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ABSTRACT
The Internet of Things (IoT) technology offers unprecedented op-

portunities to interconnect human beings. However, the latency

brought by unstable wireless networks and computation failures

caused by limited resources on IoT devices prevents users from ex-

periencing high efficiency and seamless user experience. To address

these shortcomings, the integrated MEC with remote clouds is a

promising platform, where edge-clouds (cloudlet) are co-located

with wireless access points in the proximity of IoT devices, thus

intensive-computation and sensing data from IoT devices can be

offloaded to the MEC network for processing, and the service re-

sponse latency can be significantly reduced. In this paper, we study

delay-sensitive service provisioning in an MEC network for IoT

applications. We first formulate two novel optimization problems,

i.e., the total utility maximization problems under both static and

dynamic offloading task request settings, with the aim to maximize

the accumulative user satisfaction of using the services provided

by the MEC. We then show that the defined problems are NP-hard.

We instead devise efficient approximation and online algorithms

with provable performance guarantees for the problems. We finally

evaluate the performance of the proposed algorithms through ex-

perimental simulations. Experimental results demonstrate that the

proposed algorithms are promising.
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1 INTRODUCTION
Internet of Things (IoT) is emerging as part of the infrastructures

for advancing a large variety of applications involving connec-

tion of many intelligent devices, leading to smart communities.

It urgently needs infrastructures and algorithms to provide effec-

tive services for delay-sensitive IoT applications, such as online

gaming, augmented reality (AR) and virtual reality (VR), smart

cities and smart homes, autonomous vehicles, and so on. Due to

limited computing and storage resources of most IoT devices, it

is common to offload computing-intensive or large storage tasks

of various applications to remote clouds for processing. This task

offloading however suffers a seriously high latency and network

congestion in IoT infrastructures. It thus is inappropriate to offload

delay-sensitive IoT applications to remote clouds for processing [8].

Mobile edge computing (MEC) has emerged as a key technology to

reduce network traffic, improve user experience, and enable various

IoT applications [1], where edge servers (or cloudlets) are placed at

the edge of core networks that can provide cloud-capability services

in the proximity of IoT devices and their mobile users to reduce

the service response time, thereby meeting the stringent latency

requirements of IoT applications.

With the fast development of 5G, mobile edge computing (MEC)

promises to greatly reduce the data processing delay for IoT ser-

vices, by deploying computing resource (e.g., cloudlets) within the

proximity of IoT devices [1]. To explore the potential of MEC to

support IoT applications, in this paper we deal with offloading task

services in MEC for delay-sensitive IoT applications, where IoT

devices are resource-constrained, by offloading their tasks to edge

servers or a remote cloud for processing. We here consider an inte-

grated platform that consists of the remote cloud and a set of local

edge servers forming an MEC network for IoT service provisioning,

where IoT devices or mobile users can offload their tasks to the

platform for processing, and different offloading task service re-

quests have different service delay requirements. We aim to devise

efficient scheduling algorithms for allocating requests to different

edge servers or the remote cloud while meeting their service delay

requirements. This poses the following challenges.

For a set of offloading task requests, which should be allocated

to a local edge server or the remote cloud for processing, consider-

ing the heterogeneity of both computing resource and processing

capability of edge servers; how to allocate different requests to
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different edge servers or the remote cloudlet such that the average

user experience of using the services provided by the platform is

maximized, where a user satisfaction is inversely proportional to

the extra service delay beyond the user’s delay threshold, and how

to develop a cost model to quantify a user satisfaction of using a

service provided by the platform. In this paper, we will address the

challenges and develop efficient approximation and online algo-

rithms for delay-sensitive service provisioning for IoT applications

in the integrated MEC platform.

The novelty of the work in this paper lies in that we consider

the user experience of using services provided by an integrated

platform consisting of an MEC network and a remote cloud, for

delay-sensitive IoT applications, through maximizing the accumu-

lative user experience if different offloading tasks have different

service delay requirements. We develop a novel metric to measure

a user satisfaction of using a service through the service latency

the user experienced, and devise efficient approximation and on-

line algorithms for the defined problems under static and dynamic

offloading task requests settings.

The main contributions of this paper are presented as follows.

We consider service provisioning in an MEC network for delay-

sensitive IoT applications by formulating two novel user experience

satisfaction problems. We first show that the defined problems

are NP-hard. We then devise efficient approximation and online

algorithms with provable performance guarantees for the defined

problems, under both static and dynamic admissions of offloading

task requests. We finally evaluate the performance of the proposed

algorithms through experimental simulations. Experimental results

demonstrate that the proposed algorithms are promising.

The rest of the paper is organized as follows. Section 2 summa-

rizes the related work on service provisioning in MEC. Section 3

introduces notions, and notations Section 4 defines the problems

mathematically and shows NP-hardness of the defined problems.

Section 5 devises an approximation algorithm for the total utility

maximization problem. Section 6 shows how to extend the proposed

algorithm for dynamic admissions of offloading task requests within

a finite time horizon, without the knowledge of future request ar-

rivals. Section 7 evaluates the proposed algorithms empirically, and

Section 8 concludes the paper.

2 RELATEDWORK
Task offloading in MEC networks has been extensively studied in

recent years. Most existing work focused on minimizing the energy

consumption of mobile devices, or the end-to-end delay of a task

execution through partitioning a task into two parts: one part is

offloaded to the cloudlets in the MEC for execution and another

part is processed by the mobile device itself. Most task offloading

concentrated on such a single task offloading.

There are also quite a few investigations on admitting a set of

requests with the aim to minimize the average service delay of

offloaded tasks. For example, Xia [12] considered a set of delay-

aware tasks to be offloaded to an MEC network with the aim to

minimize the service cost of offloaded tasks and proposed a heuristic

for the problem. Jia et al. [4] are the first to study task offloading in

an MEC with the aim to minimize the average delay of all admitted

requests, by incorporating queuing delays at both APs and cloudlets.

They [5, 6] later considered the average delayminimization problem

in an MEC, through balancing the workload among cloudlets.

Although the above studies on the delay-aware task offloading

have been extensively studied in the past several years, there are

only a handful of studies that take into account service provisioning

in MEC platforms for delay-sensitive IoT applications. For example,

Song et al. [8] considered the QoS-based task allocation in MEC for

IoT applications, by proposing efficient algorithms. Yu et al. [17]
studied the problem of IoT service provisioningwith the objective to

meet computing, network bandwidth and QoS requirements of each

IoT application. Xu et al. [16] studied the QoS-aware VNF place-

ment of service function chains in MEC for IoT applications. Xu et
al. [15] also considered the operational cost minimization problem

for implementing IoT applications with SFC requirements, by fo-

cusing on IoT application placement in an MEC network through

proposing randomized and heuristic placement algorithms.

Unlike the aforementioned work focusing on either the cost min-

imization problem or the delay-aware service placement problem

in MEC networks, in this paper we consider a set of offloading task

requests from IoT devices with different service delay requirements,

in which all requests must be served by either local cloudlets (edge

servers) or the remote cloud, we aim to maximize the accumulative

user satisfaction of using the services provided by an integrated

platform consisting of the MEC network and a remote cloud.

3 PRELIMINARIES
In this section, we first introduce the system model, notions and no-

tations. We then quantify the user satisfaction on a service provided

by the MEC platform.

3.1 System model
Consider that a heterogeneous MEC network is represented as an

undirected graph 𝐺 = (𝑉 ∪ {𝑣0}, 𝐸), where 𝑉 is the set of nodes

and 𝐸 is the set of links between nodes. An AP may or may not

be co-located with a cloudlet (edge cloud). The cloudlet 𝑣 ∈ 𝑉 has

different computing capacity 𝐶𝑣 > 0 and packet processing rate

𝜇𝑣 , and the AP and its co-located cloudlet are connected through

a high-speed optical cable, and the communication delay between

them thus is negligible. Node 𝑣0 is a remote cloud with unlimited

computing and communication resources while the communication

delay between any AP and node 𝑣0 is no less than the communi-

cation delay between any two AP nodes in the MEC. And the task

processing delay at the node 𝑣0 is the fastest one due to that there

are many servers in the cloud.

