
Virtual Network Function Service Provisioning for
Offloading Tasks in MEC by Trading off Computing

and Communication Resource Usages
Yu Ma†, Weifa Liang†, Meitian Huang†, Yang Liu†, and Song Guo¶

† The Australian National University, Canberra, ACT 2601, Australia
¶ The Hong Kong Polytechnic University, Hong Kong

Abstract—Mobile edge computing (MEC) has emerged as a
promising technology that offers resource-intensive yet delay-
sensitive applications from the edge of mobile networks. With
the emergence of complicated and resource-hungry mobile appli-
cations, offloading user tasks to cloudlets of nearby mobile edge-
cloud networks is becoming an important approach to leverage
the processing capability of mobile devices, reduce mobile device
energy consumptions, and improve experiences of mobile users.
In this paper we study the joint VNF instance deployment
and offloading task request assignment in MEC, by explicitly
exploring a non-trivial tradeoff between usages of different
types of resources. We aim to maximize the number of request
admissions while minimizing their admission cost. To this end,
we first formulate the cost minimization problem that admits
all requests, by assuming that there are sufficient computing
resources to accommodate the requested VNF instances of all
requests, for which we formulate an Integer Linear Program
solution and an efficient heuristic. We then deal with the through-
put maximization problem by admitting as many requests as
possible, subject to computing resource capacity at each cloudlet,
for which we devise an efficient algorithm. We finally evaluate the
performance of the proposed algorithms through experimental
simulations. Experimental results demonstrate that the proposed
algorithms are promising.

I. INTRODUCTION

There is a substantial growth in the usage of mobile
devices. These devices, including smartphones, sensors, and
wearables, are limited by their computational and energy
capacities, due to their portable sizes. Leveraging rich com-
puting and storage resources in clouds, mobile devices can
extend their capability by offloading user tasks to the clouds
for processing. However, clouds are usually far away from
most end-users, resulting in long communication delays be-
tween end-users and the cloud, and high service cost. Mobile
edge computing (MEC), which provides cloud resources at
the edge of mobile networks in close proximity to mobile
users, is a promising technology to reduce response delays,
ensure network operation efficiency, and improve user service
satisfaction [9]. Meanwhile, Network Function Virtualization
(NFV) has been envisaged as the next-generation network-
ing paradigm. It leverages generic servers/server clusters to
implement various network functions as software components
instead of purpose-specific hardware middleboxes, which in-
troduces a new dimension of cost savings and network function
deployment flexibility [10].

Although MEC has received significant attention, most
existing studies focused on minimizing the maximum delay,
maximizing the throughput, or the linear combination of multi-
ple performance metrics such as delays, and energy consump-
tions, without taking into account deploying VNF instances

requested by offloading task requests in MEC [1], [4], [8], [11],
[12]. For example, Ceselli et al. [1] considered VM placement
and migration with user request admission by formulating a
Mixed Integer Linear Programming solution for it. There are
several researches that considered VNF instance provisioning
that the VNF instance requested by each request is dedicated to
its user only. For example, Ma et al. [7] studied VNF instance
deployment for users with stringent delay requirements and
move frequently within an MEC network. In practice, most
users may request the same service from network service
providers. Thus, the VNF instances of such services can be
shared by multiple users [3], [5]. For example, He et al. [3]
considered the problem of joint service placement and request
scheduling in order to optimally provision edge services while
taking into account the demands of both sharable and non-
sharable resources in MEC, with an aim to maximize the
throughput. However, none of these studies explored the usage
tradeoff between computing resource and communication re-
source in the VNF instance deployment, in order to minimize
the admission cost of offloading task requests with specified
service requirements which is a fundamental problem of net-
work service provisioning in MEC.

To meet various service demands of offloading tasks from
mobile users, network service providers usually instantiate
frequently demanded VNF instances of network functions
(services) at cloudlets in MEC networks. The deployment
of VNF instances at the network edge can not only shorten
the latency of user service access but also reduce their cost
on the services. However, provisioning network services with
different types of VNFs in an MEC network poses many
challenges. For example, how many VNF instances need to
be instantiated to meet service demands of offloading task
requests? how to optimally place the services in cloudlets and
assign which requests to the services in order to minimize
their admission cost? and how to strive for a non-trivial
usage tradeoff between different types of resources in MEC to
minimize their admission cost? In this paper we will address
the aforementioned challenges.

In this paper we deal with the cost minimization problem
in MEC by admitting user requests of offloading tasks with
network function service requirements. We strive for a non-
trivial tradeoff between the computing resource consumption
and the communication resource consumption in user request
admissions dynamically. Intuitively, when computing resources
in the system become the bottleneck in terms of their availabil-
ities while the communication resources are sufficient, we may
deploy fewer VNF instances for network function services in
cloudlets (thereby reducing the usage of computing resources),

then the processing of the data packet traffic of each admitted
request takes a longer routing path to its VNF instance and
consumes more communication resources. Alternatively, if
communication resources are the bottleneck in MEC, we may
deploy more VNF instances to ensure each request offloaded
to its nearby cloudlet for service processing in order to shorten
the routing path of its data packet traffic. Such a non-trivial
tradeoff between the usages of different resources can be
achieved through the introduction of a load factor λ at every
VNF instance with 0 < λ ≤ 1. That is, if the computing
resource is expensive at the moment, we may set the load
factor higher such that every VNF instance can serve more
requests; otherwise, we may set the load factor lower, and
more VNF instances then are instantiated.

