
Online NFV-Enabled Multicasting in Mobile Edge
Cloud Networks

Yu Ma†, Weifa Liang†, and Jie Wu‡
† The Australian National University, Canberra, ACT 2601, Australia

‡ Temple University, Philadelphia, PA, USA

Abstract—Mobile Edge Computing (MEC) reforms the cloud
paradigm by bringing unprecedented computing capacity to the
vicinity of mobile users at the mobile network edge. This provides
end-users with swift and powerful computing, energy efficiency,
storage capacity, mobility- and context-awareness support. Fur-
thermore, provisioning virtualized network services in MEC
can improve user service experience, simplify network service
deployments, and ease network resource management. However,
user requests usually arrive into the system dynamically and
different user requests may have different resource demands.
How to optimize and guarantee the performance of MEC is of
significant importance and challenging. In this paper, we study
the problem of online NFV-enabled multicasting in an MEC
network with resource capacity constraints on both cloudlets
and links. We first devise an approximation algorithm for the
cost minimization problem for a single NFV-enabled multicast
request admission. We then propose an online algorithm with a
provable competitive ratio for the online throughput maximiza-
tion problem where NFV-enabled multicast requests arrive one
by one without the knowledge of future request arrivals. We
admit the requests through placing or sharing VNF instances of
network functions in their service chains to meet their computing
and bandwidth resource demands, and we introduce a novel
cost model to capture the dynamic usages of different resources
and perform network resource allocations based on the proposed
cost model. We finally evaluate the performance of the proposed
algorithms through experimental simulations. Simulation results
demonstrate that the proposed algorithms are promising.

I. INTRODUCTION

Mobile devices, including smart phones and tablets, gain

increasing popularity as communication tools of users for

their business, social networking, and personal entertainment.

However, their computing, storage and battery capacity is

very limited, due to their portal size. Leveraging by rich

computing and storage resources in public and private clouds,

mobile devices can offload their tasks to remote clouds for

processing and storage. However, such rich-resource clouds

are usually far away from users. The response delay to user

requests may not be tolerable for some real-time applications,

and their availability and security are also concerned [12].

Instead, a new network paradigm, Mobile Edge Computing

(MEC) is emerged, which can provide cloud-computing capa-

bilities at the edge of pervasive Radio Access Network (RAN)

in close proximity to mobile users [1]. It can significantly

shorten the response delay, ensure highly efficient network

operation and service delivery, and offer an improved user

experience. MEC thus is an ideal platform to meet ever-

growing resource demands of mobile users for their ap-

plications, by enhancing mobile device capabilities with a

realtime manner for autonomous vehicles, e-Health, Internet of

Things (IoT), virtualized/augmented reality, etc. In addition to

MEC, Network Function Virtualization (NFV) [15] has been

envisaged as another key technology to the next-generation

networking paradigm that enables fast service deployments,

and inexpensive and error-free service provisioning in future

communication networks [5]. It replaces resource demanding

service applications, such as object recognition, voice control,

or virtual reality, with software components in servers or

cloudlets that provide the same capability. Each network

function runs in a virtual machine, referred to as a virtualized

network function instance, hosted in a cloudlet.

Although implementing network functions as VNF in-

stances in cloudlets is a promising technology for simpli-

fying network service deployments, easing network resource

management, and improving user service experience, it poses

several fundamental challenges. One major challenge is the

limited resources on both cloudlets and links of mobile edge

cloud networks compared to powerful centralized data center

networks. It is of paramount importance to optimize the per-

formance of an MEC network through judicious allocation of

its limited resources. In addition, each NFV-enabled multicast

request has a requirement of a service function chain. How to

steer the data traffic of the request to go through each network

function in its service function chain correctly? Furthermore,

the implementation of a request may share an existing network

function instance with the other request implementations or

create a new VNF instance. How to make a decision to

create a new VNF instance or make use of an existing VNF

instance to minimize the operational cost of service providers?

Finally, how to deal with request admissions providing that

multicast requests arrive into the system dynamically without

the knowledge of future request arrivals. In this paper, we will

address the aforementioned challenges.

The novelties of this work lie in proposing an approximation

algorithm for a single NFV-enabled multicast request admis-

sion, through constructing an auxiliary graph and reducing

the problem to a minimum cost steiner tree in the auxiliary

graph. Furthermore, an online algorithm with a provable

competitive ratio for a sequence of NFV-enabled multicast

request admissions is also proposed, through the development

of a novel cost model to accurately capture the usage costs of

different resources in cloudlets and links.

The main contributions of this paper are summarized as fol-

821

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDCS.2019.00085

lows. We study the NFV-enabled multicast request admissions

in mobile edge cloud networks with the aim to either minimize

the admission cost of a single NFV-enabled multicast request

admission, or maximize the network throughput through ad-

mitting a sequence of NFV-enabled multicast requests dynami-

cally, by taking both resource capacity constraints on cloudlets

and links, and the service chain of each request into consid-

eration. We first propose an approximation algorithm for the

cost minimization of a single multicast request admission. We

then devise an online algorithm with a provable competitive

ratio for dynamic multicast request admissions. We finally

evaluate the performance of the proposed algorithms through

experimental studies. The simulation results reveal that the

proposed algorithms are very promising.

The rest of the paper is organized as follows. Section II

reviews related work. Section III introduces notions, notations,

and problem definitions. Section IV devises an approximation

algorithm for the NFV-enabled multicasting cost minimization

problem. Section V develops an efficient online algorithm with

a provable competitive ratio for dynamic NFV-enabled mul-

ticast request admissions. Section VI evaluates the proposed

algorithms empirically, and Section VII concludes the paper.

II. RELATED WORK

As a key-enabling technology of 5G, MEC networks have

gained tremendous attention from the research community

recently [13]. Also, with the emergence of complicated and

resource-hungry mobile applications, implementing user tasks

in cloudlets of a nearby mobile edge-cloud network is be-

coming an important approach to reduce mobile device energy

consumption and improve user experience. There are extensive

studies on resource allocations in MEC networks [2], [3], [6],

[7], [9], [10], [13]. For example, Jia et al. [8] considered the

assignment of user requests to different cloudlets in a Wireless

Metropolitan Area Network with the aim to minimize the max-

imum delay among offloaded tasks, by developing heuristics

for the problem. Feng et al. [6] proposed an algorithm with

performance guarantee for placing VNFs in distributed cloud

networks and routing service flows among the placed VNFs

under the constraints of service function chains of the requests.

All the aforementioned studies assumed that each task will

be allocated with dedicated computing resources. There is no

consideration for whether there are existing VNF instances

in cloudlets to serve them. However, many tasks usually

request for the same type of network services. If the VNF

instance for a specified service has already been instantiated

and its workload has not reached its capacity, the other

tasks that requested for the service can make use of the

VNF instance. Several recent works started exploring VNF

instance sharing [7], [10]. For example, He et al. [7] recently

studied the joint service placement and request scheduling

in order to optimally provision edge services while taking

into account the demands of both sharable and non-sharable

resources. They aim to maximize the network throughput, by

developing heuristic algorithms. There are several studies of

NFV-enabled multicasting in MEC environments [17], [18],

[19]. For example, Zhang et al. [19] investigated the NFV-

enabled multicasting problem in SDNs. They assumed that

there are sufficient computing and bandwidth resources to

accommodate all multicast requests, for which they provided

a 2-approximation algorithm if only one server is deployed

for implementing the service chain of each multicast request.

