for data collection. Such a typical application scenario is to
employ a mobile vehicle for traffic surveillance of a given
highway. As the sensors in this network are powered by renew-
able energy sources, the time-varying characteristics of energy
harvesting poses great challenges on the design of efficient routing
protocols for data collection in harvesting sensor networks. In
this paper we first formulate a novel optimization problem
as a network utility maximization problem, by incorporating
multi-rate communication mechanism between sensors and the
mobile sink and show the NP-hardness of the problem. We
then devise a novel centralized algorithm for it, assuming that
the global knowledge of the entire network is available. We
also develop a distributed solution to the problem without
the global knowledge assumption. We finally conduct extensive
experiments by simulations to evaluate the performance of the
proposed algorithms. The experimental results demonstrate that
the proposed algorithms are promising and very efficient.

I. INTRODUCTION

Wireless sensor network has emerged as a key technol-
ogy for various applications such as environmental sensing,
structural health monitoring, and area surveillance. Regard-
less of energy efficiency of battery-powered sensor networks
(referred to as conventional sensor networks), they will fail
eventually due to the depletion of power resource. In some
harsh environments, replacing batteries will be very costly and
sometimes become impossible. A viable solution against the
limited energy supplies is to enable sensor nodes to harvest
ambient energy from their surroundings. However, the time-
varying characteristics of energy harvesting sources poses
great challenges in the design of routing protocols for such
networks under the dynamic energy replenishment constraints.

A. Related work

Sink mobility in conventional sensor networks has been
extensively studied [2], [3], [6], [11], [12], [13], [18], [21],
[22], [23], and shown that it can reduce the energy consump-
tion of sensors, balance the workload among sensors, thereby
prolonging network lifetime. Most existing studies focused
on minimizing the energy consumption so as to prolong
network lifetime since sensors are powered by energy-limited
batteries. The proposed approaches for conventional sensor

networks however are not applicable to energy harvesting
sensor networks, due to the fact that the time-varying energy
replenishment is imposed on the latter. In other words, the
network lifetime metric in energy harvesting sensor networks
is no longer a major issue as the energy powering sensors can
be replenished periodically. Thus, routing protocols for energy
harvesting sensor networks should be adaptive to response to
dynamic changes of energy replenishment rates.

In terms of data collection with a path-constrained mobile
sink, the closely related work in conventional sensor networks
is briefly described as follows. Song and Hatzinakos [18]
considered the energy consumption minimization problem of
data collection from one-hop sensors. They formulated the
problem as a joint power control and time allocation optimiza-
tion problem by providing a Markov-chain model. Chakrabarti
et al. [2] considered the dependence of transmission setting
and packet loss rate of the mobile data collection problem by
modeling the process of data collection as a M/D/1 queue.
They then proposed an algorithm that ensures adequate data
collection and minimizes the energy consumption. Kansal et
al. [9], [19] addressed a network infrastructure based on the
use of a path-constrained mobile sink for data collection,
where a sensor sends its data to the sink along a minimum
number hop-count path. They then proposed a speed control
algorithm to improve the amount of data collected. Assuming
that the mobile sink moves at a constant speed, Gao et al. [6]
addressed the energy minimization problem by proposing a
novel data collection scheme, where sensors close to the
trajectory of the mobile sink are chosen as subsinks and
other sensors make use of different subsinks for their data
relay. They formulated the subsink choice problem as the
problem of minimizing the total sum of hops from sensors to
their subsinks and provided a heuristic algorithm. They then
studied the time allocation problem for subsinks by divided
the communication time between the mobile sink and all
subsinks into time intervals and proposed some practical time
allocation methods. In contrast, little attention has been paid
to data collection in energy harvesting sensor networks with
mobile sinks [16]. Most existing studies on data collection
in such networks assumed that the collected data is routed
to a fixed sink through multi-hop relays, which may not be
applicable to large-scale networks [5], [10], [14], [24]. For
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example, Liu et al. [10], [14] formulated the problem as a
lexicographic maximin rate allocation problem, and provided
a centralized algorithm for the problem by solving an integer
program. Zhang et al. [24] studied the problem as a utility
maximization problem by representing the utility gain at each
sensor node as a concave utility function. They proposed an
efficient algorithm for finding the accumulative sum of utility
gains of all sensors in tree networks. Orthogonal to these
existing works, in this paper we consider data collection in
an energy harvesting sensor network with a path-constrained
mobile sink, where the sensor network is deployed along a
highway for traffic-surveillance and a mobile vehicle at a
constant speed is used to patrol the highway for collecting
data from its one-hop sensors. We formulate the problem as a
network utility maximization problem by incorporating multi-
rate wireless communication mechanism between the sensors
and the mobile sink.