The novelty of this work lies in exploring a non-trivial
tradeoff between different types of resource usages in MEC
to minimize the request admission cost, by introducing the
load factor concept. To the best of our knowledge, we are the
first to explore non-trivial usage tradeoffs between different
types of resources for offloading task request admissions while
minimizing their admission cost. That is, we use inexpensive
resource to replace expensive resource for request admissions
through the load factor concept.

The main contributions of this paper are described as
follows. In this paper we study the provisioning of VNF
services for offloading tasks in an MEC network by jointly
considering service placement and request scheduling. We
consider the problem under two scenarios: admit all requests
when there are abundant computing resource; or admit as
many requests as possible if the computing resource at each
cloudlet is capacitated while minimizing the admission cost
of all admitted requests. Since the problem is NP-hard, we
then provide an ILP solution and devise an efficient algorithm
for the problem if there are sufficient computing resources.
Otherwise, we develop an algorithm for the throughput maxi-
mization problem. We finally evaluate the performance of the
proposed algorithms through experimental simulations.

The rest of the paper is organized as follows. Section II
introduces notions, notations, and the problem definition. Sec-
tion III formulates an ILP solution and devises an efficient
algorithm for the problem if there are abundant computing
resources in MEC. Section IV develops an efficient heuristic
for the problem if computing resources in cloudlets are capac-
itated. Section V evaluates the performance of the proposed
algorithms empirically, and Section VI concludes the paper.

II. PRELIMINARIES

In this section, we first introduce the system model, notions
and notations. We then define the problems precisely.

A. System model
We consider a metropolitan mobile edge cloud computing

network (MEC), which is represented by an undirected graph
G = (V,E), where V is a set of access points (APs) located
at different locations in the metropolitan region, e.g., schools,
shopping malls, bus stations, and hospitals. There is a cloudlet
with computing capacity Cv attached with each AP node
v ∈ V , for implementing virtualized network functions (VNFs)
requested by mobile users. E is the set of wired links between
APs. The two endpoints of each link e ∈ E are connected by a
high-speed optical cable, which implies that there is plenty of

bandwidth on link e. We assume that each AP node covers
a certain area in which mobile users can access the MEC
wirelessly through it.

B. User requests with VNF requirements and admission cost
Assume that there is a set U of users accessing MEC

through their nearby APs. Each user j ∈ U issues an offloading
task request rj = 〈vj , f (k)j , ρj〉 that demands for a specified
VNF service f (k)j , where vj is the AP location of the request,
and ρj is its data packet rate. Denote by Uk and Uk,v the
sets of users requested for network function f (k) in G and at
AP v ∈ V , respectively. It can be seen that Uk,v ⊂ Uk and
Uk ⊆ U for each k with 1 ≤ k ≤ K.

Each VNF is implemented by a VNF instance of its
type that consumes a certain amount of computing resource.
Without loss of generality, we assume that different types of
VNFs among all requests can be classified into K types. The
VNF instance of f (k)j for user request rj can be implemented
in a cloudlet vl ∈ V that is not necessarily co-located with
its user at AP vj , i.e., j 6= l. Denote by f (k) and C(f (k))
the virtualized network function of type k and the amount of
computing resource consumed for its VNF instance implemen-
tation for each k with 1 ≤ k ≤ K. We further assume that
each VNF instance of f (k) has a maximum packet processing
rate µ(k), and the data packet traffic of each request is not
splittable and must be processed by a single VNF instance.

Instantiating VNF instances at cloudlets consumes com-
puting and storage resources of cloudlets and thus incurs the
implementation cost. The instantiation of a VNF instance of
network function f (k) in a cloudlet v incurs the instantiation
cost cins(f (k), v), while the processing of data packet traffic
of a request rj at a VNF instance of f (k)j at cloudlet v has
the computing resource usage cost ρj · cproc(f (k), v), where
cproc(f

(k), v) is the cost of processing a packet by a VNF
instance f (k) at cloudlet v. In addition to the processing cost
of its data packet traffic at a VNF instance in a cloudlet,
the data packet traffic of each request rj is routed along a
routing path in the network between the request’s AP location
and the cloudlet hosting its VNF instance, which incurs the
communication cost. Let P (vj , vl) be the shortest routing path
for request rj between its AP node vj and cloudlet vl in
which its data packet traffic is processed by a VNF instance
of f (k)j . The routing cost of a packet along path P (vj , vl)
thus is cbw(P (vj , vl)) =

∑
e∈P (vj ,vl)

ce, where ce is the unit
transmission cost on each link e ∈ E.

C. Problem formulations
In this paper, we consider two task offloading problems

in MEC: one is the cost minimization problem if there are
sufficient computing resources in cloudlets to meet all user
requests’ resource demands; and the other is the throughput
maximization problem that aims to maximize the number of
request admissions while minimizing their admission cost,
subject to the computing capacity constraint on each cloudlet.

Definition 1: Given an MEC G = (V,E) with a set V of
APs, a cloudlet is co-located with each AP for implementing
VNF instances, a set of users U with each user j ∈ U
having an offloading task rj = 〈vj , f (k)j , ρj〉 to be offloaded
to MEC, the cost minimization problem is to admit all user
requests through deploying a certain number of VNF instances

of network functions in cloudlets to meet the service demands
of all requests such that their admission cost is minimized,
assuming that there are sufficient computing resources at
cloudlets for the admissions of all requests.