Xu et al. [18] considered the cost minimization of admitting

a single NFV-enabled multicast request with the QoS require-

ment in MEC, where the implementation of the service chain

of each request will be consolidated into a single cloudlet.

They developed both approximation and heuristic algorithms

for the problem, by placing no more than constant numbers of

VNF instances of the service chain of the request in different

branches of the found pseudo-multicast tree for the request.

III. PRELIMINARIES

In this section, we first introduce the system model, notions

and notations, and then define the problems precisely.

A. System model

We consider a mobile edge cloud (computing) network

(MEC) in a metropolitan region, which is modelled by an

undirected graph G = (V,E), where V is a set of access
points (APs) located at different locations in the metropolitan

region, e.g., shopping centers, airports, restaurants, bus sta-

tions, and hospitals. A cloudlet is co-located with each AP

node v ∈ V via a high-speed optical cable, which implies that

the communication delay between them is negligible due to

plenty of bandwidth on the cable. For simplicity, an AP node

and the co-located cloudlet will be used interchangeably if no

confusion arises. Each cloudlet has computing capacity Cv for

implementing various virtualized network functions (VNFs)

requested by mobile users. E is the set of links between APs.

Each link e ∈ E has a bandwidth capacity Be. We assume that

each AP node covers a certain area, in which mobile users can

access the MEC wirelessly through it. In case a mobile user

located at an overlapping coverage region by multiple APs,

the mobile user can choose connecting to its nearest AP (or

an AP with the strongest signal strength). Fig. 1 is an example

of an MEC network.

Access
Point
(AP)

Cloudlet
(Server)

Fig. 1. An example of an MEC network with 6 APs and each is attached
with a cloudlet.

822

B. NFV-enabled multicast requests with service function chain
requirements

Consider an NFV-enabled multicast request rj =
(sj , Dj , SFCj , ρj) that transfers data traffic from a source

node sj ∈ V to a given set of destination nodes Dj ⊆ V
with a specified packet rate ρj . Each packet in the data

traffic must pass through a sequence of network functions

of its specified type of service function chain SFCj =
〈fj,1, . . . , fj,l, . . . , fj,Lj

〉 before reaching its destinations,

where Lj is the length of the service function chain.

We assume that resources in cloudlets are virtualized, using

container-based lightweight virtualization technologies, and

thus can be allocated and shared flexibly. Each instance of

a virtualized network function (VNF) is a lightweight vir-

tual machine in a cloudlet. Implementing VNF instances in

cloudlets consumes computing resource of cloudlets. Without

loss of generality, we assume that different types of VNFs

in service function chains of all requests can be classified

into K different types. Denote by f (k) and C(f (k)) the

virtualized network function of type k and the amount of

computing resource consumed for its implementation in a

cloudlet respectively, 1 ≤ k ≤ K. Suppose each VNF instance

of f (k) has a maximum processing capacity μ(k). Furthermore,

if the residual processing capacity of a VNF instance is

sufficient to process the data traffic of a request, this VNF

instance can be shared by the request. Otherwise, a new VNF

instance needs to be instantiated in a cloudlet if it has sufficient

residual computing resource in the admission of the request.

To implement an NFV-enabled multicast request rj , each

packet of its data traffic is enforced to go through an instance

of each network function in its service function chain SFCj

prior to reaching its destinations in Dj . Denote by T (j) the

multicast tree that transfers the data traffic of NFV-enabled

multicast request rj from the source sj to destinations in

Dj . Fig. 2 is an illustrative example of a multicast request

implementation. To this end, an existing VNF instance (with

sufficient residual processing capacity) must be selected or

a new VNF instance must be instantiated in a cloudlet, for

each network function fj,l in its service function chain SFCj .

Without loss of generality, we assume that the VNF instances

of service function chain SFCj can be placed at different

cloudlets, i.e., the VNF instances of a service function chain

are not necessarily consolidated into a single cloudlet only.

C. Admission cost of an NFV-enabled multicast request

The operational cost of an MEC network for NFV-enabled

multicast requests mainly consists of three components, the

VNF instance processing cost for processing request data

packets, the VNF instance instantiation cost for instantiating

VNF instances in cloudlets, and the bandwidth usage cost for

routing data traffic of the request along links. Instantiating

VNF instances at cloudlets consumes their computing and

storage resources, thus incurs the VNF instantiation cost.

Denote by cins(f
(k), v) the instantiation cost a VNF instance

of network function f (k) in a cloudlet v, and ρj ·cproc(f (k), v)
the processing cost of data traffic of a request rj at a VNF

Destination 1

Destination 2

Destination 3

Destination 4

Destination 5

Destination 6

Destination 7

Source

NAT

FW

Proxy

NAT

FW

FW

Proxy

Proxy

Proxy

Proxy

Fig. 2. An example of an NFV-enabled multicast request with a service
function chain consists of three network functions, Network Address Trans-
lation (NAT), Firewall (FW), and Proxy. Data traffic of the multicast request
is transferred from the source node Source to a set of 7 destination nodes.
Each packet of the request must pass through an instance of network function
in its service function chain.

instance of f (k) at cloudlet v, where cproc(f
(k), v) is the cost

of processing a packet by a VNF instance f (k) at cloudlet

v and ρj is the demanded packet rate of rj . Notice that the

processing cost of a packet cproc(f
(k), v) of different VNF

instances at different cloudlets may be significantly different,

since different VNF instances consume different amounts of

computing resources, and servers in different cloudlets have

different amounts of energy consumptions.

In addition to the processing cost of its data traffic at VNF

instances, the data traffic of request rj is routed along a

pseudo-multicast tree T (j) (it may not be a multicast tree) in

the network from the source node sj to the destination nodes

in Dj , which incurs the communication cost. The routing

cost of data packets of rj along multicast tree T (j) thus is

ρj ·cbw(Tj) = ρj ·
∑

e∈T (j) ce, where ce is the unit transmission

cost on link e ∈ E, and cbw(Tj) is the cost of transferring a

packet along the multicast tree T (j).

D. Problem definitions

In this paper, we consider two NFV-enabled multicast

request admission problems. We first consider the cost mini-

mization problem for a single NFV-enabled multicast request

admission; we then consider the online multicast request

admissions in which requests arrive one by one without the

knowledge of future request arrivals, we aim to maximize

the network throughput. The precise definitions of the two

problems are given below.

Definition 1: Given an MEC network G = (V,E) with a

set V of cloudlets, each v ∈ V having computing capacity

Cv , let Be be the bandwidth capacity of each link e ∈ E,

an NFV-enabled multicast request rj = (sj , Dj , SFCj , ρj),
the NFV-enabled multicasting problem is to find a pseudo-

multicast tree for rj to route its data traffic from the source

node sj to each destination node in Dj while each packet

of its data traffic must pass through each VNF instance in

its service function chain SFCj , such that its implementation

cost is minimized, subject to the computing and bandwidth

capacities on both cloudlets and links of the network.