We consider a given time horizon that is further divided into

𝑇 equal time slots. Within each time slot 𝑡 , let 𝜇𝑡𝑣𝑗 represent the

processing rate of cloudlet 𝑣 𝑗 ∈ 𝑉 , and 𝐶 ′𝑡𝑣𝑗 the residual computing

capacity of 𝑣 𝑗 at time slot 𝑡 , where 𝐶 ′1𝑣 = 𝐶𝑣 for all 𝑣 ∈ 𝑉 , and

𝜇𝑡𝑣0 is the processing capability of node 𝑣0, which is the maximum

one, i.e., 𝜇𝑡0 = max{𝜇𝑡
𝑗
| 1 ≤ 𝑗 ≤ |𝑉 |}. We further assume that the

bandwidth 𝐵𝑡𝑣𝑗 for data uploading of a request from an AP 𝑣𝑖 ∈ 𝑉 at

time slot 𝑡 is fixed, which is the total bandwidth of AP 𝑣𝑖 is divided

by the number of users after its coverage.

Given a communication metric (e.g., the link congestion or the

Euclidean distance between the two endpoints of each physical

link), let 𝑙𝑡 (𝑣𝑖 , 𝑣 𝑗 ) be the length of the shortest path (delay) between
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two APs in the MEC, which is fixed at each time slot 𝑡 . However,

the values of the mentioned parameters may change at different

time slots. For the sake of convenience, we will drop index 𝑡 from

these parameters if no confusion arises from the context.

3.2 The service delay of an offloading task for
service

We admit task offloading service requests at the beginning of each

time slot. Consider a set 𝑅 of requests, each user service request

𝑟𝑖 ∈ 𝑅 can be expressed by a tuple 𝑟𝑖 = ⟨𝑠𝑖 , 𝑙𝑖 , 𝐷𝑖 , 𝛽𝑖 ⟩, where 𝑠𝑖 is
the task size (volume) and 𝑙𝑖 is the AP location of the task or the

user of 𝑟𝑖 is under the coverage of AP 𝑣𝑙𝑖 , 𝐷𝑖 is the service delay

requirement and 𝛽𝑖 · 𝐷𝑖 is the maximum service delay the user

could tolerate with a constant 𝛽𝑖 ≥ 1. The service delay of a request
consists of the uploading delay, the communication delay of routing

the data between the data source and the cloudlet or the remote

cloud for the data processing, and the processing delay of the task

at the cloudlet, which are as follows.

The uploading delay of an offloading task is

𝑑𝑢𝑝𝑙𝑜𝑎𝑑 (𝑟𝑖 , 𝑣𝑙𝑖 ) =
𝑠𝑖

𝐵𝑣𝑙𝑖

, (1)

where 𝐵𝑣𝑙𝑖
is the uplink date rate of AP 𝑣𝑙𝑖 , which can be calcu-

lated by the following Shannon-Hartley formula [10].

𝐵𝑣𝑙𝑖
=𝑊𝑣𝑙𝑖

log2 (1 +
𝑃𝑖

𝑅𝛼
), (2)

where𝑊𝑣𝑙𝑖
is the total bandwidth of AP 𝑣𝑙𝑖 , 𝑃𝑖 is the transmission

power of IoT device of request 𝑟𝑖 , and 𝛼 is the path loss exponent

with a value range between 2 and 6, and we set it at 2.

If the offloading task will be served by a cloudlet or the remote

cloud 𝑣 𝑗 with 0 ≤ 𝑗 ≤ |𝑉 |, then the communication delay of an
offloading task is

𝑑𝑐𝑜𝑚𝑚 (𝑣𝑙𝑖 , 𝑣 𝑗 ) = 𝑙 (𝑣𝑙𝑖 , 𝑣 𝑗 ), (3)

where 𝑙 (𝑣𝑎, 𝑣𝑏 ) is the length of a shortest path in 𝐺 between nodes

𝑣𝑎 and 𝑣𝑏 and the weight of each link in 𝐺 is a metric such as the

Euclidean distance between the two endpoints or the utilization

ratio of the workload to its bandwidth capacity, which is determined

by the service provider.

The processing delay of an offloading task at cloudlet or the remote

cloud 𝑣 𝑗 is

𝑑𝑐𝑜𝑚𝑝 (𝑟𝑖 , 𝑣 𝑗 ) =
𝑠𝑖

𝜇 𝑗
, (4)

where 𝑠𝑖 is the task size (volume) , and 𝜇 𝑗 is the processing rate of

cloudlet (or the remote cloud) at that time slot.

The service delay of offloading task 𝑟𝑖 to cloudlet 𝑣 𝑗 for service

thus is defined as follows.

𝑑 (𝑟𝑖 , 𝑣𝑙𝑖 , 𝑣 𝑗 ) = 𝑑𝑢𝑝𝑙𝑜𝑎𝑑 (𝑟𝑖 , 𝑣𝑙𝑖 ) + 𝑑𝑐𝑜𝑚𝑚 (𝑣𝑙𝑖 , 𝑣 𝑗 ) + 𝑑𝑐𝑜𝑚𝑝 (𝑟𝑖 , 𝑣 𝑗 ),
(5)

where 𝑣𝑙𝑖 is the nearby AP of request 𝑟𝑖 and its offloading task

will be offloaded to a cloudlet or the remote cloud via the AP. Note

that we do not include the delay of the processing result to the user

as the result usually is no larger than the uploading volume of data,

the delay of the returning the result is no more than 𝑑 (𝑟𝑖 , 𝑣𝑙𝑖 , 𝑣 𝑗 )
and thus is omitted.

3.3 User satisfaction of using a service
In most IoT application scenarios, each service request does have its

expected delay threshold andmaximum tolerable delay requirement.

If the actual service delay 𝑑 (𝑟𝑖 , 𝑣𝑙𝑖 , 𝑣 𝑗 ) is no greater than the delay

requirement 𝐷𝑖 , the user satisfies the service with 100%; otherwise,

his satisfaction on the service will dramatically decrease with the

increase on 𝑑 (𝑟𝑖 , 𝑣𝑙𝑖 , 𝑣 𝑗 ), and the maximum tolerant service delay of

the user is 𝛽𝑖 ·𝐷𝑖 , where 𝛽𝑖 ≥ 1 is a constant, representing a certain
degree of delay tolerance of the user. If a service delay is beyond the

maximum tolerant service delay of the user, the user satisfaction

on the service will become zero. We thus model a user experience

of using a service provided by MEC through a non-increasing utility
function as follows.

𝑢 (𝑟𝑖 , 𝑣 𝑗 ) =
(𝜆 − 𝜆

[𝑑 (𝑟𝑖 ,𝑣𝑙𝑖 ,𝑣𝑗 )−𝐷𝑖 ]+

𝛽𝑖 ·𝐷𝑖 ), if 𝑑 (𝑟𝑖 , 𝑣𝑙𝑖 , 𝑣 𝑗 ) ≤ 𝛽𝑖 · 𝐷𝑖

0, otherwise,

(6)

where [𝑥]+ = max{𝑥, 0}, and 𝜆 > 1 is a constant that indicates the

delay sensitivity.

It can be seen from Eq. (6) that if the service delay is no greater

than 𝐷𝑖 , [𝑑 (𝑟𝑖 , 𝑣𝑙𝑖 , 𝑣 𝑗 ) −𝐷𝑖 ]+ = 0, then 𝜆0 = 1, and the utility value

of 𝑢 (𝑟𝑖 , 𝑣 𝑗 ) = 𝜆 − 1. The user of 𝑟𝑖 is 100% satisfied; otherwise,

if the service delay is within the delay range of (𝐷𝑖 , 𝛽𝑖 · 𝐷𝑖 ], i.e.,
0 < 𝑑 (𝑟𝑖 , 𝑣𝑙𝑖 , 𝑣 𝑗 ) − 𝐷𝑖 ≤ (𝛽𝑖 − 1) · 𝐷𝑖 , then

[𝑑 (𝑟𝑖 ,𝑣𝑙𝑖 ,𝑣𝑗 )−𝐷𝑖 ]+
𝛽𝑖 ·𝐷𝑖

=

𝑑 (𝑟𝑖 ,𝑣𝑙𝑖 ,𝑣𝑗 )−𝐷𝑖

𝛽𝑖 ·𝐷𝑖
≤ (𝛽𝑖−1)𝐷𝑖

𝛽𝑖 ·𝐷𝑖
=

𝛽𝑖−1
𝛽𝑖

< 1, and the utility value

𝑢 (𝑟𝑖 , 𝑣 𝑗 ) = 𝜆 − 𝜆𝛾 < 𝜆 − 1 with 0 < 𝛾 ≤ 𝛽𝑖−1
𝛽𝑖

< 1, i.e., the

user satisfaction decreases with the growth of the delay duration

and is impacted by both 𝜆 and 𝛽𝑖 . A larger value of 𝜆 means that

the utility obtained is more sensitive than that of a smaller 𝜆, and a

larger 𝛽𝑖 implies that users are more tolerable to their service delays.