B. Contribution

Our major contributions in this paper are as follows. We
consider data collection in an energy harvesting sensor net-
work with a path-constrained mobile sink. We first formulate
the problem as a novel network utility maximization problem
and show its NP-hardness. We then propose a centralized
algorithm assuming that the global knowledge of the entire
network is available. We also develop a distributed algorithm
for the problem without the global knowledge. Finally, we
conduct experimental evaluation by simulations to evaluate
the performance of the proposed algorithms. The experimental
results demonstrate that the proposed algorithms are efficient.

C. Paper organization

The remainder of the paper is organized as follows. Sec-
tion II introduces the system model, notions, problem def-
inition, and its NP-hardness proof. Section III is devoted
to devising a centralized algorithm for the network utility
maximization problem, and a distributed algorithm is also
proposed in Section IV. Section V evaluates the performance
of the proposed algorithms through experimental simulations,
and Section VI concludes the paper.

II. PRELIMINARIES

A. System model

We consider an energy harvesting sensor network G =
(V ∪ {s}, E) where V is a set of n homogeneous sensors
deployed along a path and s is a mobile sink traveling along
the path at a constant speed to collect data from one-hop
sensors. Each sensor is powered by solar energy and has
stored enough sensing data for collection. There is a link
in E between a sensor v ∈ V and s when s is within the
transmission range of v.

Given the path length L, the tour time of the mobile
sink per tour is determined by its speed (or the data latency
requirement). That is, the faster the mobile sink moves, the
shorter its tour time is, resulting in a shorter delay on data

delivery. We here consider a discrete-time system where the
duration per tour is slotted into equal time slots with each
lasting τ time units [15]. Given the mobile sink speed rs,
the number of time slots can be determined by T = d L

rs·τ e.
Assume that the time slots along the path are indexed as
1, 2, · · · , |T |. Let A(v) represent the set of consecutive time
slots in which the data transmitted by sensor v ∈ V can
be collected by the mobile sink, which is determined by the
maximum transmission range Rmax of v and its distance from
the sink path. Fig. 1 illustrates such an example, where for two
sensors vi and vj , A(vi) is {is, · · · ie} and A(vj) is {js, · · · je}
with 1 ≤ is ≤ ie ≤ |T |, 1 ≤ js ≤ je ≤ |T |. Notice that
A(vi)∩A(vj) 6= ∅, which means that they share some common
time slots at which both of them can transfer their data to the
mobile sink. However, following the wireless communication
interference model [20], the mobile sink at any given time slot
can only receive data from at most one of the sensors.

vi

vj

Rmax

is js ie je
... ... ... ... ...

d

2

mobile sink path

1 |T|

Fig. 1. An illustration of time slots covered by sensors vi and vj .

Following Shannon’s formula that C = W · log( PN0
+ 1)

[17], where C is the channel capacity, W is the bandwidth
of the channel, N0 is the white noise power, and P is the
average transmitter power of the sender which is of the
super-linear relationship to the transmitter-receiver distance,
the transmission rate is bounded by the channel capacity.
Assuming that the transmission power of each sensor vi, Pvi ,
is fixed, in this paper a multi-rate communication between
vi and s is adopted [7]. That is, the transmission rate of
vi is determined by its distance to the receiver (the mobile
sink). As shown by Fig. 2, the transmission rates of vi at two
different time slots j and k, rij and rik, are determined by
their distances dij and dik. We thus assume that rij and rik
are given in the rest of discussion.

ikd
dij

Rmax

vi

mobile sink path

... j k ......

Fig. 2. Multi-rate wireless communication with a fixed transmission power.
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B. Energy model

We follow a widely adopted assumption of renewable
energy replenishment. That is the energy replenishment rate
of each sensor is much slower than its energy consumption
rate and the amount of harvested energy at a future time
period is uncontrollable but predictable based on the source
type and harvesting history [10]. Denote by Bmaxv the energy
storage capacity and Bv(i) the amount of energy stored at
each node v ∈ V in the beginning of tour i, Bv(i) can be
expressed as min{Bv(i− 1) +Qv(i− 1)−Ov(i− 1), Bmaxv },
where Qv(i − 1) and Ov(i − 1) are the amounts of energy
harvested and consumed at tour i−1, and 0 ≤ Bv(i) ≤ Bmaxv .
Furthermore, to support long-period, continuous monitoring
service, we assume that sensors should not consume more
energy than they can collect in order to achieve perpetual
operations [8]. Hence, we use Bv(i) as the energy budget of
sensor v for tour i. Without loss of generality, we define Bv
as the energy budget of sensor v per tour.