The cost minimization problem can be mathematically
formulated as follows. Let F = {f (1), f (2), . . . , f (K)} be
the set of network functions provided by the network. Recall
that Uk and Uk,v are the sets of user requests that request
for network function f (k) in the network and at an AP
node v ∈ V respectively. For each type network function
k with 1 ≤ k ≤ K, let N (k) be the number of VNF
instances to be deployed for admitting all requests in Uk. Let
I(k) = {I(k)1 , I

(k)
2 , . . . I

(k)

N(k)} be the set of VNF instances of
f (k). Let V = {v1, v2, . . . , v|V |} be the set of APs or cloudlets
and I = ∪Kk=1I

(k).
Define a function φ : F×I 7→ V . Specifically, the variable

domain of φ(·) consists of K disjoint subdomains, i.e., φ :
F × I(k) 7→ V for each k with 1 ≤ k ≤ K, the ith VNF
instance I(k)i of f (k) will be deployed to a cloudlet indexed at
φ(k, i). Define another function ψ : F × U 7→ I . Specifically,
the variable domain of ψ(·) consists of K disjoint subdomains,
i.e., ψ : F × Uk 7→ I(k) for each k with 1 ≤ k ≤ K, each
request rj ∈ Uk of f (k) is assigned to the ψ(k, j)th VNF
instance of f (k), which also implies that the VNF instance is
hosted in a cloudlet indexed at φ(k, ψ(k, j)).

Then, the cost minimization problem is to admit all
requests while minimizing their admission cost in terms
of the VNF instance instantiation cost, the VNF in-
stance processing cost, and the communication cost, that is,∑K
k=1

∑N(k)

i=1 cins(f
(k), vφ(k,i)) +

∑K
k=1

∑N(k)

i=1

∑
rj∈Uk

ρj ·(
cbw(P (vj , vφ(ψ(k,j)))) + cproc(f

(k), vφ(k,ψ(k,j)))
)
, and the

number N (k) of VNF instances of f (k) for all requests in

Uk must meet max{d
∑

rj∈Uk
ρj

λ·µ(k) e, nB(λ ·µ(k), Uk)} ≤ N (k) ≤
min{

∑
v∈V nB(λ · µ(k), Uk,v), |Uk|}, where nB(λ · µ,U ′) is

the minimum number of bins that can pack all elements in
U ′, assuming that each bin has a capacity of λ · µ and λ is a
given load factor within 0 < λ ≤ 1, and there is a set U ′ of
elements with each element rj having a profit 1 and weight ρj .
The correctness of the inequality will be shown in Lemma 1.

Definition 2: Given an MEC G = (V,E) with a set V
of APs, a cloudlet v ∈ V with computing capacity Cv is co-
located with every AP v, a set U of users with each user j ∈ U
having an offloading task rj = 〈vj , f (k)j , ρj〉, the throughput
maximization problem is to maximize the number of requests
admitted while minimizing the total admission cost, subject to
the computing capacity on each cloudlet in G.

The two defined problems are NP-hard, which can be
shown by a reduction from the generalized assignment prob-
lem [2]. The detailed reduction is omitted, due to space
limitation.

III. ALGORITHM FOR THE COST MINIMIZATION PROBLEM

In this section, we deal with the cost minimization problem.
We first formulate the problem as an integer linear program
(ILP). We then devise an efficient algorithm for it.

A. Integer linear program formulation
For each request rj ∈ U , there are K (K = |F|) binary

constants akj where akj = 1 if rj requests network function

f (k); akj = 0 otherwise for all k with 1 ≤ k ≤ K. For the ith
VNF instance I(k)i ∈ I(k) of f (k) and each cloudlet vl ∈ V
with 1 ≤ i ≤ N (k), 1 ≤ k ≤ K, and 1 ≤ l ≤ |V |, there
is a binary decision variable xi,k,l where xi,k,l = 1 if the ith
VNF instance of f (k) is deployed in cloudlet vl. Furthermore,
there is a binary decision variable yi,j,l, which indicates if
the data packet traffic of a request rj is processed by the ith
VNF instance I

(k)
i of f (k) in cloudlet vl. The optimization

objective (1) of the cost minimization problem is to minimize
the admission cost of all requests in G, i.e.,

minimize

K∑
k=1

N(k)∑
i=1

|V |∑
l=1

cins(f
(k), vl) · xi,k,l+

∑
rj∈U

K∑
k=1

N(k)∑
i=1

|V |∑
l=1

ρja
k
j (cproc(f

(k), vl) + cbw(P (vj , vl))) · yi,j,l,

(1)
subject to:
N(k)∑
i=1

|V |∑
l=1

akj · yi,j,l = 1, ∀rj ∈ U, 1 ≤ k ≤ K (2)∑
rj∈U

ρj · akj · yi,j,l ≤ λ · µ(k) · xi,k,l,

∀v ∈ V, 1 ≤ k ≤ K, 1 ≤ i ≤ N (k) (3)

max{d
∑
rj∈Uk

ρj

λ · µ(k)
e, nB(λ · µ(k), Uk)} ≤ N (k)

≤ min{
∑
v∈V

nB(λ · µ(k), Uk,v), |Uk|},∀ 1 ≤ k ≤ K (4)

akj · yi,j,l ≤ xi,k,l,∀1 ≤ l ≤ |V |, rj ∈ U, 1 ≤ k ≤ K,
1 ≤ i ≤ N (k) (5)

xi,k,l ∈ {0, 1},∀1 ≤ l ≤ |V |, 1 ≤ k ≤ K, 1 ≤ i ≤ N (k) (6)

yi,j,l ∈ {0, 1},∀1 ≤ l ≤ |V |, rj ∈ U, 1 ≤ i ≤ N (k). (7)

where nB(λ · µ,U ′) is the minimum number of bins with
capacity λ · µ to pack all elements in U ′, and u(k, v) is an
approximation (an upper bound) on nB(λ ·µ(k), Uk,v) that can
be obtained by invoking an approximation algorithm for the
GAP problem such as the one in [2] (see Lemma 1).