When the actual service delay 𝑑 (𝑟𝑖 , 𝑣𝑙𝑖 , 𝑣 𝑗 ) > 𝛽𝑖 · 𝐷𝑖 , it is beyond

the maximum tolerant service delay of the user, then 𝑢 (𝑟𝑖 , 𝑣 𝑗 ) = 0,
and the user satisfaction is 0%. Thus, the value of 𝛽𝑖 reflects the

service delay tolerance of a user at a certain extent.

4 PROBLEM FORMULATIONS
In this section, we consider delay-sensitive service provisioning

in an MEC network for IoT applications by defining two novel

optimization problems and formulating ILP solutions to them.

Problem 1:We assume that the cloudlets (edge -servers) in an

MEC are heterogeneous, different cloudlets have different amounts

of computing resource and processing capacities. This implies that

the processing delay of the same offloading task service at differ-

ent cloudlets may be different. Given a set 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟 |𝑅 |} of
service requests, if request 𝑟𝑖 ∈ 𝑅 is sent to the remote cloud 𝑣0
for processing, its transmission delay 𝑑𝑐𝑜𝑚𝑚 (𝑣𝑙𝑖 , 𝑣0) is far larger
than max{𝑑𝑐𝑜𝑚𝑚 (𝑣𝑖 , 𝑣 𝑗 ) | 1 ≤ 𝑖, 𝑗 ≤ |𝑉 |}, and the service pro-

cessing delay 𝑑𝑐𝑜𝑚𝑝 (𝑟𝑖 , 𝑣0) is no greater than the minimum one

min{𝑑𝑐𝑜𝑚𝑝 (𝑟𝑖 , 𝑣 𝑗 ) | 1 ≤ 𝑗 ≤ |𝑉 |}, where 𝑟𝑖 = ⟨𝑠𝑖 , 𝑙𝑖 , 𝐷𝑖 , 𝛽𝑖 ⟩. The to-
tal utility maximization problem in an MEC network𝐺 (𝑉 ∪{𝑣0}, 𝐸)
with a given set 𝑅 of requests is to maximize the utility sum of all

requests in 𝑅, where each request 𝑟𝑖 consists of the size 𝑠𝑖 of the of-

floading task, its physical location 𝐴𝑃𝑙𝑖 , a tolerable delay threshold

𝐷𝑖 . The problem is to maximize the total user experience of using
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the services provided by the MEC network, i.e., the optimization

objective is to maximize the sum of the utilities of all requests.

Maximize

|𝑅 |∑
𝑖=1

|𝑉 |∑
𝑗=0

𝑢 (𝑟𝑖 , 𝑣 𝑗 ) · 𝑥𝑖, 𝑗 , (7)

subject to the following constraints.

𝐸𝑞. (1), (3), (4), (5), (6), ∀𝑖, 𝑗 1 ≤ 𝑖 ≤ |𝑅 |, 0 ≤ 𝑗 ≤ |𝑉 | (8)

|𝑉 |∑
𝑗=0

𝑥𝑖, 𝑗 = 1, ∀𝑖 1 ≤ 𝑖 ≤ |𝑅 | (9)

|𝑅 |∑
𝑖=1

𝑥𝑖, 𝑗 · 𝑐 (𝑠𝑖 ) ≤ 𝐶𝑣𝑗 , ∀𝑗 0 ≤ 𝑗 ≤ |𝑉 | (10)

𝑥𝑖, 𝑗 ∈ 0, 1, ∀𝑖, 𝑗 1 ≤ 𝑖 ≤ |𝑅 |, 0 ≤ 𝑗 ≤ |𝑉 |, (11)

where 𝑥𝑖, 𝑗 is a binary variable, where 𝑥𝑖, 𝑗 = 1 implies that offloading

task 𝑟𝑖 will be served by cloudlet/the remote cloud 𝑣 𝑗 with 0 ≤ 𝑗 ≤
|𝑉 |. Constraint (9) ensures that each request is assigned to only one

cloudlet for service. Constraint (10) ensures that the accumulative

resource demand by all requests assigned to a cloudlet is no more

than the capacity of the cloudlet.

In the following, we consider dynamic service provisioning in

MEC for delay-sensitive IoT applications within a given time hori-

zon that consists of 𝑇 equal time slots, where the requests arrive

one by one without the knowledge of future requests.

Problem 2: Given a time horizon𝑇 and an MEC network𝐺 (𝑉 ∪
{𝑣0}, 𝐸), offloading task requests arrive one by one without the

knowledge of future arrivals, the online average total utility maxi-
mization problem is to maximize the average sum of accumulative

utilities of all admitted requests during the 𝑇 time slots, assuming

that each request has a service delay requirement and the maxi-

mum tolerable service delay constant 𝛽𝑖 ≥ 1, i.e., our optimization

objective is to

maximize

1

𝑇

𝑇∑
𝑡=1

|𝑅𝑡 |∑
𝑖=1

|𝑉 |∑
𝑗=0

𝑢𝑡 (𝑟𝑖 , 𝑣 𝑗 ) · 𝑥𝑖, 𝑗,𝑡 , (12)

subject to the following constraints.

𝐸𝑞. (1), (3), (4), (5), (6),

∀𝑖, 𝑗, 𝑡 1 ≤ 𝑖 ≤ |𝑅𝑡 |, 0 ≤ 𝑗 ≤ |𝑉 |, 1 ≤ 𝑡 ≤ 𝑇 (13)

|𝑉 |∑
𝑗=0

𝑥𝑖, 𝑗,𝑡 = 1, ∀𝑖, 𝑡 1 ≤ 𝑖 ≤ |𝑅𝑡 |, 1 ≤ 𝑡 ≤ 𝑇 (14)

|𝑅 |∑
𝑖=1

𝑥𝑖, 𝑗,𝑡 · 𝑐 (𝑠𝑖 ) ≤ 𝐶 ′𝑡𝑣𝑗 , ∀𝑗, 𝑡 0 ≤ 𝑗 ≤ |𝑉 |, 1 ≤ 𝑡 ≤ 𝑇 (15)

𝑥𝑖, 𝑗,𝑡 ∈ 0, 1, ∀𝑖, 𝑗, 𝑡 1 ≤ 𝑖 ≤ |𝑅 |, 0 ≤ 𝑗 ≤ |𝑉 |, 1 ≤ 𝑡 ≤ 𝑇 . (16)

where 𝐶 ′𝑡𝑣𝑗 is the residual computing capacity of cloudlet 𝑣 𝑗 ∈ 𝑉 at

time slot 𝑡 and 𝑅𝑡 is the set of requests arrived at time slot 𝑡 with

1 ≤ 𝑡 ≤ 𝑇 and 𝐶 ′1𝑣 = 𝐶𝑣 for all 𝑣 ∈ 𝑉 .

Notice that the ILP formulation (12) is an offline version of the

online average total utility maximization problem, assuming that

all arrived requests at each time slot 𝑡 are known in advance. In fact,

the online version assumes that there is no knowledge of request

arrivals in the future.

Theorem 4.1. The total utility maximization problems are NP-
hard.