C. Network utility

Since the energy replenishment rates vary over time, sensor
nodes with sufficient energy replenishment rates may have
more chances to transmit their data to the mobile sink, while
the others with low energy replenishment rates may never
have any chances to transmit their data to the mobile sink
at all. Consequently, the data collected per tour is the biased
data, which may not represent the data landscape of the entire
network. In order to characterize the impact of sensing data
from individual sensors on the overall data quality and to
achieve proportional fairness among sensors, we introduce
a metric, a non-decreasing positive, concave utility function
U(·). Denote by Dv the amount of data collected from sensor
v by the mobile sink per tour, the utility accrued by sensor
v is U(Dv) =

√
Dv , which is strictly concave and known

to achieve proportional fairness [24]. This function reflects an
important fact that for any given sensor, when the amount
of data collected by the sensor is above a specific threshold,
the increase on the utility gain above the threshold is only
marginal. The network utility Utotal accrued jointly by all
sensors per tour thus is:

Utotal =
∑
v∈V

U(Dv) (1)

D. Problem definition

Given an energy harvesting sensor network G, and a set
T of time slots per tour in which the mobile sink can collect
data, the network utility maximization problem is to maximize
the network utility by allocating the time slots to individual
sensors under their energy replenishment rate constraints.
Ideally, each sensor should transmit its data at all available
time slots to the mobile sink to maximize its utility, thereby
maximizing the network utility. However, since the energy
replenishment rate of each sensor is much slower than its
energy consumption rate, each sensor can only make use of
some of these time slots to transmit its data. Furthermore, due

to the fact that sensors usually are densely deployed, it is very
likely that multiple sensors will compete their shared time slots
to transmit their data. Thus, to allocate each shared time slot
to which sensor so as to maximize the network utility is a
challenging task.

Recall that A(vi) represents the set of available time slots
in which sensor vi can transfer its data, and rij represents the
data transmission rate of sensor vi at time slot j. Let

xij =

{
1, time slot j is allocated to sensor si

0, otherwise
(2)

The network utility maximization problem can be expressed
as a non-linear program as follows.

Maximize Utotal =
∑
vi∈V U(

∑|T |
j=1 xij · rij · τ) (3)

Subject to xij ∈ {0, 1}, ∀vi ∈ V, 1 ≤ j ≤ |T | (4)
xij = 0, ∀vi ∈ V, j /∈ A(vi) (5)∑|V |
i=1 xij ≤ 1, ∀1 ≤ j ≤ |T | (6)∑|T |

j=1 xij · Pvi · τ ≤ Bvi , ∀vi ∈ V (7)

where
• Constraint (5) ensures that at any given time slot, a sensor

can transmit its data to the mobile sink only when the sink
is within its transmission range.

• Constraint (6) enforces that at most one sensor can
transfer its data to the mobile sink if there are multiple
such sensors at any given time slot.

• Constraint (7) ensures that the energy consumption of
each sensor per tour cannot be exceed its energy budget,
where the energy budget Bvi of sensor vi is the energy
stored in the beginning of this tour, and Pvi is the
transmission power of sensor vi.

E. NP-hardness

Theorem 1: The network utility maximization problem in
an energy harvesting sensor network is NP-hard.

Proof: We show the claim by a reduction from a well
known NP-complete problem - the generalized assignment
problem (GAP) [4], as follows. An instance of GAP is:
let K = {k1, k2, · · · kn} be a set of jobs, and F =
{f1, f2, · · · fm} a set of agents. Let B = b1, b2, . . . , bm be the
resources capacities, where bi is the capacity of agent fi ∈ F .
For each job kj ∈ K and an agent fi ∈ F , define bij as the
amount of resources required by agent fi to perform job kj
and cij the achieved profit if agent fi is assigned to job kj .
The optimizing objective is to assign jobs to agents such that
the total profit is maximized, subject to the resource capacity
constraint at each agent.

We now consider a special case of the network utility
maximization problem where we assume that the maximum
transmission range of each sensor is large enough to cover
the entire tour. That is, a sensor can utilize all time slots per
tour. We then perform the reduction, where the set of time
slots is the set of jobs, the set of sensors is the set of agents,
the energy budget of each sensor is the resource capacity of
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each agent. Moreover, for each time slot j and a sensor vi,
the energy consumption of sensor vi (the resource consumed)
is bij = Pvi · τ if it transfers its data at the time slot j. The
utility gain of sensor vi at this time slot is the profit cij . The
problem thus is equivalent to GAP. Hence, the network utility
maximization problem is NP-hard, too.