Within the ILP, constraint (2) ensures that each request
rj will be admitted and assigned to one VNF instance of its
requested network function f (k) at a cloudlet vl. Constraint (3)
ensures that the accumulative packet rate of all requests
requested for f (k) that are assigned to the ith VNF instance
of f (k) in cloudlet vl is no greater than the maximum packet
processing rate λ · µ(k) of the VNF instance. Constraint (4)
ensures that all requests in Uk requesting for f (k) can be
admitted and their data packet traffic can be processed by these
N (k) VNF instances for each k. Constraint (5) enforces that
if the data packet traffic of request rj is processed in the ith
VNF instance of f (k) in cloudlet vl, then the ith VNF instance
of f (k) must be deployed in cloudlet vl.

The rest is to show why the value of N (k) is in a given
range by the following lemma.

Lemma 1. For each k with 1 ≤ k ≤ K, we have
max{d

∑
rj∈Uk

ρj

λ·µ(k) e, nB(λ · µ(k), Uk)} ≤ N (k) ≤ min{|Uk|,

∑|V |
l=1 nB(λ · µ(k), Uk,vl)} ≤ min{

∑|V |
l=1 u(k, vl), |Uk|}.

Proof: To admit all requests in Uk, we first estimate the
lower and the upper bounds on the number of VNF instances
of f (k) needed. Denote by N (k)

low and N (k)
upp the lower and upper

bounds on N (k). It can be seen that a naive lower bound of
N (k) is d

∑
rj∈Uk

ρj

λ·µ(k) e, as the maximum packet processing rate
of a VNF instance is λ · µ(k). However, this bound might not
be tight. To ensure that all requests in Uk will be admitted,
the minimum number of VNF instances of f (k) needed is
equivalent to the minimum number of bins to pack the data
packet rates of these requests. Unfortunately the calculation
of this minimum number of bins is NP-hard. We instead
adopt an approximation algorithm for the GAP [2] to find
an approximate value of nB(λ · µ(k), Uk), which proceeds as

follows. We start with n
(k)
L = n

(k)
B = d

∑
rj∈Uk

ρj

λ·µ(k) e bins to
pack all requests in Uk. If all requests can be packed, this
value is optimal, i.e., nB(λ · µ(k), Uk) = n

(k)
L ; otherwise, we

set an upper bound nH = 2nL of nB(λ · µ(k), Uk), we then
examine whether all requests in Uk can be packed by n

(k)
H

bins. If not, we double that number again. Otherwise, we find
a proper number for the approximation of nB(λ ·µ(k), Uk) by
binary search in [n

(k)
L , n

(k)
H].

On the other hand, if the data packet traffic of each request
is processed in the cloudlet co-located with the AP it was
issued, this will not incur any routing cost of its admission.
Thus, there must be enough VNF instances in that cloudlet
for the request admissions. Consider the sum of data packet
rates

∑
rj∈Uk,v

ρj of all requests in Uk,v at AP v. Determining
the minimum number of VNF instances at cloudlet v for the
request admissions is equivalent to determining the minimum
number of bins nB(λ · µ(k), Uk,v) to pack the data packet
rates of these requests with bin capacity µ(k). The range of

the value of nB(λ · µ(k), Uk,v) is between d
∑

rj∈Uk,v
ρj

λ·µ(k) e and
|Uk,v|. However, finding its exact value is NP-hard. Thus, a
naive upper bound N (k)

upp on N (k) is |Uk|, an improved upper
bound is to apply an approximation algorithm for the GAP at
each AP [2] to identify the number of bins needed. Let u(k, v)
be the solution delivered by the approximation algorithm at
cloudlet v ∈ V . Then, N (k)

upp =
∑
v∈V u(k, v).

Since the admission cost of all requests in Uk is the sum
of the processing and routing costs of the requests that is not a
monotonic function of the number of VNF instances, we need
to find a proper value of N (k) for each k with 1 ≤ k ≤ K such
that the admission cost of all requests in U is minimized. Thus,
the exact solution is obtained, by exploring each integer value
in the interval, and then choosing the one with the minimum
cost as the problem solution.

B. Algorithm
Although the formulated ILP for the cost minimization

problem can deliver an exact solution when the problem
size is small, its running time is prohibitively high with the
growth of problem size, and thus not scalable. In the following
we propose an efficient algorithm for the cost minimization
problem.

The rationale behind the proposed algorithm is to explore
the non-trivial tradeoff between the usages of computing and
communication resources in request admissions dynamically. If

computing resource is relatively inexpensive, we can increase
the deployment of the number N (k) of VNF instances by
lowering its load factor λ (e.g., λ = 0.5). Thus, most
requests can be served by the VNF instances instantiated at
their nearby cloudlets, thereby reducing the routing cost of
their data packet traffic. On the other hand, if computing
resource becomes more expensive (less computing resource
is available), we can reduce the deployment of the number
N (k) of VNF instances by increasing its load factor λ (e.g.,
λ = 0.95). Thus, less computing resource is consumed on VNF
instance instantiations, while the routing path of each request
from its location to the hosting cloudlet becomes longer. Thus,
more communication resource is consumed to accommodate
the request.