Proof The problem can be reduced from the maximum profit

GAP [2], while the GAP with profit maximization is NP-hard, the

defined problems are NP-hard, too. ■

5 APPROXIMATION ALGORITHM FOR THE
TOTAL UTILITY MAXIMIZATION
PROBLEM

In this section we deal with the total utility maximization problem

by reducing the problem to the maximum utility GAP problem, and

an approximate solution to the latter in turn returns an approximate

solution to the former.

The maximum utility GAP is defined as follows. Given 𝑛 items

and𝑚 bins, if item 𝑖 is packed to bin 𝑗 , it results in a profit 𝑝𝑖, 𝑗 and

its size 𝑠𝑖, 𝑗 , usually the size of each item 𝑖 at different bins is fixed,

i.e., 𝑠𝑖, 𝑗 = 𝑠𝑖, 𝑗 ′ even if 𝑗 ≠ 𝑗 ′. Each bin 𝑗 has a capacity, the problem

is to pack as many items as possible to the𝑚 bins such that the

total profit of packed items is maximized, subject to bin capacities.

This is a well known NP-complete problem, and there is an efficient

approximation algorithm for it [2].

5.1 Approximation algorithm
The reduction is as follows. There are 𝑛 + 1 bins, where bin B0
corresponds the remote cloud with unlimited computing resource,

the rest of𝑛 bins correspond the |𝑉 | heterogeneous cloudlets, where
B𝑖 with 1 ≤ 𝑖 ≤ |𝑉 | represents cloudlet 𝑣𝑖 ∈ 𝑉 with computing

capacity 𝐶𝑣𝑖 . There are |𝑅 | requests. Recall that request 𝑟𝑖 ∈ 𝑅 is

located at AP 𝑣𝑙𝑖 , if it is assigned to cloudlet 𝑣 𝑗 for service, the

utility obtained is 𝑢 (𝑟𝑖 , 𝑣 𝑗 ) by Eq. (6), which is determined by the

service delay𝑑 (𝑟𝑖 , 𝑣𝑙𝑖 , 𝑣 𝑗 ), and the computing resource consumption

𝑐 (𝑠𝑖 ). In other words, if we pack request 𝑟𝑖 to bin B𝑗 , it generates

a profit 𝑢 (𝑟𝑖 , 𝑣 𝑗 ) with size 𝑐 (𝑠𝑖 ), where 1 ≤ 𝑗 ≤ |𝑉 |; otherwise (if
𝑟𝑖 is sent to the remote cloud 𝑣0 for service), its service delay is

𝑑 (𝑟𝑖 , 𝑣𝑙𝑖 , 𝑣0) = 𝑑𝑢𝑝𝑙𝑜𝑎𝑑 (𝑟𝑖 , 𝑣𝑙𝑖 ) + 𝑑𝑐𝑜𝑚𝑚 (𝑣𝑙𝑖 , 𝑣0) + 𝑑𝑐𝑜𝑚𝑝 (𝑟𝑖 , 𝑣0), and
the profit obtained is 𝑢 (𝑟𝑖 , 𝑣0). Note that when the utility obtained

by packing a request to a bin is zero, the requestmay not be admitted.

The detailed algorithm is given in Algorithm 1.

Algorithm 1 An approximation algorithm for the total utility max-

imization problem

Require: |𝑉 | cloudlets with each 𝑣𝑖 ∈ 𝑉 having computing capacity𝐶𝑣𝑖
, a remote

cloud 𝑣0 with unlimited computing capacity, i.e., 𝐶𝑣0 = ∞, a set of requests 𝑅
with each request 𝑟𝑖 = ⟨𝑠𝑖 , 𝑙𝑖 , 𝐷𝑖 , 𝛽𝑖 ⟩ where 1 ≤ 𝑖 ≤ |𝑅 |.

Ensure: Admit as many requests as possible from 𝑅 that maximizes the utility sum

of admitted requests.

1: Construct an instance of the GAP, where each request 𝑟𝑖 ∈ 𝑅 has a corresponding

item 𝑖 with size 𝑐 (𝑠𝑖 ) and each cloudlet 𝑣𝑗 or the remote cloud corresponds a bin

B𝑗 with bin capacity 𝑐𝑎𝑝 (B𝑗 ) = 𝐶𝑣𝑗
, where 0 ≤ 𝑗 ≤ |𝑉 | + 1. If request 𝑟𝑖 is

assigned to cloudlet or the remote cloud 𝑣𝑗 for service, the profit obtained is the

utiltiy 𝑢 (𝑟𝑖 , 𝑣𝑗 ) by Eq. (6);

2: Find an approximate solution𝐴 to the GAP problem with maximizing the utility

sum, by invoking the approximation algorithm due to Cohen et al. [2];
3: for any request 𝑟 ∈ 𝐴 with utility zero do
4: 𝐴← 𝐴 \ {𝑟 }; /* remove request 𝑟 from the solution */;

5: end for;
6: return the set𝐴 of admitted requests as the solution to the problem.
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5.2 Algorithm analysis
In the following we analyze the approximation ratio and time com-

plexity of the approximation algorithm, Algorithm 1.

Lemma 5.1. Given an MEC network𝐺 = (𝑉 ∪ {𝑣0}, 𝐸) and a set 𝑅
of user requests, the upper bound on the optimal solution of the total
utility maximization problem in 𝐺 is (𝜆 − 1) · |𝑅 |.

Proof The claim that the optimal solution is upper bounded by

(𝜆 − 1) · |𝑅 | is quite trivial, as if a request can be served within

its specified delay threshold, the utility obtained by this service is

(𝜆 − 1); otherwise, its utility is 𝜆 − 𝜆𝜖 < 𝜆 − 1 with 0 < 𝜖 ≤ 1. ■

Theorem 5.2. Given an MEC network 𝐺 = (𝑉 ∪ {𝑣0}, 𝐸) and
a set 𝑅 of offloading task requests from IoT devices or mobile users,
there is an approximation algorithm for the total utility maximization
problem, Algorithm 1, which delivers an approximate solution with
a 1

2+𝜖 approximation ratio. The time complexity of the approximation

algorithm is O( |𝑅 | · ( |𝑉 |+1)𝜖 + |𝑉 |+1
𝜖4
), where 𝜖 is a constant with 0 <

𝜖 ≤ 1.

Proof The approximation ratio of the proposed algorithm can be

obtained directly by applying the approximation algorithm due to

Cohen et al. [2], omitted.

We here analyze the running time of Algorithm 1. The construc-
tion of the GAP instance takes O(|𝑅 | · ( |𝑉 | + 1)) time, while the ap-

proximation algorithm due to Cohen et al. [2] takes O( |𝑅 | · ( |𝑉 |+1)𝜖 +
|𝑉 |+1
𝜖4
) time. The solution delivered by the proposed algorithm,

Algorithm 1, thus is no less than 1
2+𝜖 times the optimal one, where

𝜖 is a constant with 0 < 𝜖 ≤ 1. ■

6 ONLINE ALGORITHM FOR THE ONLINE
AVERAGE TOTAL UTILITY
MAXIMIZATION PROBLEM

In this section, we study the online version of the total utility maxi-

mization problem, where all arrived requests will be considered at

the beginning of the next time slot, and there is no knowledge of

future request arrivals. We devise an online algorithm with a prov-

able competitive ratio for the problem, by adopting an admission

control policy.

6.1 Online algorithm
The proposed online algorithm for the problem achieves a provable

competitive ratio, through adopting an admission control policy.

We also analyze the competitive ratio of the proposed algorithm.

Denote by 𝐶𝑣 (𝑖) the residual computing resource at cloudlet

𝑣 ∈ 𝑉 before considering request 𝑟𝑖 . If request 𝑟𝑖 is allocated to

cloudlet 𝑣 for service, 𝐶𝑣 (𝑖 + 1) = 𝐶𝑣 (𝑖) − 𝑐 (𝑠𝑖 ). Otherwise, request
𝑟𝑖 is allocated to the remote cloud for service, and nothing will be

done because the remote cloud has unlimited resource. To capture

the computing resource usage in cloudlets, a resource usage cost

model is introduced as follows.