Definition 2: Given an MEC network G = (V,E) with

a set V of cloudlets, each v ∈ V has computing capacity

823

Cv , and each link e ∈ E has bandwidth capacity Be.

Let r1, r2, . . . , rj be a sequence of NFV-enabled multicast

requests that arrive into the system one by one without the

knowledge of future request arrivals, the online multicasting
throughput maximization problem in G is to maximize the

number of requests admitted, subject to resource capacities on

both cloudlets and links of the network.

The defined two problems are NP-hard, and their NP-hard

proofs are omitted due to space limitation.

IV. AN APPROXIMATION ALGORITHM FOR THE

NFV-ENABLED MULTICASTING PROBLEM

In this section, we deal with the NFV-enabled multicasting

problem. We first devise an approximation algorithm for the

problem, and then analyze the performance of the proposed

algorithm.

A. Algorithm overview

Given an MEC G = (V,E) and a multicast request rj , we

aim to minimize the operational cost of the service provider

by steering the data traffic of request rj from a source

sj to a set of destinations in Dj while each packet must

pass through a sequence of network functions in the service

function chain SFCj demanded by the request. There are two

important challenges to tackle the problem. One is the resource

availability. Given a multicast request rj , whether it should be

admitted or rejected is determined by the availability of its

demanded resources in the network G; the other is which

cloudlets should be selected to implement which network

functions in its service function chain, and whether new VNF

instances to be instantiated or existing VNF instances can

be shared. Addressing these two challenges is essential for

delivering a feasible and cost-efficient solution to the problem.

The basic idea of the proposed approximation algorithm for

the problem is to reduce the cost minimization problem in an

auxiliary acyclic graph for the multicast request rj . Then, if

a multicast tree exists in the auxiliary graph, there will be

sufficient resources in G to meet the resource demands of the

request, and a pseudo-multicast tree T (j) in G for rj can be

derived from the found multicast tree in the auxiliary graph.

B. Approximation algorithm

For a given multicast request rj , we can either make use of

existing network function instances as long as their residual

processing capacities are sufficient to admit request rj . Also,

if there is sufficient available computing resource in a cloudlet,

a new instance for that type of network function can be

instantiated. Thus, there can be multiple candidate instances

of the lth network function fj,l in its service function chain

SFCj in G with 1 ≤ l ≤ Lj .

Define a function λ(j, l) = k, with 1 ≤ k ≤ K, to

represent type k of the lth network function fj,l in SFCj of

request rj . Denote by F
(k)
v the set of VNF instances of type

k instantiated in cloudlet v. Let μre
i be the residual processing

capacity of VNF instance i ∈ F
(k)
v . And let Cre

v be the residual

computing capacity of cloudlet v ∈ V . Denote by Nl,v the set

of VNF instances that can be employed as the lth network

function fj,l in SFCj in cloudlet v, including both existing

network function instances with sufficient residual processing

capacities, i.e., μre
i ≥ ρj with i ∈ F

(λ(j,l))
v , as well as a new

VNF instance i′ to be created providing sufficient computing

resource in cloudlet v, i.e, Cre
v ≥ C(f (λ(j,l))). Then Nl is

the set of VNF instances that can be employed as the lth
network function fj,l in SFCj among all cloudlets in V , i.e.,

Nl = ∪v∈V Nl,v . We assume that the number of VNF instances

of the same type in each cloudlet is a small constant.

To this end, we construct an auxiliary directed graph

G′j = (V ′j , E
′
j) from G for request rj as follows. We first

remove all links from G if their residual bandwidth is less

than ρj . The node set V ′j of G′j is the union on sets Nl

of VNF instances for 1 ≤ l ≤ Lj , with the source node

sj , the destination node set Dj of multicast request rj , i.e.,

V ′j = ∪Lj

l=1Nl∪{sj}∪Dj . In order to make sure that network

functions of SFCj = 〈fj,1, . . . , fj,l, . . . , fj,Lj
〉 are traversed

in this specified order, we add a directed edge from a node

x ∈ Nl−1 to each node y ∈ Nl for 2 ≤ l ≤ Lj if a path in G
between x and y exists, and a weight w(x, y) is assigned to

this edge, which is the communication cost along the shortest

path between the cloudlets that implementing VNF instances x
and y, and the processing and VNF instance instantiation cost

of network function y. Notice that if the VNF instance is an

existing instance, the VNF instance instantiation cost is 0; and

if two network functions x, y resides in the same cloudlet, the

communication cost between them is 0. We then add a directed

edge from sj to each node y ∈ N1 if such a path in G exists. A

weight assigned to it is the cost of communication cost along

the path and the processing and VNF instance instantiation

cost of the network function y. Notice that the type of network

function y is λ(j, 1). Also, we add a directed edge from a

node x ∈ NL to a node y ∈ Dj , and set the communication

cost along the shortest path from a cloudlet that implement

network function x to AP node y as its weight if such a

path exists in G. Thus, E′j = ∪Lj

l=2{〈x, y〉 | x ∈ Nl−1, y ∈
Nl} ∪ {〈sj , y〉 | y ∈ N1} ∪ {〈x, y〉 | x ∈ NLj

, y ∈ Dj}.

In order to make sure a multicast request can be admitted

without violating computing capacity of any cloudlet, we adopt

a conservative strategy such that only if the residual computing

capacity of a cloudlet is sufficient to create all necessary VNF

instances (VNF instances that do not have enough residual

processing capacity or do not exist in this cloudlet), this

cloudlet will be selected to create new VNF instances. Fig. 3

shows the construction of G′j .

Having the constructed auxiliary graph G′j , the problem is

reduced to find a directed multicast tree T ′(j) in G′j rooted

at sj and spanning all nodes in Dj , such that the weighted

sum of edges in T ′(j) is minimized. This is the classic

Directed Steiner Tree problem, which is NP-hard. There is an

approximate solution which is |Dj |ε times of the optimal [4],

where ε is a constant with 0 < ε ≤ 1.

If a multicast tree T ′(j) in G′j exists, a pseudo-multicast

tree T (j) in G rooted at sj and spanning all nodes in Dj

824

N1, 1

N1 N2 NLj

sj

Dj

.

. . .

VNF instance
to be

instantiated
existing VNF

instance source node destination
node

N1, 2

N1, 3

N2, 1

N2, 2

N2, 3

NLj, 1

NLj, 2

NLj, 3

..
...

...

Fig. 3. A constructed auxiliary graph G′
j with Lj+2 layers for NFV-enabled

multicast request rj . Layer 0 is the source node sj . Layer Lj + 1 consists
of destination nodes in Dj . Each layer l, with 1 ≤ l ≤ Lj , consists of VNF
instances of type λ(j, l) that can be employed to process data traffic of request
rj in each cloudlet v ∈ V . If there is sufficient residual computing resource
in a cloudlet, a new VNF instance of that type can be instantiated. Notice that,
if there is a path between a VNF instance implemented in cloudlet u ∈ V
and a VNF instance implemented in cloudlet v ∈ V , then there will be a
path between any pair of VNF instances implemented in the two cloudlets
respectively. For simplicity, we use an edge in the graph to represent a set
of edges between each pair of VNF instances resides in the two cloudlets
respectively.

can then be derived, where a pseudo-multicast tree in fact is

a graph in which nodes and links can appear multiple times.

