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Abstract—In this paper, we study sensing data collection from
IoT devices in a wireless sensor network, using an energy-
constrained Unmanned Aerial Vehicle (UAV), where the sensory
data is stored in IoT devices while the IoT devices may or may not
be within the transmission range of each other. We formulate two
novel data collection problems to fully or partially collect data
from IoT devices using the UAV, by finding a closed tour for the
UAV that includes hovering locations and the sojourn duration
at each of the hovering locations such that the accumulative
volume of data collected is maximized, subject to the energy
capacity on the UAV, where the UAV consumes its energy on
both hovering and flying from one hovering location to another
hovering location. To this end, we first propose a novel data
collection framework that enables the UAV to collect the sensory
data from multiple IoT devices simultaneously if the IoT devices
are within the hovering coverage range of the UAV. We then
formulate two data collection maximization problems, and show
that both of the problems are NP-hard. We instead devise efficient
approximation and heuristic algorithms for the problems. We
finally evaluate the performance of the proposed algorithms
through experimental simulations. Experimental results demon-
strated that the proposed algorithms are promising.

I. INTRODUCTION

Due to its high flexibility, low cost and ease of deployment,

Unmanned Aerial Vehicle (UAV) has become a key enabling

technology that has received significant attentions recently,

which has been widely applied in natural disaster rescuing,

good deliveries, crop health assessment, and so on [5]. On

the other hand, with the increasing popularity of Internet of

Thing devices such as various sensors, wearable sensors, traffic

and other monitoring devices, more and more applications

of smart homes/smart cities, e-health care, and intelligent

transportations built upon IoT devices become part of our

daily life. However, most IoT devices (e.g., mobile phones,

security cameras, meter collection devices, temperature sen-

sors) usually have very limited energy, computational and

storage capacities due to their portable sizes. Sometimes, it is

unrealistic to allow these devices to transmit or relay sensing

data to a base station through multihop relays, due to the

significant transmission energy consumption, and in the worst

case, they may not be within the transmission ranges of each

other. Thus, it is very challenging to collect sensing data from

these IoT devices for processing to better help human decision-

making and respond to the monitoring needs.

In this paper, we study the deployment of a UAV for sensory

data collection from IoT devices on the ground. Specifically,

we consider a sparse sensor network that consists of many

IoT devices for sensing their surroundings. Some of the

sensors serve as aggregate sensor nodes to store their own

and neighbors’ sensing data. The stored data at an aggregate

sensor node will be collected periodically by a UAV for further

processing. As the volume of data stored at different aggregate

sensor nodes is significantly different, the hovering times of

the UAV for data collection at different hovering locations are

different, and the amounts of energy consumed by the UAV

at different hovering locations are different too. In addition,

when the UAV flies from one hovering location to another

hovering location, it does also incur energy consumption.

Considering that the energy capacity of the UAV is given, this

poses great challenges. For example, how to find a closed tour

for the UAV including its depot for data collection such that

the total volume of data collected by the UAV at different

hovering locations in the tour is maximized, subject to its

energy capacity. Furthermore, how long the UAV should stay

at each hovering location in the tour to ensure all (or partial)

data stored at the IoT sensor devices covered by it will be

collected. To address the challenges, in this paper we aim to

explore a non-trivial trade-off between the amount of energy

allocated to hovering and the amount of energy allocated to

traveling of the UAV. We will focus on developing efficient

approximation and heuristic algorithms for the data collection

optimization problems.

The novelties of this work lie in the provisioning of a

novel framework of data collection from multiple IoT sensor

devices simultaneously, via an energy-constrained UAV. We

formulate two data collection maximization problems, and

develop efficient approximation and heuristic algorithms for

the problems that strive for a fine tradeoff between the energy

usages of the UAV on hovering and traveling. To the best of

our knowledge, this is the first time that the use of a UAV for

collecting data from multiple IoT devices simultaneously is

studied, and efficient algorithms for finding a data collection

trajectory for the UAV are developed.

The main contributions of this paper are summarized as

follows. We study the data collection maximization problem,

by deploying an energy-constrained UAV. We first propose

a novel data collection framework that enables the UAV to

collect sensory data from multiple IoT devices simultaneously.

We then formulate two data collection maximization problems

based on the proposed data collection framework, and show
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the defined problems are NP-hard. We instead devise efficient

approximation and heuristic algorithms for the problems. We

finally evaluate the performance of the proposed algorithms

through experimental studies. Simulation results reveal that

the proposed algorithms are promising.

The rest of the paper is organized as follows. Section II

reviews related work. Section III introduces the system model,

notions, notations, and problem definitions. Section IV de-

vises an approximation algorithm for the data collection

maximization problem without hovering coverage overlapping.

Sections V and VI propose efficient heuristic algorithms for

the data collection maximization problem and the partial

data collection maximization problem with hovering coverage

overlapping, respectively. Section VII evaluates the proposed

algorithms empirically, and Section VIII concludes the paper.