𝑤𝑣 (𝑖) = 𝐶𝑣 (𝛼1−
𝐶𝑣 (𝑖 )
𝐶𝑣 − 1), (17)

where 𝛼 > 1 is a turning parameter reflecting the sensitivity of the

workload at each cloudlet 𝑣 , and 1 − 𝐶𝑣 (𝑖)
𝐶𝑣

is the utilization ratio of

cloudlet 𝑣 .

The normalized cost of assigning offloading task 𝑟𝑖 to cloudlet 𝑣

thus is

𝜓𝑣 (𝑖) =
𝑤𝑣 (𝑖)
𝐶𝑣

= 𝛼
1−𝐶𝑣 (𝑖 )

𝐶𝑣 − 1 (18)

Upon the arrival of request 𝑟𝑖 , among all cloudlets with sufficient

residual computing resource and positive utility gain, request 𝑟𝑖
is assigned to the cloudlet with the minimum normalized cost by

Eq. (18). If no such cloudlet exists, request 𝑟𝑖 can then be allocated

to the remote cloud with unlimited computing resource. However,

if the utility gain brought by allocating request 𝑟𝑖 to the assigned

node is 0 (i.e., 𝑑 (𝑟𝑖 , 𝑣𝑙𝑖 , 𝑣 𝑗 ) > 𝛽𝑖 · 𝐷𝑖 ), the request can be rejected.

We now assume that request 𝑟𝑖 is assigned to node 𝑣 ∈ 𝑉 ∪ {𝑣0}
with the utility gain 𝑢𝑖 . If request 𝑟𝑖 is assigned to the remote

cloud (i.e., 𝑣 = 𝑣0) with a positive utility gain, it will be admitted.

Although 𝑟𝑖 is admissible with the utility gain𝑢𝑖 when it is assigned

to cloudlet 𝑣 ∈ 𝑉 , its admission needs further examined, by adopting

the following admission control policy. Request 𝑟𝑖 will be rejected

if both the following conditions are met. (i) The normalized cost

of cloudlet 𝑣 ∈ 𝑉 that will accommodate request 𝑟𝑖 is greater than

|𝑉 | · 𝑢𝑖 , i.e., 𝜓𝑣 (𝑖) > |𝑉 | · 𝑢𝑖 ; and (ii) allocating request 𝑟𝑖 to the

remote cloud will result in the zero utility gain (i.e., exceeding

the maximum tolerable service delay). Note that if condition (i)

is met while condition (ii) is violated (i.e., allocating request 𝑟𝑖 to

the remote cloud will result in a positive utility gain), request 𝑟𝑖 is

admitted and assigned to the remote cloud.

The detailed online algorithm with a provable competitive ratio

is given in Algorithm 2.

6.2 Algorithm analysis
The rest is to analyze the competitive ratio of Algorithm 2 as

follows.

Denote byZ(𝑖) ⊆ 𝑅 the set of requests admitted by Algorithm 2
prior to the arrival of request 𝑟𝑖 . Denote by 𝑢𝑚𝑎𝑥 and 𝑢𝑚𝑖𝑛 the

maximum and minimum utility gains of admitting any request,

respectively. Following Eq. (6), for a request 𝑟𝑖 , 𝑢𝑚𝑎𝑥 = 𝜆 − 1

when 𝑑 (𝑟𝑖 , 𝑣𝑙𝑖 , 𝑣 𝑗 ) ≤ 𝐷𝑖 , while 𝑢𝑚𝑖𝑛 = min𝑟𝑖 ∈𝑅{𝜆 − 𝜆
𝛽𝑖−1
𝛽𝑖 } when

𝑑 (𝑟𝑖 , 𝑣𝑙𝑖 , 𝑣 𝑗 ) = 𝛽𝑖 · 𝐷𝑖 , where both 𝑢𝑚𝑎𝑥 and 𝑢𝑚𝑖𝑛 are constants.

Lemma 6.1. Given an MEC network𝐺 = (𝑉 ∪{𝑣0}, 𝐸) and a finite
time horizon that consists of 𝑇 time slots, let 𝑅 be the set of requests
arriving one by one within the given time horizon, denote by Z(𝑖)
the set of requests admitted by Algorithm 2 prior to the arrival of
request 𝑟𝑖 . Then, the sum of usage cost of all cloudlets is,∑

𝑣∈𝑉
𝑤𝑣 (𝑖) ≤ 2 · |𝑉 | · log2 𝛼 ·

∑
𝑟𝑖′ ∈Z(𝑖)

(𝑐 (𝑠𝑖′) · 𝑢𝑖′), (19)

where 𝛼 is a constant with 2|𝑉 | ·𝑢𝑚𝑎𝑥 +2 ≤ 𝛼 ≤ 2
𝐶𝑚𝑖𝑛
𝑐𝑚𝑎𝑥 ,𝑢𝑚𝑎𝑥 = 𝜆−1,

𝐶𝑚𝑖𝑛 =𝑚𝑖𝑛{𝐶𝑣 | 𝑣 ∈ 𝑉 } and 𝑐𝑚𝑎𝑥 = max{𝑐 (𝑠𝑖 ) | 𝑟𝑖 ∈ 𝑅}.

Proof If request 𝑟𝑖′ ∈ 𝑅 is admitted and allocated to cloudlet 𝑣 ′ by
Algorithm 2, we have

𝑤𝑣′ (𝑖 ′+1)−𝑤𝑣′ (𝑖 ′)=𝐶𝑣′ · (𝛼
1−𝐶𝑣′ (𝑖

′+1)
𝐶𝑣′ − 1)−𝐶𝑣′ · (𝛼

1−𝐶𝑣′ (𝑖
′)

𝐶𝑣′ − 1)

=𝐶𝑣′ · 𝛼
1−𝐶𝑣′ (𝑖

′)
𝐶𝑣′ · (𝛼

𝐶𝑣′ (𝑖
′)−𝐶𝑣′ (𝑖

′+1)
𝐶𝑣′ − 1)
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Algorithm 2 Online algorithm for the online utility maximization

problem

Require: An MEC network 𝐺 = (𝑉 ∪ {𝑣0 }, 𝐸) with a set 𝑉 of APs, each 𝑣 ∈ 𝑉
is attached a cloudlet with computing capacity𝐶𝑣 , a set 𝑅 of user requests 𝑟𝑖 =

⟨𝑠𝑖 , 𝑙𝑖 , 𝐷𝑖 , 𝛽𝑖 ⟩ arrived one by one, there is no knowledge of future request arrivals.
Ensure: Maximize the average sum of accumulative utilities of all admitted requests

during the𝑇 time slots.

1: 𝐴← ∅; /* the solution */

2: while request 𝑟𝑖 arrives do
3: for each node 𝑣𝑗 ∈ 𝑉 ∪ {𝑣0 } do
4: Calculate the length 𝑙𝑡 (𝑣𝑙𝑖 , 𝑣𝑗 ) of the shortest path in𝐺 between any two

nodes 𝑣𝑙𝑖 and 𝑣𝑗 , by the defined link metric (distance or congestion);

5: end for;
6: Q𝑖 ← ∅; /* the set of candidate cloudlets for 𝑟𝑖 */
7: for each cloudlet 𝑣𝑗 ∈ 𝑉 do
8: if cloudlet 𝑣𝑗 has sufficient computing resource for 𝑟𝑖 then
9: Calculate its utility gain if request 𝑟𝑖 is allocated to cloudlet 𝑣𝑗 ;

10: if its utility gain is positive then
11: Q𝑖 ← Q𝑖 ∪ {𝑣𝑗 };
12: end if;
13: end if;
14: end for;
15: if Q𝑖 = ∅ then
16: if allocating 𝑟𝑖 to remote cloud makes positive utility gain then
17: Admit 𝑟𝑖 by allocating 𝑟𝑖 to remote cloud;

18: else
19: Reject 𝑟𝑖 ;

20: end if;
21: else
22: Identify the cloudlet 𝑣′ ∈ Q𝑖 with theminimumnormalized cost by Eq. (18).