Specifically, we expand each directed edge in the multicast

tree T ′(j) to a set of edges in the corresponding shortest path

of G. The detailed description of the algorithm for the NFV-

enabled multicasting problem is given in Algorithm 1.

Algorithm 1 Finding a minimum-cost multicast tree in G for

request rj

Input: An MEC network G = (V,E) with a set V of cloudlets, a
multicast request rj = (sj , Dj , SFCj , ρj).

Output: Admit or reject request rj . If rj is admitted, a pseudo-
multicast tree T (j) in G is delivered.

1: Remove all edges in G with residual bandwidth less than ρj ;
2: Compute all pairs shortest paths between each pair of AP nodes

in G;
3: Construct the directed auxiliary graph G′

j from G, and assign a
cost weight on each of its edges;

4: Find an approximate multicast tree T ′(j) in G′
j rooted at sj ,

and spanning all nodes in Dj , by applying the algorithm due to
Charikar et al. [4];

5: if T ′(j) in G′
j exists then

6: A pseudo-multicast tree T (j) in G is derived, by replacing
each edge in T ′(j) with its corresponding set of edges of a
shortest path in G;

7: If a selected VNF instance is to be instantiated, create a new
VNF instance in its cloudlet;

8: Update residual resource capacities of links, cloudlets, and
VNF instances in G;

9: else
10: Reject multicast request rj .
11: end if

C. Algorithm analysis

In the following, we show the correctness of the proposed

algorithm, Algorithm 1, and analyze its approximation ratio

and time complexity.

Theorem 1: Given an MEC network G = (V,E) with a

set V of APs each attached with a cloudlet, and a multicast

request rj = (sj , Dj , SFCj , ρj), there is an approximation

algorithm, Algorithm 1, for the NFV-enabled multicasting

problem with an approximation ratio of |Dj |ε, which takes

O((Lj · |V |) 1
ε |Dj |

2
ε + |V |3) time, where Lj is the length of

service function chain SFCj of request rj , and ε is a constant

with 0 < ε ≤ 1.

Proof We first show the solution obtained by the proposed

algorithm is feasible. Following the construction of G′j , G′j is

a layered directed acyclic graph, node sj is at layer 0, each

node x ∈ Nl is at layer l, with 1 ≤ l ≤ Lj , and each node

x ∈ Dj is at layer Lj + 1, assuming that |SFCj | = Lj . If

T ′(j) is the found multicast tree in G′j , it can be seen that

there is a corresponding pseudo-multicast tree in G rooted

at sj and spanning all nodes in Dj . Since G′j is a layered

directed acyclic graph, the multicast tree T ′(j) passes through

a cloudlet in layer l for implementing network function fj,l
in its service function chain SFCj , with 1 ≤ l ≤ Lj . The

VNF instance for fj,l can be an existed VNF instance with

sufficient residual processing capacity or a new VNF instance

to be instantiated.

The admission cost of multicast request rj consists of

three components, the VNF instance processing cost, the VNF

instance instantiation cost, and the bandwidth usage cost. Each

packet of request rj is transferred from the source node sj
to each destination node in Dj while passing through each

VNF instance in its service function chain SFCj . The use

of each VNF instance fj,l in layer Nl for processing data

packets incurs the VNF instance processing cost, and if the

VNF instance is newly instantiated, there is VNF instance

instantiation cost. When data packets are transferred from a

cloudlet (VNF instance) to the next cloudlet (VNF instance),

there is communication cost in links. The summation of all

these costs are assigned to each directed edge in E′j . Thus,

the cost of the minimum steiner tree T ′(j) found in G′j from

sj while spanning all nodes in Dj , is the minimum admission

cost of rj in G. Following [4], the approximation ratio of the

proposed algorithm for NFV-enabled multicast problem for

a multicast request rj is |Dj |ε, where ε is a constant with

0 < ε ≤ 1.

The time complexity analysis of Algorithm 1 is omitted,

due to space limitation.

V. AN ONLINE ALGORITHM FOR THE ONLINE

MULTICASTING THROUGHPUT MAXIMIZATION PROBLEM

In this section, we study the online multicasting throughput

maximization problem, by assuming that requests arrive one

by one without the knowledge of future request arrivals. We

first propose an efficient online algorithm for the problem, by

building a novel cost model to capture the dynamic resource

825

consumptions in G and performing resource allocation to

admit requests based on the cost metric. We then analyze the

competitive ratio and time complexity of the proposed online

algorithm.

A. Resource usage cost model

The basic idea of the proposed online algorithm is to

regulate an online admission control policy to respond to each

incoming NFV-enabled multicast request by either admitting

or rejecting it, depending on the availability of its demanded

resources. We still make use of the constructed auxiliary graph

G′j for the NFV-enabled multicasting problem in the previous

section. However, the weight assigned to each node and each

edge in G′j will be dynamically determined.

As a VNF instance can be shared by multiple requests

provided that the sum of packet rates going through the

instance is no greater than its processing capacity, we treat the

VNF instance processing capacity of each VNF instance as a

type of resource, as well as computing resource in cloudlets,

and bandwidth along links. We start by introducing a resource

usage cost model to measure the resource consumption by each

VNF instance (processing capacity), each cloudlet (computing

resource) and each link (bandwidth) when admitting multicast

requests, in which if a specific type of resource has been highly

utilized, it should not be encouraged to be used in the near

future, and the use of it will result in a higher cost. Otherwise,

if a resource that has rarely been used should be encouraged

to use by assigning it a lower cost. Thus, the resources in

the network can be optimally utilized among user requests to

maximize the network throughput. We here treat processing

capacity of VNF instances and computing resource in cloudlets

for creating VNF instances as different type of resources.

The proposed online algorithm examines each arrived mul-

ticast request one by one. When a request rj arrives, the

resource availability of VNF instances, cloudlets and links will

determine whether rj should be admitted. Recall that F
(k)
v

the set of VNF instances of type k in cloudlet v. If there

is sufficient computing resource in cloudlet v, a new VNF in-

stance of type k can be instantiated. Here, let F
(k)
v include the

new VNF instance of type k to be created. Denote by μ
(k)
v,i (j)

the residual processing capacity of VNF instance i of type k

in cloudlet v when request rj arrives, with μ
(k)
v,i (0) = μ(k),

i ∈ F
(k)
v . If request rj is admitted and its packets is processed

by the VNF instance, then μ
(k)
v,i (j + 1) = μ

(k)
v,i (j) − ρj ;

otherwise, the residual computing capacity is unchanged, i.e.,

μ
(k)
v,i (j + 1) = μ

(k)
v,i (j). Similarly, denote by Cv(j) and Be(j)

the residual computing capacity at cloudlet v and residual

bandwidth in link e, when request rj arrives.

To capture the resource usage of rj , we use an exponential

function to model the cost W
(k)
v,i (j) of processing packets of

rj by VNF instance i ∈ F
(k)
v as follows,

W
(k)
v,i (j) = μ(k)(α

1−μ
(k)
v,i

(j)

μ(k) − 1), (1)

where α (> 1) is a tuning parameter to be decided later, and

1− μ
(k)
v,i (j)

μ(k) is the processing capacity utilization ratio in VNF

instance i when request rj is considered.