III. CENTRALIZED ALGORITHM

Since the network utility maximization problem is NP-hard,
we deal with the problem by devising a heuristic algorithm,
assuming that the mobile sink has a global knowledge of
both network topology and the energy information of each
sensor (e.g. the energy budget of each sensor). Given the |T |
time slots in the tour, the algorithm will assign time slots
to sensors. Thus, each sensor can transmit its data to the
mobile sinks at the time slots allocated to it. Specifically, the
algorithm proceeds iteratively. Within each iteration, one time
slot is examined and allocated to a sensor if possible. This
procedure continues until all time slots have been examined
or allocated. In the following we explain how to examine or
allocate a time slot in detail. Given a time slot j ∈ T , denote
by N(j) = {vi | j ∈ A(vi), Bvi ≥ Pvi ·τ} the set of sensors
that have enough energy budgets to transfer their data at time
slot j. If N(j) is ∅, it implies that no sensor will transmit its
data at this slot due to the fact that either all the sensors can
not communicate with the mobile sink or they do not have
enough energy for data transmission. Otherwise, time slot j is
allocated to sensor vi ∈ N(j), and vi will transfer its data to
the mobile sink at time slot j, where vi is chosen as follows.

Let ∆U(vi, j) = U(D′vi + rij · τ) − U(D′vi) be the utility
gain of sensor vi by assigning time slot j to it for uploading its
data, where D′vi is the accumulative amount of data uploaded
by vi at the previous j − 1 time slots in the current tour. To
maximize the network utility, we allocate time slot j to the
sensor with the maximum utility gain. The detailed algorithm
C_Schedule as Algorithm 1 is present as follows.

Algorithm 1 C_Schedule

Input: The set of time slots T , the set of sensors V plus
energy budget Bvi for each vi ∈ V

Output: Allocate time slots to sensors
1: for each time slot j ∈ T do
2: for each sensor which can communicate with the mobile

sink at time slot j do
3: if it has enough energy budget to transfer then
4: Compute its utility gain and add it to N(j);
5: end if
6: end for
7: if N(j) is not ∅ then
8: Allocate time slot j to the sensor vi ∈ N(j) with the

maximum utility gain;
9: Bvi ← Bvi − Pvi · τ ; /* Update the energy budget*/

10: end if
11: end for

Theorem 2: Given an energy harvesting sensor network
G(V ∪{s}, E) and a set of time slots T , there is an algorithm
for the network utility maximization problem, which takes
O(|V | · |T |) time.

Proof: We analyze the time complexity of algorithm
C_Schedule as follows. Within each iteration, one time slot
j ∈ T will be allocated, which takes O(|V |) time due to the
construction of N(j) and finding a node in N(j) with the
maximum utility gain. The number of iterations is determined
by |T |. Hence the algorithm takes O(|V | · |T |) time.

IV. DISTRIBUTED ALGORITHM

In this section, we propose a distributed solution to the
problem by removing the assumption that the mobile sink has
the global knowledge of the network.

The proposed distributed algorithm proceeds as follows.
The mobile sink periodically broadcasts a ‘Poll’ message
with a ‘Registration’ timer, announcing its presence while
traveling along the path. The ‘Poll’ message is broadcast in
the beginning of each interval, where an interval consists of
a fixed number of time slots. The ‘Poll’ message is used to
detect whether the mobile sink are within the transmission
ranges of the sensors receiving the message. Once a sensor
received the ‘Poll’ message, it acknowledges by sending a
‘Registration’ message that contains the current energy of the
sensor, its data transmission rates at each time slot within this
interval, and the accumulative volume of its data uploaded
in previous intervals. Once the ‘Registration’ timer expires,
the mobile sink starts assigning the time slots in this interval
to the ‘Registered’ sensors, which essentially is identical to
the allocation phase of algorithm 1. The mobile sink then
broadcasts a ‘Schedule’ message which contains the time
slot allocation to the registered sensors. Having received the
‘Schedule’ message, each registered sensor transmits its data
to the mobile sink at the time slots allocated to it. The detailed
algorithm D_Schedule is described in Algorithm 2.