And calculate the utility gain 𝑢𝑖′ if request 𝑟𝑖′ is allocated to cloudlet 𝑣′;
23: if 𝜓𝑣′ (𝑖′) > |𝑉 | · 𝑢𝑖′ then
24: if allocating 𝑟𝑖 to remote cloud makes positive utility gain then
25: Admit 𝑟𝑖 by allocating 𝑟𝑖 to remote cloud;

26: else
27: Reject 𝑟𝑖 ;

28: end if;
29: else
30: Admit 𝑟𝑖 by allocating 𝑟𝑖 to cloudlet 𝑣′;
31: Update the residual computing resource of cloudlet 𝑣′;
32: end if;
33: end if;
34: if 𝑟𝑖 is admitted then
35: 𝐴← 𝐴 ∪ {𝑟𝑖 };
36: end if
37: end while;
38: return feasible solution𝐴 to the online average total utility maximization problem.

≤𝐶𝑣′ · 𝛼
1−𝐶𝑣′ (𝑖

′)
𝐶𝑣′ · (𝛼

𝑐 (𝑠𝑖′ )
𝐶𝑣′ − 1)

=𝐶𝑣′ · 𝛼
1−𝐶𝑣′ (𝑖

′)
𝐶𝑣′ · (2

𝑐 (𝑠𝑖′ )
𝐶𝑣′
·log2 𝛼 − 1)

≤𝐶𝑣′ · 𝛼
1−𝐶𝑣′ (𝑖

′)
𝐶𝑣′ · 𝑐 (𝑠𝑖

′)
𝐶𝑣′

· log2 𝛼. (20)

=𝑐 (𝑠𝑖′) · 𝛼
1−𝐶𝑣′ (𝑖

′)
𝐶𝑣′ · log2 𝛼, (21)

where Ineq. (20) holds because 2𝑥 − 1 ≤ 𝑥 with 0 ≤ 𝑥 < 1.
If 𝑟𝑖′ is not allocated to cloudlet 𝑣 , the usage cost of cloudlet 𝑣

does not change. Then the difference in the sums of the usage costs

of all cloudlets before and after admitting request 𝑟𝑖′ thus is∑
𝑣∈𝑉
(𝑤𝑣 (𝑖 ′ + 1) −𝑤𝑣 (𝑖 ′)) = 𝑤𝑣′ (𝑖 ′ + 1) −𝑤𝑣′ (𝑖 ′)

≤𝑐 (𝑠𝑖′) · 𝛼
1−𝐶𝑣′ (𝑖

′)
𝐶𝑣′ · log2 𝛼 , by (21)

= log2 𝛼 · 𝑐 (𝑠𝑖′) · ((𝛼
1−𝐶𝑣′ (𝑖

′)
𝐶𝑣′ − 1) + 1)

= log2 𝛼 · 𝑐 (𝑠𝑖′) · (𝜓𝑣′ (𝑖 ′) + 1), by (18)

≤ log2 𝛼 · 𝑐 (𝑠𝑖′) · ( |𝑉 | · 𝑢𝑖′ + 1) (22)

≤2 · log2 𝛼 · |𝑉 | · 𝑐 (𝑠𝑖′) · 𝑢𝑖′ (23)

where Ineq. (22) holds because request 𝑟𝑖′ is admitted by the admis-

sion control policy.

The sum of usage costs of all cloudlets prior to the arrival of

request 𝑟𝑖 thus is∑
𝑣∈𝑉

𝑤𝑣 (𝑖) =
𝑖−1∑
𝑖′=1

∑
𝑣∈𝑉
(𝑤𝑣 (𝑖 ′ + 1) −𝑤𝑣 (𝑖 ′))

=
∑

𝑟𝑖′ ∈Z(𝑖)

∑
𝑣∈𝑉
(𝑤𝑣 (𝑖 ′ + 1) −𝑤𝑣 (𝑖 ′))

≤
∑

𝑟𝑖′ ∈Z(𝑖)
(2 · log2 𝛼 · |𝑉 | · 𝑐 (𝑠𝑖′) · 𝑢𝑖′), by (23)

=2 · |𝑉 | · log2 𝛼 ·
∑

𝑟𝑖′ ∈Z(𝑖)
(𝑐 (𝑠𝑖′) · 𝑢𝑖′)

■

Denote by D(𝑖) the subset of requests admitted by the optimal

solution but rejected by Algorithm 2 prior to the arrival of request

𝑟𝑖 . Denote byH(𝑖) the set of requests admitted by both the optimal

solution and Algorithm 2 prior to the arrival of request 𝑟𝑖 .

It can be seen that D(𝑖) ∪ H (𝑖) is the set of admitted requests

by the optimal solution. Then, for each request 𝑟𝑖 ∈ H (𝑖) we have

𝑢∗𝑖 ≤
𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛
· 𝑢𝑖 , (24)

where 𝑢∗
𝑖
and 𝑢𝑖 are the utilities obtained of admitting request 𝑟𝑖

by the optimal solution and Algorithm 2, respectively, while 𝑢𝑚𝑎𝑥

and 𝑢𝑚𝑖𝑛 are the maximum and minimum possible utilities for any

request, which are constants.

Lemma 6.2. Given an MEC network𝐺 = (𝑉 ∪{𝑣0}, 𝐸) and a finite
time horizon that consists of 𝑇 time slots, let 𝑅 be the set of requests
arriving one by one over the time horizon, denote by D(𝑖) the set of
requests admitted by the optimal solution but rejected by Algorithm 2
prior to the arrival of request 𝑟𝑖 . Denote by 𝑣∗𝑖′ the node in the optimal
solution to which request 𝑟𝑖′ ∈ D(𝑖) is allocated. We have 𝑣∗

𝑖′ ∈ 𝑉 ,
∀𝑟𝑖′ ∈ D(𝑖), i.e., the requests in the setD(𝑖) are allocated to cloudlets
instead of the remote cloud in the optimal solution.

Proof We prove this lemma by contradiction. If it exists a request

𝑟𝑖′ ∈ D(𝑖) being allocated to the remote cloud in the optimal

solution. It can be seen that allocating request 𝑟𝑖′ to the remote

cloud makes positive utility gain. Then, request 𝑟𝑖′ can be at least

allocated to the remote cloud in Algorithm 2. However, request 𝑟𝑖′

is rejected by Algorithm 2 which makes contradiction. ■

Lemma 6.3. Given an MEC network 𝐺 = (𝑉 ∪ {𝑣0}, 𝐸) and a
finite time horizon that consists of 𝑇 time slots, let 𝑅 be the set of
requests arriving one by one over the time horizon, denote by D(𝑖)
the set of requests admitted by the optimal solution but rejected by
Algorithm 2 prior to the arrival of request 𝑟𝑖 . Denote by 𝑣∗𝑖′ the node
in the optimal solution to which request 𝑟𝑖′ ∈ D(𝑖) is allocated, and
denote by 𝑢∗

𝑖′ the utility for request 𝑟𝑖′ ∈ D(𝑖) in the optimal solution.
Then, for each request 𝑟𝑖′ ∈ D(𝑖), we have

𝜓𝑣∗
𝑖′
(𝑖 ′) > |𝑉 | · 𝑢𝑚𝑖𝑛

𝑢𝑚𝑎𝑥
· 𝑢∗𝑖′, (25)
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when 2|𝑉 | · 𝑢𝑚𝑎𝑥 + 2 ≤ 𝛼 ≤ 2
𝐶𝑚𝑖𝑛
𝑐𝑚𝑎𝑥 .

Proof By Lemma 6.2, node 𝑣∗
𝑖′ is a cloudlet. And we show the claim

by distinguishing into two cases when request 𝑟𝑖′ is rejected: Case

(1). There is no sufficient computing resource in cloudlet 𝑣∗
𝑖′ to admit

request 𝑟𝑖′ by Algorithm 2. Case (2). There is sufficient computing

resource in cloudlet 𝑣∗
𝑖′ to admit request 𝑟𝑖′ in Algorithm 2. But

the selected cloudlet 𝑣𝑖′ to admit request 𝑟𝑖 violates the admission

control policy in Algorithm 2 (node 𝑣𝑖′ could be node 𝑣∗
𝑖′ ).