Similarly, the cost Wv(j) of instantiating a new VNF

instance at cloudlet v ∈ V and the cost We(j) of using

bandwidth resource at link e ∈ B are defined, respectively,

Wv(j) = Cv(β
1−Cv(j)

Cv − 1), (2)

We(j) = Be(γ
1−Be(j)

Be − 1), (3)

where β (> 1) and γ (> 1) are tuning parameters to be

decided later, and 1 − Cv(j)
Cv

and 1 − Be(j)
Be

are the resource

utilization ratios in cloudlet v and in link e, respectively, when

request rj is considered. In order to encourage the sharing of

VNF instances among multicast requests, we assume that the

cost of creating a new VNF instance much higher than the

cost of processing capacity usage, i.e., β 	 α.

We then define the normalized usage cost of each VNF

instance i ∈ F
(k)
v in cloudlet v for request rj as,

ω
(k)
v,i (j) = W

(j)
v,i (j)/μ

(k) = α
1−μ

(k)
v,i

(j)

μ(k) − 1. (4)

Similarly, the normalized usage costs ωv(j) at each cloudlet

v ∈ V and ωe(j) at each link e ∈ E for request rj are defined

as follows,

ωv(j) = Wv(j)/Cv = β1−Cv(j)
Cv − 1, (5)

ωe(j) = We(j)/Be = γ1−Be(j)
Be − 1. (6)

For each request rj , we construct an auxiliary graph G′j =
(V ′j , E

′
j) similar as the one for the NFV-enabled multicasting

problem. The difference is the weight assigned to each directed

edge in E′j is the sum of three normalized usage costs defined

in (4), (5), (6), respectively. Similar as before, if the VNF

instance is an existing instance, the VNF instance instantiation

cost is 0; and if two network functions resides in the same

cloudlet, the communication cost between them is 0.

To avoid admitting requests that consume too much re-

sources, thereby undermining the performance of the MEC,

we adopt the following admission control policy: If (i) the

sum of normalized usage costs of the VNF instances in

its service function chain of request rj is greater than σ1,

i.e.,
∑

v∈V
∑Lj

l=1

∑
i∈F (λ(j,l))

v
ω
(λ(j,l))
v,i (j) > σ1, where Lj =

|SFCj |; or (ii) the sum of normalized usage costs of VNF

instantiation for request rj is greater than σ2,
∑

v∈V ωv(j) >
σ2; or (iii) the sum of normalized usage costs of links for

request rj is greater than σ3,
∑

e∈E ωe(j) > σ3, rj will be

rejected, where σ1, σ2, σ3 are the admission control thresholds

of resource usages in VNF instances, cloudlets, and links,

respectively, where σ1 = σ2 = σ3 = n, and n = |V |.
The detailed algorithm for the online multicasting throughput

maximization problem is detailed in Algorithm 2.

B. Algorithm analysis

We now analyze the competitive ratio and time complexity

of the proposed online algorithm, Algorithm 2. We first

826

Algorithm 2 Online algorithm for the online multicasting

throughput maximization problem

Input: An MEC network G = (V,E) with a set V of APs each
v ∈ V attached with a cloudlet with computing capacity Cv , a
sequence of multicast requests rj = (sj , Dj , SFCj , ρj).

Output: A solution to maximize the network throughput, by admit-
ting or rejecting each arriving multicast request rj . If rj admitted,
a routing multicast tree for rj from source node sj to a set of
destination nodes in Dj will be delivered.

1: while request rj arrives do
2: Remove all edges with residual bandwidth less than ρj ;
3: Construct the auxiliary graph G′

j = (V ′
j , E

′
j) for request rj ,

assign weight to each edge in E′
j as stated;

4: Find an approximate multicast tree T ′(j) in G′
j rooted at sj

and spanning all nodes in Dj , by applying the algorithm due
to Charikar et al. [4];

5: if T ′(j) does not exist then
6: Reject multicast request rj ;
7: else
8: Determine whether rj should be accepted or not by the

admission control policy;
9: if rj is admitted then

10: A pseudo-multicast tree T (j) in G is derived, by re-
placing each edge in T ′(j) with its corresponding set of
edges in G;

11: If a selected VNF instance is to be instantiated, create a
new VNF instance;

12: Update residual resource capacities of VNF instances,
links and cloudlets in G;

13: end if
14: end if
15: end while

show the upper bound on the total cost of admitted requests.

We then provide a lower bound on the cost of a rejected

request by Algorithm 2 but admitted by an optimal of-

fline algorithm. We finally derive the competitive ratio of

Algorithm 2.

As for each network function in service function chain

SFCj of rj , a new VNF instance can be instantiated or an

existing VNF instance can be shared, we introduce a binary

variable x
(λ(j,l))
v with x

(λ(j,l))
v = 1 if the lth VNF instance is

newly instantiated in cloudlet v; otherwise, it is 0.

Lemma 1: Given an MEC network G = (V,E) with a set

V of APs that each v ∈ V is attached with a cloudlet with

computing capacity Cv and link bandwidth capacity Be for

each link e ∈ E, denote by A(j) the set of NFV-enabled

multicast requests admitted by the algorithm, Algorithm 2,

until the arrival of request rj . Then, the cost sums of VNF

instances, cloudlets, and links when multicast request rj
arrives are

∑
v∈V

Lj∑
l=1

∑

i∈F (λ(j,l))
v

W
(λ(j,l))
v,i (j) ≤ 2n logα · B(j), (7)

∑
v∈V

Wv(j) ≤ 2nLmax log β · |A(j)| · C(fmax), (8)

∑
e∈E

We(j) ≤ 2n log γ · B(j), (9)

respectively, provided that the maximum length of any ser-

vice function chain is no greater than n, i.e., Lmax =

max1≤j′≤j |SFCj′ | ≤ n, and ρj′ ≤
min1≤l≤L

j′ μ
(λ(j′,l))

logα ,∑Lj′
l=1 C(f (λ(j′,l))) · x(λ(j′,l))

v ≤ minv∈V Cv

log β , ρj′ ≤ mine∈E Be

log γ

with 1 ≤ j′ ≤ j, where
∑Lj′

l=1 C(f (λ(j′,l))) · x(λ(j′,l))
v is the

computing resource being occupied by newly instantiated VNF

instances in cloudlet v for request rj′ , B(j) is the accumulative

bandwidth resource being occupied by the admitted requests,

i.e., B(j) =
∑

rj′∈A(j) ρj′ , and C(fmax) is the maximum

computing resource required among all VNF instance types,

i.e., C(fmax) = max1≤k≤K{C(f (k))}.