The proposed algorithm is an iterative algorithm. Specifi-
cally, for each k with 1 ≤ k ≤ K, we identify a proper value
N (k), and deploy the N (k) VNF instances of f (k) to different
cloudlets. We deploy the VNF instances one by one and assign
a subset of unassigned requests in Uk to the newly deployed
VNF instance. This procedure continues until all requests in Uk
are assigned. Consider the deployment of the ith VNF instance
of f (k) that can be deployed in one of the |V | cloudlets. Let
R

(k)
vl be the set of requests in U ′k requested for f (k) that have

not been admitted in the previous (i − 1) iterations of the
algorithm but will be admitted in the ith iteration and processed
by the ith VNF instance of f (k) in cloudlet vl, where U ′k ⊆ Uk.
In order to identify which requests in U ′k to be assigned to the
ith newly instantiated VNF instance I(k)i of f (k) in cloudlet
vl, we aim to assign as many requests as possible in U ′k to
I
(k)
i such that the sum of the processing and routing costs of

these requests is minimized, subject to the maximum packet
processing rate λ · µ(k) of I(k)i .

If all VNF instances of f (k) have been instantiated
in cloudlets, denote by cost(rj) = ρj · (cproc(f (k), vl) +
cbw(P (vj , vl))) the processing and routing cost of admitting
request rj . To this end, we treat I(k)i as a bin with capacity
λ · µ(k), and each request rj ∈ U ′k as an element in U ′k with
size ρj , and a profit profit(rj) = 1

cost(rj)
that is the inverse of

the processing and routing cost cost(rj) of a newly admitted
request, assuming that instance I(k)i has been instantiated in
cloudlet vl ∈ V already. A solution R

(k)
vl (⊆ U ′k) to this

knapsack problem is obtained by applying an approximation
algorithm for the knapsack problem. Notice that the profit
maximization in this knapsack problem is roughly equivalent
to the cost minimization of admitting all requests in R

(k)
vl .

Furthermore, the instantiation cost of I(k)i in cloudlet vl has
not been taken into account. The rest is to choose a cloudlet
vl0 hosting I(k)i if the ratio of the number of newly admitted
requests to the admission cost of the requests in R

(k)
vl0

is
maximized, i.e.,

vl0 = argmax
vl∈V

|R(k)
vl |

cins(f (k), vl) +
∑
rj∈R(k)

vl

cost(rj)
. (8)

The detailed algorithm for the cost minimization problem is
given in Algorithm 1.

C. Analysis of the proposed algorithm
Theorem 1. Given an MEC G = (V,E), and a set U of
users with each j ∈ U having an offloading task rj =

Algorithm 1 An algorithm for the cost minimization problem
Input: Given an MEC G = (V,E) and a set U of users with each

j ∈ U having an offloading task rj = 〈vj , f (k)
j , ρj〉, and a given

load factor λ with 0 < λ ≤ 1.
Output: A solution to minimize the admission cost of all requests.

1: cost← 0; /* the cost of all request admissions */
2: S ← ∅; /* different VNF instance placements in cloudlets */
3: A ← ∅; /* different user request assignment to different VNF

instances at different cloudlets */
4: for k ← 1 to K do
5: i← 0; /* the ith VNF instance I(k)i of f (k) to be deployed */
6: U ′

k ← Uk; /* the set of unassigned requests in Uk */
7: I(k) ← ∅; /* the set of VNF instances of f (k) */
8: while U ′

k 6= ∅ do
9: i← i+ 1;

10: Compute the ratio in formula (8) if the ith VNF instance
I
(k)
i of f (k) is deployed in cloudlet vl for each vl ∈ V

by invoking an approximation algorithm for the knapsack
problem with capacity λ · µ(k) and set U ′

k, and let cloudlet
vl0 be chosen to the host of the ith VNF instance I(k)i ;

11: I(k) ← I(k) ∪ {I(k)i };
12: U ′

k ← U ′
k \ R

(k)
vl0

; /* all requests in R(k)
vl0

be admitted and
assigned to VNF instance I(k)i in cloudlet vl0 */

13: cost← cost+ cins(f
(k), vl0) +

∑
rj∈R

(k)
vl0

cost(rj);

14: S ← S ∪ {I(k)i in cloudlet vl0}; /* i.e., φ(k, i) = l0 */
15: A ← A ∪ {rj is assigned to I

(k)
i in cloudlet vl0 | rj ∈

R
(k)
vl0
}; /* i.e., ψ(k, j) = i and φ(k, ψ(k, j)) = l0 */

16: return cost, S, and A.

〈vj , f (k)j , ρj〉, assuming that there are sufficient computing
resources in cloudlets to accommodate all VNF instances of
different network functions, there is an efficient algorithm,
Algorithm 1, for the cost minimization problem, which takes
O(|V | · |U | log |U |ε + |V |3) time and delivers a feasible solution
to the problem, where ε is a constant with 0 < ε ≤ 1.

Proof: As there are K iterations of Algorithm 1.
For iteration k with 1 ≤ k ≤ K, all requests in Uk are
admitted, and N (k) VNF instances of f (k) are deployed, and
the sum of packet rates of all requests in Uk assigned to any
of the N (k) VNF instances is no greater than its maximum
packet processing rate λ · µ(k). The solution delivered by
Algorithm 1 thus is feasible.

The time complexity analysis of Algorithm 1 is omitted,
due to space limitation.

IV. ALGORITHM FOR THE THROUGHPUT MAXIMIZATION
PROBLEM

In this section, we study the throughput maximization
problem with the aim to maximize the throughput, by admitting
as many requests as possible while minimizing their admission
cost, subject to computing capacity of each cloudlet.