Case (1). Because node 𝑣∗
𝑖′ is the cloudlet with no enough com-

puting resource to accommodate request 𝑟𝑖′ prior to the arrival of

request 𝑟𝑖′ in Algorithm 2, i.e., 𝐶𝑣∗
𝑖′
(𝑖 ′) < 𝑐 (𝑠𝑖′). Then we have

𝜓𝑣∗
𝑖′
(𝑖 ′) = 𝛼

1−
𝐶
𝑣∗
𝑖′
(𝑖′)

𝐶
𝑣∗
𝑖′ − 1 > 𝛼

1− 𝑐 (𝑠𝑖′ )
𝐶
𝑣∗
𝑖′ − 1

≥ 𝛼
1− 1

log2 𝛼 − 1, since 𝛼 ≤ 2
𝐶𝑚𝑖𝑛
𝑐𝑚𝑎𝑥 ≤ 2

𝐶
𝑣∗
𝑖′

𝑐 (𝑠𝑖′ )

=
𝛼

2
− 1 ≥ |𝑉 | · 𝑢∗𝑖′, since 𝛼 ≥ 2|𝑉 | · 𝑢𝑚𝑎𝑥 + 2.

≥ |𝑉 | · 𝑢𝑚𝑖𝑛

𝑢𝑚𝑎𝑥
· 𝑢∗𝑖′ . (26)

Case (2).Because we assign request 𝑟𝑖 to the cloudlet 𝑣𝑖′ with

the minimum normalized cost by Eq. (18) in Algorithm 2 (node 𝑣𝑖′

could be node 𝑣∗
𝑖′ ). We then have

𝜓𝑣∗
𝑖′
(𝑖 ′) ≥ 𝜓𝑣𝑖′ (𝑖

′). (27)

Since the admission control policy is violated if request 𝑟𝑖′ is

assigned to cloudlet 𝑣𝑖′ in Algorithm 2, according to the condition

(i) of the admission control policy, we have

𝜓𝑣𝑖′ (𝑖
′) > |𝑉 | · 𝑢𝑖′ ≥ |𝑉 | ·

𝑢𝑚𝑖𝑛

𝑢𝑚𝑎𝑥
· 𝑢∗𝑖′ . (28)

Thus, we have

𝜓𝑣∗
𝑖′
(𝑖 ′) > |𝑉 | · 𝑢𝑚𝑖𝑛

𝑢𝑚𝑎𝑥
· 𝑢∗𝑖′ . (29)

■

Denote by P𝑜𝑝𝑡 (𝑖) and P(𝑖) the total utility of admitted requests

by an optimal solution and Algorithm 2 prior to the arrival of

request 𝑟𝑖 , respectively.

Lemma 6.4. Given an MEC network𝐺 = (𝑉 ∪{𝑣0}, 𝐸) and a finite
time horizon that consists of 𝑇 ≥ 1 time slots, let 𝑅 be the set of
requests arriving one by one over the time horizon, denote by D(𝑖)
the set of requests admitted by the optimal solution but rejected by
Algorithm 2 prior to the arrival of request 𝑟𝑖 . We have

P𝑜𝑝𝑡 (𝑖) ≤
𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛
· P(𝑖) +

∑
𝑟𝑖′ ∈D(𝑖)

𝑢∗𝑖′ . (30)

Proof Recall that D(𝑖) ∪ H (𝑖) is the set of admitted requests by

the optimal solution. We have

P𝑜𝑝𝑡 (𝑖) =
∑

𝑟𝑖′ ∈H(𝑖)
𝑢∗𝑖′ +

∑
𝑟𝑖′ ∈D(𝑖)

𝑢∗𝑖′

≤ 𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛
·

∑
𝑟𝑖′ ∈H(𝑖)

𝑢𝑖′ +
∑

𝑟𝑖′ ∈D(𝑖)
𝑢∗𝑖′, by (24)

≤ 𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛
· P(𝑖) +

∑
𝑟𝑖′ ∈D(𝑖)

𝑢∗𝑖′ . (31)

Ineq. (31) holds becauseH(𝑖) is the subset of admitted requests by

Algorithm 2. ■

Theorem 6.5. Given an MEC network 𝐺 = (𝑉 ∪ {𝑣0}, 𝐸) and a
finite time horizon that consists of 𝑇 time slots, let 𝑅 be the set of
requests arriving one by one over the time horizon, there is an online
algorithm for the online average total utility maximization problem,
Algorithm 2, with a competitive ratio of 𝑂 (log |𝑉 |), which takes
𝑂 ( |𝑉 |2) time to admit each request when 𝛼 = 2|𝑉 | ·𝑢𝑚𝑎𝑥 + 2, where
𝑉 is the set of cloudlet nodes.

Proof

|𝑉 | · (P𝑜𝑝𝑡 (𝑖) −
𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛
· P(𝑖)) ≤ |𝑉 | ·

∑
𝑟𝑖′ ∈D(𝑖)

𝑢∗𝑖′, by Lemma 6.4,

=
∑

𝑟𝑖′ ∈D(𝑖)
|𝑉 | · 𝑢∗𝑖′ <

𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛
·

∑
𝑟𝑖′ ∈D(𝑖)

𝜓𝑣∗
𝑖′
(𝑖 ′), by Lemma 6.3

≤𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛
·

∑
𝑟𝑖′ ∈D(𝑖)

𝜓𝑣∗
𝑖′
(𝑖) (32)

=
𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛
·

∑
𝑟𝑖′ ∈D(𝑖)

𝑤𝑣∗
𝑖′
(𝑖)

𝐶𝑣∗
𝑖′
≤ 𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛
·

∑
𝑟𝑖′ ∈D(𝑖)

∑
𝑣∈𝑉

𝑤𝑣 (𝑖)
𝐶𝑣

≤𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛
·
∑
𝑣∈𝑉

𝑤𝑣 (𝑖)
∑

𝑟𝑖′ ∈D(𝑖)

1

𝐶𝑣
(33)

≤𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛
·
∑
𝑣∈𝑉

𝑤𝑣 (𝑖) · 1 =
𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛
·
∑
𝑣∈𝑉

𝑤𝑣 (𝑖)

≤2 · |𝑉 | · 𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛
· log2 𝛼 ·

∑
𝑟𝑖′ ∈Z(𝑖)

(𝑐 (𝑠𝑖′) · 𝑢𝑖′), by Lemma 6.1,

where Ineq. (32) holds, because the utilization of the computing

resource does not decrease. And Ineq. (33) holds, because∑𝑝

𝑖=1

∑𝑞

𝑗=1𝐴𝑖𝐵 𝑗 ≤
∑𝑝

𝑖=1𝐴𝑖
∑𝑞

𝑗=1 𝐵 𝑗 .

We thus have

P𝑜𝑝𝑡 (𝑖) <
𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛
· P(𝑖) + 2 · 𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛
· log2 𝛼 ·

∑
𝑟𝑖′ ∈Z(𝑖)

(𝑐 (𝑠𝑖′) · 𝑢𝑖′)

≤ 𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛
· P(𝑖) + 2 · 𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛
· log2 𝛼 · 𝑐𝑚𝑎𝑥 ·

∑
𝑟𝑖′ ∈Z(𝑖)

·𝑢𝑖′ .

Then,

P𝑜𝑝𝑡 (𝑖)
P(𝑖) <

𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛
· P(𝑖) + 2 · 𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛
· log2 𝛼 · 𝑐𝑚𝑎𝑥 ·

∑
𝑟𝑖′ ∈Z(𝑖) 𝑢𝑖′

P(𝑖)

=

𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛
·∑𝑟𝑖′ ∈Z(𝑖) 𝑢𝑖′ + 2 ·

𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛
· log2 𝛼 · 𝑐𝑚𝑎𝑥 ·

∑
𝑟𝑖′ ∈Z(𝑖) 𝑢𝑖′∑

𝑟𝑖′ ∈Z(𝑖) 𝑢𝑖′

=
𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛
+ 2 · 𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛
· log2 𝛼 · 𝑐𝑚𝑎𝑥

= 𝑂 (log |𝑉 |), when 𝛼 = 2|𝑉 | · 𝑢𝑚𝑎𝑥 + 2.