Proof Consider a request rj′ ∈ A(j) admitted by

Algorithm 2. For any VNF instance i ∈ F
(k)
v , we have

W
(k)
v,i (j

′ + 1)−W
(k)
v,i (j

′)

= μ(k)(α
1−μ

(k)
v,i

(j′+1)

μ(k) − 1)− μ(k)(α
1−μ

(k)
v,i

(j′)
μ(k) − 1)

= μ(k)α
1−μ

(k)
v,i

(j′)
μ(k) (α

μ
(k)
v,i

(j′)−μ
(k)
v,i

(j′+1)

μ(k) − 1)

= μ(k)α
1−μ

(k)
v,i

(j′)
μ(k) (α

ρ
j′

μ(k) − 1)

= μ(k)α
1−μ

(k)
v,i

(j′)
μ(k) (2

ρ
j′

μ(k)
logα − 1)

≤ μ(k)α
1−μ

(k)
v,i

(j′)
μ(k) · ρj′

μ(k)
· logα (10)

= α
1−μ

(k)
v,i

(j′)
μ(k) · ρj′ · logα, (11)

where Ineq. (10) holds due to that 2a − 1 ≤ a for 0 ≤ a ≤ 1.

Similarly, for any cloudlet v ∈ V , we have Wv(j
′ + 1) −

Wv(j
′) ≤ β1−Cv(j′)

Cv (
∑Lj′

l=1 C(f (λ(j′,l))) · x(λ(j′,l))
v) log β and

for any link e ∈ E, we have We(j
′+1)−We(j

′) ≤ γ1−Be(j′)
Be ·

ρj′ · log γ.

We then calculate the cost sum of all VNF instances when

admitting request rj′ . The difference of the cost sum of VNF

instances before and after admitting request rj′ is

∑
v∈V

Lj′∑
l=1

∑

i∈F (λ(j′,l))
v

W
(k)
v,i (j

′ + 1)−W
(k)
v,i (j

′)

=

Lj′∑
l=1

W
(k)
v,i (j

′ + 1)−W
(k)
v,i (j

′) (12)

≤
Lj′∑
l=1

α
1−μ

(λ(j′,l))
v,i

(j′)
μ(λ(j′,l)) · ρj′ · logα, by Ineq. (11)

= ρj′ · logα

⎛
⎝

Lj′∑
l=1

(α
1−μ

(λ(j′,l))
v,i

(j′)
μ(λ(j′,l)) − 1) +

Lj′∑
l=1

1

⎞
⎠

= ρj′ · logα

⎛
⎝

Lj′∑
l=1

ω
(k)
v,i (j

′) + Lj′

⎞
⎠ ≤ 2nρj′ · logα (13)

Eq. (12) holds due to that for each network function fj′,l,
only one VNF instance is employed to process data traffic of

827

request rj′ . Ineq. (13) holds due to the fact that if request

rj′ is admitted, the admission control policy is met, i.e.,∑Lj′
l=1 ω

(λ(j′,l))
v,i (j′) ≤ σ1 = n, and the length of service

function chain of request rj′ is less than the number of APs,

i.e., |SFCj′ | = Lj′ ≤ Lmax ≤ n.

Similarly, the difference of the cost sum of cloudlets before

and after admitting request rj′ is
∑

v∈V Wv(j
′+1)−Wv(j

′) ≤
2nLj′ · C(fmax) · log β, where C(fmax) is the maximum

computing resource consumption of any VNF instance f (k),

1 ≤ k ≤ K in the system. And the difference of the

cost sum of links before and after admitting request rj′ is∑
e∈E We(j

′ + 1)−We(j
′) ≤ 2nρj′ · log γ.

The cost sum of VNF instances for request admissions when

rj arrives thus is

∑
v∈V

Lj∑
l=1

∑

i∈F (k)
v

W
(k)
v,i (j)

=

j−1∑
j′=1

∑
v∈V

Lj′∑
l=1

∑

i∈F (k)
v

W
(k)
v,i (j

′ + 1)−W
(k)
v,i (j

′) (14)

=
∑

rj′∈A(j)

∑
v∈V

Lj′∑
l=1

∑

i∈F (λ(j′,l))
v

(W
(k)
v,i (j

′ + 1)−W
(k)
v,i (j

′))

≤
∑

rj′∈A(j)

2nρj′ · logα = 2n logα · B(j), by Ineq. (13)

where Eq. (14) follows from the fact that if a request is not

admitted, none of the processing capacity of any VNF instance

will be consumed.

Similarly, the cost sum of cloudlets for request admissions

when rj arrives is
∑

v∈V Wv(j) ≤ 2nLmax log β · |A(j)| ·
C(fmax). And, the cost sum of links for request admissions

when rj arrives is
∑

e∈E We(j) ≤ 2n log γ · B(j).
We now provide a lower bound on the weight of a rejected

request by Algorithm 2 but admitted by an optimal offline

algorithm denoted by OPT . Before we proceed, we choose

appropriate values for α, β, and γ prior to the arrival of any

request rj and VNF instance k, 1 ≤ k ≤ K as follows.

2n+ 2 ≤ α ≤ min
1≤k≤K

{2
μ(k)

ρj } (15)

2n+ 2 ≤ β ≤ min
1≤k≤K

min
v∈V

{2
Cv

C(f(k)) } (16)

2n+ 2 ≤ γ ≤ min
e∈E

{2
Be
ρj } (17)

Lemma 2: Let T (j) be the set of requests that are rejected by

Algorithm 2 but admitted by the optimal offline algorithm

OPT prior to the arrival of request rj . Then, for any request

rj′ ∈ T (j), we have
∑

v∈V
∑Lj′

l=1

∑
i∈F (λ(j′,l))

v
ω
(λ(j′,l))
v,i (j′)+∑

v∈V ωv(j
′) +

∑
e∈E ωe(j

′) > min{σ1, σ2, σ3} = n.

The proof of Lemma 2 is omitted, due to space limitation.

Theorem 2: Given an MEC network G = (V,E) with a set

V of APs in which each v ∈ V is attached with a cloudlet

with computing capacity Cv , each link e ∈ E has bandwidth

capacity Be, there is an online algorithm, Algorithm 2,

with competitive ratio of O(log n) for the online multicasting

throughput maximization problem, and the algorithm takes

O((Lj · |V |) 1
ε |Dj |

2
ε) time to admit each request rj when

α = β = γ = O(n), where n = |V |, Lj = |SFCj |, and

ε is a constant with 0 < ε ≤ 1.

Proof Denote by Dmax and ρmax the maximum cardinality of
destination set Dj′ and the maximum bandwidth requirement
of request rj′ among all requests respectively, prior to the
arrival of request rj , i.e., Dmax = max1≤j′≤j{Dj′}, and
ρmax = max1≤j′≤j{ρj′}. We first analyze the competitive
ratio of the proposed online algorithm. We here abuse the
notation OPT to denote the optimal offline algorithm OPT
and the number of requests admitted by it. Let A(j) be the
set of admitted requests when request rj arrives, we have

n

Dε
max

(OPT − |A(j)|)

≤ n

Dε
max

∑
rj′∈T (j)

1 ≤
∑

rj′∈T (j)

n (18)

≤
∑

rj′∈T (j)

⎛
⎜⎝

∑
v∈V

Lj′∑
l=1

∑

i∈F
(λ(j′,l))
v

ω
(λ(j′,l))
v,i (j′) +

∑
v∈V

ωv(j
′) +

∑
e∈E

ωe(j
′)

⎞
⎟⎠

≤
∑

rj′∈T (j)

∑
v∈V

Lj∑
l=1

∑

i∈F
(λ(j,l))
v

ω
(λ(j,l))
v,i (j) +

∑
rj′∈T (j)