A. Algorithm
We propose a greedy algorithm for the problem, which

proceeds iteratively. Within iteration i, one VNF instance of a
network function f (k0) deployed at a cloudlet vl0 is chosen if
its ratio ηk0,l0 of the number of newly admitted requests that
request for f (k0) to their admission cost is the maximum one,
assuming that cloudlet vl0 has sufficient residual computing
resource to accommodate the VNF instance of f (k0), where
both network function f (k0) and cloudlet vl0 for the new VNF

instance deployment are determined by the following formula.

ηk0,l0 = argmax
l,k

|R(k)
vl |

cins(f (k), vl) +
∑
rj∈R(k)

vl

cost(rj)
, (9)

where R
(k)
vl is the set of requests of f (k) that have not

been admitted in previous iterations and will be admitted
and processed by the VNF instance of f (k) in cloudlet vl
for each k with 1 ≤ k ≤ K. Notice that identifying the
set R(k)

vl is NP-hard, due to this is a knapsack problem with
bin capacity λ · µ(k) and the set of elements in U ′k (⊆ Uk),
where each element rj ∈ U ′k has a size ρj and a profit

1
ρj ·(cproc(f(k),vl)+cbw(P (vj ,vl)))

. The admission cost of newly

admitted requests in R(k0)
v0 is the sum of the instantiation cost

of the VNF instance of f (k0) in cloudlet vl0 , and the sum of
the processing and routing costs of all newly admitted requests
in R(k0)

v0 , using the newly instantiated VNF instance.
The above procedure repeats until either all requests in U

are admitted or no more VNF instances can be instantiated
in any cloudlet without violating its computing capacity. The
detailed algorithm is given in Algorithm 2.

B. Algorithm analysis
Theorem 2. Given an MEC G = (V,E), there is a cloudlet
v ∈ V with computing capacity Cv co-located with an AP
v, a set U of users with each j ∈ U having an offload-
ing task request rj = 〈vj , f (k)j , ρj〉, there is an algorithm,
Algorithm 2, for the throughput maximization problem in
G, which takes O(K · |V | · |U |2 log |U |/ε+ |V |3) time, where
ε is constant with 0 < ε ≤ 1.

The time complexity analysis of Algorithm 2 is omitted,
due to space limitation.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-
posed algorithms through experimental simulations.

A. Experimental environment settings
We consider an MEC G = (V,E) consisting of from 10 to

250 APs (cloudlets). We assume that the computing capacity
of each cloudlet varies from 3,000 MHz to 6,000 MHz [5].
Given a cloudlet, the instantiation cost of a VNF instance in
it is randomly drawn from [0.50, 2.0], while the processing
cost of per packet data traffic by a VNF instance is a random
value within [0.01, 0.1]. The routing cost per data packet along
a link is a value drawn from [0.01, 0.1]. The number K of
different types of VNFs in MEC is set at 6, and computing
demands of different types of VNFs is set from 400 MHz
to 1,000 MHz [5], while the processing rate (capacity) of
one type of VNF instance is randomly drawn from 50 to 100
data packets per millisecond [10]. Each offloading task request
rj is randomly generated as follows. A node vj ∈ V in G
is randomly chosen as its AP rj , its data packet rate ρj is
randomly drawn from 2 to 10 packets per millisecond [6], and
its type of VNF f

(k)
j ∈ F is randomly chosen from one of

the K network functions. The value in each figure is the mean
of the results out of 30 MEC instances of the same size. The
running time of an algorithm is obtained based on a machine
with 3.4 GHz Intel i7 Quad-core CPU and 16GB RAM.

Algorithm 2 An algorithm for the throughput maximization
problem
Input: Given an MEC G = (V,E), a set of users U with each j ∈ U

having an offloading task rj = 〈vj , f (k)
j , ρj〉, and a given load

factor λ with 0 < λ ≤ 1.
Output: A solution that maximizes the throughput while minimizing

the admission cost of admitted requests.
1: flag ← true;
2: cost← 0; /* the admission cost of all admitted requests */
3: S ← ∅; /* different VNF instance placements in cloudlets */
4: A← ∅; /* all admitted requests so far, and different user request

assignment to different VNF instances at different cloudlets */
5: while flag do
6: /* if there are unadmitted requests and there are computing

resources in cloudlets for VNF instance instantiation */
7: ηmax ← 0;
8: sign←′ No′; /* terminate the nested loop */
9: for k ← 1 to K do

10: for each cloudlet vl ∈ V do
11: U ′

k ← Uk − (Uk ∩A); /* unassigned requests in Uk */
12: if (cloudlet vl has residual computing capacity to accom-

modate a VNF instance of f (k)) and (U ′
k 6= ∅) then

13: Compute R
(k)
vl , by invoking an approximation algo-

rithm for the knapsack problem with capacity λ ·µ(k)

and set U ′
k;

14: Compute the ratio ηk,l in Eq. (9);
15: if ηk,l > ηmax then
16: ηmax ← ηk,l; k0 ← k; l0 ← l;
17: sign←′ Y es′; /* whether there is any update */
18: if sign =′ Y es′ then
19: Cvl0

← Cvl0
−C(f (k0)); /* update the residual computing

resource at cloudlet vl0 */
20: Uk0 ← Uk0 \Rvl0

(k0);
21: cost ← cost + cins(f

(k0), vl0) +
∑

rj∈R
(k0)
vl0

ρj ·

(cproc(f
(k0), vl0) + cbw(P (vj , vl0)));

22: S ← S∪{a VNF instance of f (k0) created in cloudlet vl0};
/* i.e., its ith instance, φ(k0, i) = l0 */

23: A ← A ∪ {rj is assigned to I
(k0)
i in cloudlet vl0 | rj ∈

R
(k0)
vl0
}; /* i.e., ψ(k0, j) = i and φ(k0, ψ(k0, j)) = l0 */

24: else
25: flag ← false;
26: return cost, S, and A.