Algorithm 2 D_Schedule

1: for each interval k of |T | do
2: Broadcast a ‘Poll’ message with a ‘Registration’ timer;
3: Receive ‘Registration’ messages from sensors until the

‘Registration’ timer expires;
4: for each residual time slot j within interval k do
5: For each registered sensor with a sufficient energy

budget to transfer its data at this time slot, compute
its utility gain and add it to N(j);

6: if N(j) is not ∅ then
7: Allocate time slot j to the sensor vi ∈ N(j) with

the maximum utility gain;
8: Bvi ← Bvi−Pvi ·τ ; /* Update the energy budget*/
9: end if

10: end for
11: Broadcast a ‘Schedule’ message;
12: end for
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Fig. 3. Network utility performance of different algorithms by varying the network size n when the sink speed is rs = 5m/s and rs = 10m/s respectively.

V. PERFORMANCE EVALUATION

In this section we study the performance of the proposed al-
gorithms through experimental simulation. We also investigate
the impact of parameters: the network size n and the mobile
sink speed rs on the performance.

A. Experimental environment setting

We consider an energy harvesting sensor network consisting
of 100 to 1,000 sensors randomly deployed along a given
path of a mobile sink, where the path length is 18, 000m
and the maximum distance between the location of any given
sensor and the path is 190m. We assume that all sensors
have identical maximum transmission ranges Rmax of 200
meters. Each sensor is powered by a 10mm× 10mm square
solar panel and its battery capacity is 10, 000Joules. The
solar power harvesting profile is built upon the real solar
radiation measurements [14], in which the total amount of
energy collected from a 37mm×37mm solar panel over a 48-
hour period is 655.15mWh in a sunny day and 313.70mWh
in a partly cloudy day. We here adopt the communication
parameters of real radio CC2591 by TI [1], where the energy
transmission consumption is 300mJ/s, and the available data
transmission rates and corresponding distances are: 250Kbps
between 0 and 20 meters, 19.2Kbps between 20 and 50
meters, 9.6Kbps between 50 and 120 meters, and 4.8Kbps
between 120 and 200 meters. We set the duration of each time
slot τ is 1 second in the default setting. Each value in figures is
the mean of the results by applying each mentioned algorithm
to 100 different network topologies of the same network size.

B. Performance evaluation of different algorithms

We first study the performance of algorithms C_Schedule
and D_Schedule against that of another heuristic
R_Schedule by varying n from 100 to 1,000 while rs is
set at 5m/s and 10m/s, respectively, where R_Schedule
is a variant of C_Schedule by allocating each time slot j
to one sensor in N(j) randomly in each iteration.

Fig. 3 clearly shows that both algorithms C_Schedule and
D_Schedule outperform algorithm R_Schedule, and the
performance gap between them becomes bigger and bigger
with the growth of network size n. Specifically, when the
network size is 100 and the mobile sink speed is fixed at
10m/s, the network utilities of algorithms C_Schedule,
D_Schedule, and R_Schedule are almost identical. How-
ever, when the network size is 1,000, the network utility gap
between C_Schedule and R_Schedule is no less than
73%, while the network utility gap between D_Schedule
and R_Schedule is no less than 67%. In addition, notice
that C_Schedule outperforms D_Schedule slightly, as
D_Schedule only has the local knowledge rather than the
global knowledge of the network and a fractional number of
time slots in each interval will be used for sensor detection
rather than using for sensing data transmission.

We then investigate the impact of network size n and the
mobile sink speed rs on the network utility, by varying n from
100 to 1,000 and rs from 5m/s to 20m/s, respectively.

Fig. 4 indicates that with the decrease of rs, the
network utilities delivered by algorithms C_Schedule,
D_Schedule, and R_Schedule increase. Specifically, the
network utility delivered by each mentioned algorithm when
rs = 5m/s is at least 43%, 77%, and 108% higher than that
by itself when rs = 10m/s, 15m/s, and 20m/s, respectively.
This is because when the mobile sink reduces its traveling
speed, the sensors will have more time slots available for their
data uploading. This will lead to longer delay on data delivery.
We also notice that with the increase of network size, the
network utilities of all mentioned algorithms increase, too.

VI. CONCLUSION AND FUTURE WORK

In this paper we studied mobile data collection in an energy
harvesting sensor network with a path-constrained mobile
sink. We first formulated the problem as a novel network
utility maximization problem and showed that the problem is
NP-hard. We then devised a centralized algorithm, assuming
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Fig. 4. Impact of parameters n and rs on the network utilities delivered by mentioned algorithms.

that the global knowledge of the entire network is available.
We also proposed a distributed algorithm without the global
knowledge of the network. Finally, we conducted experiments
by simulations to evaluate the performance of the proposed
algorithms, and the experimental results demonstrate that the
proposed algorithms are efficient.
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