∑
v∈V

ωv(j) +
∑

rj′∈T (j)

∑
e∈E

ωe(j), (19)

=
∑

rj′∈T (j)

∑
v∈V

Lj∑
l=1

∑

i∈F
(λ(j,l))
v

W
(λ(j,l))
v,i (j)

μ(λ(j,l))
+

∑
rj′∈T (j)

∑
v∈V

Wv(j)

Cv
+

∑
rj′∈T (j)

∑
e∈E

We(j)

Be

=
∑
v∈V

Lj∑
l=1

∑

i∈F
(λ(j,l))
v

W
(λ(j,l))
v,i (j)

∑
rj′∈T (j)

1

μ(λ(j,l))
+

∑
v∈V

Wv(j)
∑

rj′∈T (j)

1

Cv
+

∑
e∈E

We(j)
∑

rj′∈T (j)

1

Be
(20)

≤
∑
v∈V

Lj∑
l=1

∑

i∈F
(λ(j,l))
v

W
(λ(j,l))
v,i (j) +

∑
v∈V

Wv(j) +
∑
e∈E

We(j)

(21)

≤ 2nB(j) logα+ 2nLmaxC(fmax) log β · |A(j)|+ 2nB(j) log γ

≤ 2n|A(j)|(ρmax logα+ Lmax · C(fmax) log β + ρmax log γ
)
(22)

Ineq. (18) holds since Dmax ≥ 1, and 0 < ε ≤ 1,

thus Dε
max ≥ 1. Ineq. (19) holds since the resource uti-

lization ratio does not decrease and thus the usage cost

of each VNF instance, each cloudlet, and each link does

not decrease with more request admissions. Ineq. (20) holds

because
∑m

i=1

∑n
j=1 Ai · Bj ≤ ∑m

i=1 Ai ·
∑n

j=1 Bj , for all

Ai ≥ 0 and Bj ≥ 0. Ineq. (21) holds because all algorithms,

including the optimal offline algorithm OPT , the accumulated

usage of resources in any VNF instance, cloudlet and link

is no greater than its capacity. Recall that A(j) is the set

828

of requests admitted by Algorithm 2, and T (j) is the

set of requests rejected by Algorithm 2 but accepted by

the optimal offline algorithm OPT . We have
OPT−|A(j)|
|A(j)| ≤

2Dε
max(ρmax logα+ Lmax · C(fmax) log β + ρmax log γ).

Thus, we have OPT
|A(j)| ≤ 2Dε

max(ρmax logα + Lmax ·
C(fmax) log β + ρmax log γ) + 1 = O(log n) when α = β =
γ = O(n).

The time complexity analysis of Algorithm 2 is omitted,

due to space limitation.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

algorithms through experimental simulations. We also inves-

tigate the impact of important parameters on the performance

of the proposed algorithms.

A. Experiment settings

We consider an MEC network G = (V,E) consisting of

from 10 to 250 APs (cloudlets). The computing capacity of

each cloudlet ranges from 3, 000 MHz to 6, 000 MHz [10],

and the bandwidth capacity of each link varies between

2, 000 Mbps and 20, 000 Mbps [11]. The number K of

different types of network functions is set at 20. The com-

puting resource demand of each network function is set from

300 MHz to 600 MHz, and their processing rate is randomly

drawn from 50 to 100 data packets per millisecond [14]. Given

a cloudlet, the instantiation cost of a VNF instance in it is

randomly drawn from [0.50, 2.0], while the processing cost

of per packet data traffic by a VNF instance is a random

value drawn from [0.01, 0.1] [16]. The routing cost per data

packet along a link is a value drawn from [0.01, 0.1]. For each

generated request rj , one AP node in V is randomly selected

as its source sj , and a set of AP nodes in V are randomly

selected as its destinations Dj . Its data packet rate is drawn

from 2 to 10 packets per millisecond, where each packet is of

size 64KB. The length of its service function chain is set from

1 to 10, and each network function is randomly drawn from

the K types. The value in each figure is the mean of the results

out of 30 MEC instances of the same size. The running time

of an algorithm is obtained on a machine with 3.4GHz Intel i7

Quad-core CPU and 16GB RAM. Unless otherwise specified,

these parameters will be adopted in the default setting.

In the following, we first evaluate the performance

of Algorithm 1 for the NFV-enabled multicasting

problem against three baseline heuristics CostMinGreedy,

ExistingGreedy, and NewGreedy. Algorithm

CostMinGreedy considers network functions in the

service function chain one by one for each arriving request, it

always choose the cloudlet that can achieve the the minimum

cost (including the processing cost, instance instantiation cost,

and routing cost) for the next network function. Algorithm

ExistingGreedy considers network functions one by one

and it tries to admit the request by existing VNF instances

with the minimum admission cost as long as there is a VNF

instance with sufficient residual processing capacity, while

algorithm NewGreedy always tries to create new VNF

instance for the request providing sufficient computation

resource in a cloudlet. We then evaluate the performance of

Algorithm 2 against a benchmark OnlineLinear for

online request admissions, where for each request, algorithm

OnlineLinear first removes all VNF instances, cloudlets

and links that do not have sufficient residual resources to

support the admission of the request, and then assign a cost

of one to each VNF instance, each cloudlet, and each link. It

then constructs an auxiliary graph and finds a single-source

shortest path tree rooted at the source node and spanning all

destination nodes of the multicast request.

B. Performance evaluation

We first investigate the performance of Algorithm 1

against that of three baseline heuristics CostMinGreedy,

ExistingGreedy, and NewGreedy, for the NFV-enabled

multicasting problem for a single request admission, by

varying the network size from 10 to 250. Fig. 4 illus-

trates the admission cost and running time of the four

mentioned algorithms. From Fig. 4 (a), we can see that

Algorithm 1 achieves a much lower admission cost than

its three benchmarks in all cases. Specifically, it can incurs

48.0%, 25.3%, and 14.1% less admission cost than that by

NewGreedy, ExistingGreedy, and CostMinGreedy,

respectively, when the network size is 250. The reason behinds

is that Algorithm 1 jointly considers the placement of

VNF instances and data traffic routing for multicast request

admission, as well as makes a fine decision between using an

existing VNF instance or creating a new instance. Fig. 4 (b)

demonstrates the running time of the four algorithms. It

can be seen that algorithm NewGreedy achieves the least

running time, as it gives priority to create new VNF instances

in cloudlets, thus much smaller solution space is explored.

Algorithm 1 achieves the highest running time due to the

fact that Algorithm 1 strives for finding a multicast tree

with the least cost while passing through VNFs in its service

function chain at the same time, while the counter parts only

try to place its VNF instances in a greedy way, then routing

data packets to the destinations.

10 50 100 150 200 250
network size

0

50

100

150

200

ad
m

is
si

on
 c

os
t

Alg01
CostMinGreedy
ExistingGreedy
NewGreedy

(a) The admission cost

10 50 100 150 200 250
network size

0

200

400

600

800

ru
nn

in
g

tim
e

(m
s) Alg01

CostMinGreedy
ExistingGreedy
NewGreedy

(b) The running time

Fig. 4. Performance of Algorithm 1, CostMinGreedy,
ExistingGreedy, and NewGreedy.