In the following, we first evaluate the performance of
Algorithm 1 for the cost minimization problem against its
optimal solution - the ILP solution in the small-scale and
a baseline heuristic GreedyNonCap respectively. Algorithm
GreedyNonCap examines requests one by one, and a request
is admitted if there is a cloudlet with sufficient computing re-
source to accommodate its VNF instance. If there are multiple
such cloudlets, we then choose the cloudlet with the minimum
admission cost. Otherwise, if there is no VNF instance of its
type has sufficient residual processing capacity for the request,
a new VNF instance with the minimum instantiation cost will
be instantiated in some cloudlet. This process continues until
all user requests being admitted. Another benchmark heuristic
GreedyCap is also proposed, which follows similar idea with
the one for algorithm GreedyNonCap, omitted.
B. Performance evaluation of algorithms for the cost mini-
mization problem

We first investigate the performance of Algorithm 1
against the optimal solution of the ILP for the cost mini-
mization problem, by varying the number of requests from
200 to 2,200 while fixing the number |V | of APs at 10.

Fig. 1 illustrates the performance curves of the two mentioned
algorithms. It can be seen from Fig. 1(a) that Algorithm 1
can achieve a near optimal admission cost, i.e., its admission
cost is no more than 120.79% of the optimal one. Fig. 1(b)
demonstrates the running time of these two algorithms. It can
be seen that the running time of Algorithm 1 is only a
small fraction of that of algorithm ILP, while its solution is
comparable with the optimal one. In particular, Algorithm 1
takes less than 20 seconds while the ILP solution takes more
than two hours, when the number of requests reaches 2,200.
With the increase on the number of requests, the running time
of algorithm ILP grows exponentially, and the algorithm is
only applicable when the problem size is small.

500 1000 1500 2000
number of requests

1000

2000

3000

4000

5000

ad
m

is
si

o
n
 c

o
st

Alg01
ILP

(a) The admission cost

500 1000 1500 2000
number of requests

1e+03

1e+04

1e+05

1e+06

1e+07

ru
n

n
in

g
 t

im
e

(m
s) ILP

Alg01

(b) The running time

Fig. 1. Performance of Algorithm 1 and algorithm ILP for the cost
minimization problem, by varying the number of requests from 200 to 2,200.

We then evaluate the performance of Algorithm 1
against the benchmark heuristic GreedyNonCap, by varying
network size from 10 to 250 for 10,000 user requests. Fig. 2 de-
picts the performance curves of the two mentioned algorithms.
From Fig. 2(a) we can see that Algorithm 1 outperforms
its benchmark counterpart GreedyNonCap. Specifically, with
the increase on network size, the admission costs of both
algorithms grow too. However, the performance gap between
them becomes larger and larger. As shown in the figure,
Algorithm 1 has 9.43% and 12.95% less admission cost
than that by algorithm GreedyNonCap when the network
size is 100 and 250, respectively. Fig. 2(b) shows the run-
ning time curves of the two algorithms. It can be seen that
algorithm GreedyNonCap takes less time than algorithm
Algorithm 1 in all network sizes. This is due to the fact
that Algorithm 1 strives for finding a set of requests to share
an existing VNF instance, while algorithm GreedyNonCap
only places each request greedily to a VNF instance with the
minimum admission cost.

10 50 100 150 200 250
network size n

2.5e+04

3.0e+04

3.5e+04

ad
m

is
si

o
n
 c

o
st

Alg01
GreedyNonCap

(a) The admission cost

10 50 100 150 200 250
network size n

1e+04

1e+05

1e+06

ru
n

n
in

g
 t

im
e

(m
s)

Alg01
GreedyNonCap

(b) The running time

Fig. 2. Performance of Algorithm 1 and algorithm GreedyNonCap when
admitting 10,000 requests, by varying the number of APs from 10 to 250.

C. Performance evaluation of algorithms for the throughput
maximization problem

In the following we study the performance of
Algorithm 2 for the throughput maximization problem
against a baseline heuristic GreedyCap, by varying the
network size from 10 to 250 for 20,000 requests. The results
are shown in Fig. 3. We can see from Fig. 3 that both
algorithms deliver solutions with increasing throughput, along
with the increase in the network size. However, Algorithm 2

outperforms algorithm GreedyCap significantly. Specifically,
Algorithm 2 can admit on average 3,522.73 requests with
admission cost 15796.84, while algorithm GreedyCap can
only admit on average 2,823.50 requests with admission cost
11,805.73. Algorithm 2 can admit 34.70% more requests
than that by algorithm GreedyCap with only 25.91% more
admission cost, when the network size is 50. Fig. 3(b) plots
the running time curves of both algorithms, where algorithm
GreedyCap takes less time than Algorithm 2 in all
network sizes.

10 50 100 150 200 250
network size n

0

3000

6000

9000

12000

#
ad

m
it

te
d
 r

eq
u
es

ts Alg02
GreedyCap

(a) The network throughput

10 50 100 150 200 250
network size n

0

2e+04

4e+04

6e+04
ad

m
is

si
o

n
 c

o
st

Alg02
GreedyCap

(b) The admission cost

10 50 100 150 200 250
network size n

1000

1e+04

1e+05

1e+06

ru
n

n
in

g
 t

im
e

(m
s)

Alg02
GreedyCap

(c) The running time

Fig. 3. Performance of Algorithm 2 and algorithm GreedyCap by
varying the number of APs from 10 to 250.