The time complexity of Algorithm 2 is dominated by finding

the shortest paths (delay) from node 𝑣𝑙𝑖 to other nodes, which takes

𝑂 ( |𝑉 |2) time. ■

7 PERFORMANCE EVALUATION
In this section we conduct the performance evaluation on the pro-

posed algorithms. We also investigate the impact of important

parameters on the performance of the proposed algorithms.

Edge/Fog Computing  MSWiM '20, November 16–20, 2020, Alicante, Spain

119



7.1 Environment setting
We consider a heterogeneous MEC network consisting of 200 APs,

and 10% of which are co-located with cloudlets. The topologies

of MEC networks are generated by GT-ITM [3]. For each AP, the

bandwidth at each time slot is drawn from 20 MHz to 40 MHz

randomly [9], the signal-to-noise ratio (i.e.,
𝑃𝑖
𝑅𝛼 ) of an AP is set

as 30 dB [11]. For each cloudlet, the capacity varies from 3, 000
MHz to 7, 000 MHz [14] and its processing rate varies from 0.5
MB to 2 MB per millisecond [7]. For each request, its task size is

randomly drawn from 1MB to 5MB [8], the demanded computing

resource is randomly drawn from 20 MHz to 300 MHz [13] and

the delay requirement is randomly drawn from 10 ms to 50 ms [7].

The transmission delay of a link at each time slot is chosen from 2
ms to 5 ms randomly [14], while the transmission delay from an

AP to the remote cloud varies from 80 ms to 100 ms. We further

assume the processing rate of the remote cloud is 20 MB per ms.

𝜆 is set as 2 and 𝛽𝑖 ranges from 1 to 3. We assume there are 100
time slots and 1000 requests arrive at each time slot one by one.

The duration of each request is randomly drawn from 1 to 3 time

slots [7]. The result in each figure is the mean of the results by

applying an algorithm on 20 MEC network instances of the same

size, and the running time of each algorithm is obtained, based on a

desktop with a 3.60 GHz Intel 8-Core i7-7700 CPU and 16 GB RAM.

Unless specified, the above parameters are adopted by default.

We first investigated the proposed algorithm Algorithm 1 (re-
ferred to as Alg.1) under the offline version over the first time

slot against two benchmarks. One is its ILP solution (7) obtained

by exhaust search (referred to as Optimal). The other is a greedy
algorithm (referred to as GRD_Off), where we assign each request

to the cloudlet (or the remote cloud) with the largest utility one by

one.

We then evaluated the proposed algorithm Algorithm 2 (referred
to as Alg.2) under the online version over the time horizon (i.e.,

100 time slots) against a greedy algorithm (referred to as GRD_On),
which is the online version of GRD_Off.

7.2 Performance evaluation of the proposed
algorithms
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Figure 1: Performance of different algorithms for the total
utility maximization problem.

We first studied the performance of Alg.1 against algorithms

Optimal and GRD_Off, by varying the number of requests from

100 to 1, 000. We then evaluated the performance of Alg.2 against

algorithm GRD_On, by varying the number of requests from 100
to 1, 000 arriving at each time slot. Fig. 1 depicts the accumulated

utilities and running time of different algorithms for the total utility

maximization problem, and Fig. 2 depicts the average utilities and

the running time of different algorithms for the online average total

utility maximization problem. It can be seen from Fig. 1(a) that when

the number of requests reaches 1, 000, the performance achieved

by algorithm GRD_Off is 88.5% of that by Alg.1 while the perfor-

mance achieved by Alg.1 is 85.2% of that by algorithm Optimal.
The similar performance behaviors can be found in Fig. 2(a). The

rationale behind is that both Alg.1 and Alg.2 better utilize the

network resource by provisioning satisfied services to more users,

compared with the greedy algorithms.
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Figure 2: Performance of different algorithms for the online
average total utility maximization problem.

7.3 Impact of important parameters on the
performance of the proposed algorithms

The rest is to investigate the impact of important parameters on the

performance of the proposed algorithms including network size,

parameter 𝛽𝑖 , and parameter 𝛼 . We also study the performance

of the online algorithm with and without adopting the admission

control policy.

We first studied the impact of network size on the proposed

algorithms, by varying the number of APs from 50 to 250. Recall
that 10% of APs are co-located with cloudlets. Fig. 3(a) depicts the

accumulated utilities by different algorithms for the total utility

maximization problem. And Fig. 3(b) depicts the average utilities of

different algorithms for the online average total utility maximiza-

tion problem. We can see from Fig. 3(a) that when the network

size is 250, the performance achieved by algorithm GRD_Off is

76.3% of that by Alg.1 while the performance achieved by Alg.1
is 84.8% of that by Optimal. The similar performance behaviors

can be observed in Fig. 3(b) too. This is because both Alg.1 and

Alg.2 facilitate the efficient cooperation between the remote cloud

and local cloudlets to maximize the accumulated user satisfaction

when the network size is large.

We then evaluated the impact of parameter 𝛽𝑖 on the perfor-

mance of the proposed algorithms, by varying the network size

from 50 to 250. Fig. 4 illustrates the impact of parameter 𝛽𝑖 on

the proposed algorithms Alg.1 and Alg.2 when 𝛽𝑖 = 1, 2, and 3
respectively. It can be seen from Fig. 4(a) that when the network

size is 250, the performance of Alg.1 with 𝛽𝑖 = 1 is 54.9% of itself

with 𝛽𝑖 = 3. And when the network size is 250, the performance

of Alg.1 with 𝛽𝑖 = 1 is 86.7% of itself with 𝛽𝑖 = 3. The rationale
behind is that a larger 𝛽𝑖 leads to a larger tolerable service delay

and more requests can be admitted. In addition, when the network

size is small (i.e., the available computing resource is very limited),

the mobile users have to better utilize the remote cloud to process
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Figure 3: The impact of network size on the performance of
the proposed algorithms

their requests that result in longer service delays. Thus, a larger 𝛽𝑖
is important in admitting requests when the network size is small.

The similar performance behavior can be found in Fig. 4(b).
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Figure 4: The impact of 𝛽𝑖 on the performance of the pro-
posed algorithms.

We finally investigated both the impact of the admission con-

trol policy on the performance of Alg.2, by varying the value of

parameter 𝛼 and the network size from 50 to 250. Fig. 5(a) depicts
the performance of Alg.2 with and without the admission control

policy. It can be seen from Fig. 5(a) that when the network size

is 250, the performance of Alg.2 without the admission control

policy is 86.9% of itself with the admission control policy. This can

be justified by that with a reasonable admission control policy, the

requests with larger utility gains but less computing resource con-

sumption will be admitted. Fig.5(b) demonstrates the performance

of Alg.2 with parameter 𝛼 = 2|𝑉 | · 𝑢𝑚𝑎𝑥 + 2, 4|𝑉 | · 𝑢𝑚𝑎𝑥 + 2, and
8|𝑉 | · 𝑢𝑚𝑎𝑥 + 2, respectively, where |𝑉 | is the network size, and

𝑢𝑚𝑎𝑥 = 𝜆 − 1 is the maximum possible utility gain for a request.

It can be from Fig.5(b) that when the network size is 250, the per-
formance of Alg.2 with 𝛼 = 8|𝑉 | · 𝑢𝑚𝑎𝑥 + 2 is 89.3% of itself with

𝛼 = 2|𝑉 | · 𝑢𝑚𝑎𝑥 + 2. The justification is that with a larger 𝛼 , the

normalized cost of computing resource becomes higher by Eq. (18),

and it intends to be conservative and reject requests.

8 CONCLUSIONS
In this paper, we studied the delay-sensitive service provisioning

problem for IoT applications in an edge computing environment,

by offloading task service requests to either the remote cloud or

local cloudlets in an MEC network. We first formulated two novel

optimization problems and showed the NP-hardness of the defined

problems. We then proposed an approximation algorithm with a

provable approximation ratio for the total utility maximization

problem. We also developed an online algorithm with a provable
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Figure 5: The impacts of the admission control policy and
parameter 𝛼 on the performance of algorithm Alg.2.

competitive ratio for dynamic admissions of task offloading re-

quests without the knowledge of future request arrivals. We finally

evaluated the performance of the proposed algorithms through

experimental simulations. Experimental results demonstrate that

the proposed algorithms are promising.
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