We then evaluate the performance of Algorithm 2 by

varying the network size from 10 to 250 for a sequence of

40, 000 requests. Fig. 5 plots the performance curves of dif-

ferent algorithms, from which we can see that Algorithm 2

outperforms the baseline algorithm OnlineLinear in all

cases. Specifically, Algorithm 2 admits 35.4% more re-

quests than that by algorithm OnlineLinear when the net-

829

work size is 200. The rationale behinds is that Algorithm 2

applies a cost model to assign higher cost to over-utilized

resources and assign lower cost to under-utilized resources,

thus allocating resources more evenly, while algorithm

OnlineLinear does not take into account the utilization

of resources on each cloudlet and each link, thus leading

to overloads on some links and cloudlets. Fig. 5 (c) shows

the running time of the two algorithms. We can see that the

running time of Algorithm 2 is higher than that of algorithm

OnlineLinear, this is because Algorithm 2 admits more

requests, and assigns exponential weights to cloudlets and

links when each request arrives.

10 50 100 150 200 250
network size n

0

5,000

10,000

15,000

20,000

25,000

#a
dm

itt
ed

 r
eq

ue
st

s Alg02
OnlineLinear

(a) The network throughput

10 50 100 150 200 250
network size n

0

2e+05

4e+05

6e+05

8e+05

1e+06

ad
m

is
si

on
 c

os
t Alg02

OnlineLinear

(b) The admission cost

10 50 100 150 200 250
network size n

1e+04

1e+05

1e+06

1e+07

ru
nn

in
g

tim
e

(m
s)

Alg02
OnlineLinear

(c) The running time

Fig. 5. Performance of Algorithm 2 and OnlineLinear by varying the
network size from 10 to 250.

C. Parameter impact on the algorithm performance

We finally study the impact of the admission control vari-

ables σ1, σ2, and σ3 on the performance of Algorithm 2.

Fig. 6 demonstrates the performance curves of Algorithm 2

with and without the admission control thresholds, from which

it can be seen that less requests can be admitted if no

admission control policy is applied. We can see that when

the network size is 100, Algorithm 2 can admit 38.4%
more requests than that if no admission control is applied.

Furthermore, the performance gap of Algorithm 2 with

and without the thresholds becomes larger and larger with

the increase in network size. This is due to that in larger

networks, the size of the destination set of a request can

be very large, and the distance between the source and a

destination node can be very long, thus consuming much

more bandwidth resource for routing its data traffic. Under

the admission control policy, Algorithm 2 is able to reject

those requests beyond the given threshold, thereby enable to

admit more future requests and achieving a higher throughput.

Fig. 6 (b) shows the admission cost of Algorithm 2 with

and without admission control thresholds.

VII. CONCLUSION

In this paper, we studied the online NFV-enabled multicast

request admissions in a mobile edge cloud network. We first

10 50 100 150 200 250
network size n

0

5,000

10,000

15,000

20,000

25,000

#a
dm

itt
ed

 r
eq

ue
st

s σ
1
 = σ

2
 = σ

3
 = n

σ
1
 = σ

2
 = σ

3
 = ∞

(a) The network throughput

10 50 100 150 200 250
network size n

0

2e+05

4e+05

6e+05

8e+05

1e+06

ad
m

is
si

on
 c

os
t σ

1
 = σ

2
 = σ

3
 = n

σ
1
 = σ

2
 = σ

3
 = ∞

(b) The admission cost

Fig. 6. Impact of the admission control policy on the performance of
Algorithm 2.

proposed an approximation algorithm for finding a minimum

cost multicast tree for a single request. We then devised an

online algorithm with a provable competitive ratio for the

online throughput maximization problem where NFV-enabled

multicast requests arrive one by one without the knowledge of

future request arrivals. We finally evaluated the performance

of the proposed algorithms through experimental simulations.

Experimental results demonstrate that the proposed algorithms

are promising, and outperform their theoretical counterparts.

REFERENCES

[1] N. Abbas et al. Mobile edge computing: a survey. IEEE Internet of
Things Journal, vol. 5, no. 1, pp. 450 – 465, 2018.

[2] X. Chen, L. Jiao, W. Li, and X. Fu. Efficient multi-user computation
offloading for mobile-edge cloud computing. IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795 – 2808, 2016.

[3] A. Ceselli et al. Mobile edge cloud network design optimization.
IEEE/ACM Transactions on Networking, vol. 25, no. 3, pp. 1818 – 1831,
2017.

[4] M. Charikar et al. Approximation algorithms for directed Steiner
problems. J. Algorithms, vol. 33, no. 1, pp. 73 – 91, Elsevier, 1998.

[5] N. Chowdhury and R. Boutaba. Network virtualization: state of the art
and research challenges. IEEE Commu. Maga., pp. 20 – 26, 2009.

[6] H. Feng et al. Approximation algorithms for the nfv service distribution
problem. Proc. of INFOCOM, IEEE, 2017.

[7] T. He et al. It’s hard to share: joint service placement and request
scheduling in edge clouds with sharable and non-sharable resources. Proc.
of ICDCS, IEEE, 2018.

[8] M. Jia, J. Cao, and W. Liang. Optimal cloudlet placement and user
to cloudlet allocation in wireless metropolitan area networks. IEEE
Transactions on Cloud Computing, vol. 5, no. 4, pp. 725 – 737, 2017.

[9] M. Jia, W. Liang, Z. Xu, and M. Huang. Cloudlet load balancing in
wireless metropolitan area networks. Proc. of INFOCOM, IEEE, 2016.

[10] M. Jia et al. QoS-aware task offloading in distributed cloudlets with
virtual network function services. Proc. of MSWiM, ACM, 2017.

[11] S. Knight et al. The internet topology zoo. IEEE J. on Selected Areas
in Communications, vol. 29, pp. 1765 – 1775, IEEE, 2011.

[12] P. Mach and Z. Becvar. Mobile edge computing: a survey on architecture
and computation offloading. IEEE Commu. Surveys & Tutorials, vol. 19,
no. 3, pp. 1628 – 1656, Jun. 2017.

[13] Y. Mao et al. A survey on mobile edge computing: the communication
perspective. IEEE Commun. Surv. Tutor., vol. 19, pp. 2322 – 2358, 2017.

[14] J. Martins et al. ClickOS and the art of network function virtualization.
Proc. of NSDI 14, USENIX, 2014.

[15] S. V. Rossem et al. Deploying elastic routing capability in an SDN/NFV-
enabled environment. 2015 IEEE NFV-SDN, pp. 22 – 24, Nov. 2015.

[16] Z. Xu et al. Throughput maximization and resource optimization in
NFV-enabled networks. Proc. of ICC’17, IEEE, 2017.

[17] Z. Xu et al. Approximation and online algorithms for NFV-enabled
multicasting in SDNs. Proc. of ICDCS’17, IEEE, 2017.

[18] Z. Xu et al. Efficient NFV-enabled multicasting in SDNs. IEEE
Transactions on Communications, vol. 67, no. 3, pp. 2052 – 2070, 2019.

[19] S. Q. Zhang et al. Network function virtualization enabled multicast
routing on SDN. Proc. of ICC, IEEE, 2015.

830