D. Impact of λ on the performance of Algorithm 1
We finally evaluate the impact of the load factor λ on the

performance of Algorithm 1 for a set of 10,000 requests
in MEC with 100 APs, and we draw the value of λ between
0.5 and 0.95. The impact of λ on the algorithm performance
is shown in Fig. 4. We investigate the impact of λ on the
algorithm performance by the following three cases.

0.5 0.6 0.7 0.8 0.9
the load factor λ

2.4e+04

2.6e+04

2.8e+04

3.0e+04

3.2e+04

ad
m

is
si

o
n

 c
o

st

Alg01: Case1

(a) Case 1

0.5 0.6 0.7 0.8 0.9
the load factor λ

4.2e+04

4.4e+04

4.6e+04

4.8e+04

5.0e+04

ad
m

is
si

o
n

 c
o

st

Alg01: Case2

(b) Case 2

0.5 0.6 0.7 0.8 0.9
the load factor λ

2.0e+05

2.2e+05

2.4e+05

ad
m

is
si

o
n
 c

o
st

Alg01: Case3

(c) Case 3

Fig. 4. Impact of the load factor λ on the performance of Algorithm 1.
Case (1). The instantiation cost of a VNF instance is

much cheaper than the bandwidth usage cost. In this case,
the cost of a unit computing resource usage in a VNF instance
instantiation is drawn from [0.01, 0.1]. As a VNF instance can
be shared by multiple requests of its type, the instantiation
cost of a VNF instance is much cheaper than the usage cost
per unit bandwidth. As can be seen from Fig. 4(a), when

the instantiation cost of a VNF instance is cheap, a small
value of the load factor λ implies more VNF instances can be
instantiated in each cloudlet. Case (2). The instantiation cost
of a VNF instance is comparable with the bandwidth usage
cost. In this case, the cost of a unit computing resource usage
in a VNF instance instantiation is drawn from [0.5, 2.0]. It
can be seen from Fig. 4(b) that the admission cost of requests
fluctuates but keeps steady with the changes of load factor λ.
Case (3). The instantiation cost of a VNF instance is much
more expensive than the bandwidth usage cost. In this case,
the cost per unit of computing resource consumed in a VNF
instance instantiation is drawn from [5.0, 20.0]. As can be seen
from Fig. 4(c) that the admission cost of requests decreases
rapidly with the increase on the load factor λ. For example,
when the load factor λ is set at 0.5 and 0.95, the admission cost
is 244,357.76 and 209,091.10, respectively. In other words,
around 14.43% of the admission cost can be saved by fine
tuning on the value of the load factor λ.

VI. CONCLUSIONS
In this paper we studied the provisioning of VNF services

for mobile users by offloading their tasks to an MEC network
for processing. We aim to maximize the number of request
admissions while minimizing their admission cost. We first
formulated the cost minimization problem for request admis-
sions by formulating an ILP solution and an efficient algo-
rithm to it. We then dealt with the throughput maximization
problem by admitting as many requests as possible, subject
to computing capacity at each cloudlet, for which we devised
an efficient algorithm. We finally evaluated the performance
of the proposed algorithms through experimental simulations.
Experimental results demonstrate that the proposed algorithms
are promising.

REFERENCES
[1] A. Ceselli, M. Premoli, and S. Secci. Mobile edge cloud network

design optimization. IEEE/ACM Transactions on Networking, vol.25,
no.3, pp.1818–1831, 2017.

[2] R. Cohen et al. An efficient approximation for the generalized assignment
problem. Info. Proc. Lett., vol.100, pp.162–166, Elsevier, 2006.

[3] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein. It’s hard
to share: joint service placement and request scheduling in edge clouds
with sharable and non-sharable resources. Proc. of ICDCS, IEEE, 2018.

[4] M. Huang et al. Throughput maximization of delay-sensitive request
admission via virtualized network function placements and migrations..
Proc. of ICC, IEEE, 2018.

[5] M. Jia et al. QoS-aware task offloading in distributed cloudlets with
virtual network function services. Proc. of MSWiM, ACM, 2017.

[6] Y. Li, L. T. X. Phan, and B. T. Loo. Network functions virtualization
with soft real-time guarantees. Proc. of INFOCOM, IEEE, 2016.

[7] Y. Ma, W. Liang, and S. Guo. Mobility-aware delay-sensitive service
provisioning for mobile edge computing. Proc. of INFOCOM WKSHPs
IOT4Health, IEEE, 2019.

[8] Y. Ma, W. Liang, Z. Xu, and S. Guo. Profit maximization for admitting
requests with network function services in distributed clouds. To appear
in IEEE Transactions on Parallel and Distributed Systems.

[9] Y. Mao et al. A survey on mobile edge computing: the communication
perspective. IEEE Commun. Surv. Tutor., vol.19, pp.2322–2358, 2017.

[10] J. Martins et al. ClickOS and the art of network function virtualization.
Proc. of NSDI, USENIX, 2014.

[11] Z. Xu, W. Liang, M. Jia, M. Huang, and G. Mao. Task offloading with
network function services in a mobile edge-cloud network. To appear in
IEEE Transactions on Mobile Computing.

[12] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo. Efficient algorithms
for capacitated cloudlet placements. IEEE Transactions on Parallel and
Distributed Systems, vol.27, no.10, pp.2866–2880, 2016.