II. RELATED WORK

The use of mobile charging vehicles or mobile data collec-

tion vehicles on the ground for sensor charging and sensory

data collection has been widely studied in the past [4], [6],

[7], [9], [16], [14], [15]. Most of these studies focused on

finding trajectories of charging or data collection for one or

multiple mobile vehicles. However, due to various obstacles

in real sensor networks including buildings, ponds, rivers, or

blocked roads in the monitoring region, mobile vehicles are

prevented to travel in the region freely for sensor charging or

data collection smoothly. In recent years, there is a growing

interest in the employment of UAVs for sensory coverage or

data collection for wireless sensor networks, as UAVs have

many freedoms for data collection by avoiding the mentioned

obstacles by flying over them [10], [8]. For example, Mozaffari

et al. [10] considered multiple trajectory paths finding for

multiple UAVs with the aim to minimize the total transmission

energy consumption of IoT devices by uploading their sensory

data to the UAVs, where the UAVs are treated as aerial base

stations. They proposed a clustering method to cluster IoT

devices into different clusters, and they then find trajectories

for multiple UAVs that sojourn only at the cluster centers.

Liang et al [8] considered a coverage quality problem via a

UAV. They assumed that the hovering time of the UAV at

each hovering location is identical, for which they proposed an

approximation algorithm for the coverage quality maximiza-

tion problem. However, none of the existing works considered

a closed tour of data collection for the UAV that the data

of multiple IoT devices can be collected at the same time

by the UAV. This paper aims to address this issue and to

provide efficient approximation and heuristic algorithms for

the problem.

III. PRELIMINARIES

In this section, we first introduce the system model, notions,

and notations. We then define the problems precisely.

A. System Model

We consider an IoT application scenario, where many

IoT devices are deployed in a given region for monitoring

purposes, some of the IoT devices (sensors) are chosen as ag-
gregate sensor nodes that can store both their own sensing data

and their neighbors’ sensory data, assuming an IoT device that

has not been chosen as an aggregate sensor node can forward

its sensory data to one of its neighboring aggregate sensor

nodes. In case there are multiple aggregate sensor neighbors,

it can choose one of them for the storage of its sensory data.

Since aggregate sensor nodes are sparsely distributed, they

may or may not be within the communication range of each

other. The sensory data collected at each aggregate sensor

node thus cannot be transferred to the base station through

multi-hop relays, or there are obstacles between the aggregate

sensor nodes, e.g., ponds, or buildings that prevent the relays.

Furthermore, aggregate sensor nodes are energy-constrained

as relaying data will consume considerable amounts of energy.

To prolong the lifetimes of aggregate sensor nodes, a UAV is

deployed for data collection from the aggregate sensor nodes.

We assume that the UAV is at a depot d initially and pow-

ered by a limited energy battery E . The UAV consumes energy

at hovering locations for data collection from aggregate sensor

nodes in its hovering coverage range and traveling (flying)

from one hovering location to another hovering location. For

the sake of convenience, in the rest of this paper we term

the aggregate sensor nodes as IoT devices or sensor nodes

exchangeably if no confusion arises. The aggregate sensor

nodes in a monitoring region form a sparse sensor network

G = (V ∪ {d}, E), where V is the set of aggregate sensor

nodes, and there is an edge e ∈ E between each pair of

aggregate sensor nodes. The depot of the UAV is d, in which

the UAV will be recharged and its collected data will be

downloaded for further processing.

To ensure that the UAV can return depot d per tour, its

data collection tour must be a closed tour including depot d.

The duration of a tour of the UAV will be determined by the

tour length and the volume of data stored in the IoT devices

covered by the UAV at hovering locations in the tour. Assume

that the UAV takes T time units to finish its tour, in which Th

and Tt are the amounts of time spent on hovering and traveling

respectively, then T = Th+Tt and the total amount of energy

consumed by the UAV in the tour must meet that Th · ηh +
Tt ·ηt ≤ E , where ηh and ηt are the energy consumption rates

of the UAV on hovering and traveling, respectively.

B. Data Collection of IoT Devices Using a UAV

We assume that each aggregate sensor node vi ∈ V in a

monitoring region is labeled by coordinates (xi, yi, 0). Denote

by (x′, y′, H) the coordinates of a hovering location of the

UAV, where H is the flying altitude of the UAV, which is no

greater than the transmission range R of each aggregate sensor

node. Let B be the transmission bandwidth of any aggregate

sensor node. An aggregate sensor node v ∈ V can upload its

stored data to the UAV with bandwidth B if the UAV is within

its transmission range R. The hovering altitude H of the UAV

for data collection thus is no greater than R, i.e., H ≤ R.

Following the data collection model, if all IoT devices are

within the reception range of the UAV, then their transmitted
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Fig. 1. An example of data collection in an IoT sensor network G via a UAV.

data can be collected by the UAV, assuming that the IoT

devices use different channels to transmit their data through

adopting the orthogonal frequency division multiple access

(OFDMA) technique [10]. We assume that the reception range

of the UAV is a ball centralized at its hovering location, this

ball is projected to the ground at which the IoT devices are

located to form a circle with the same radius as the one of the

ball, the data stored at these aggregate sensor nodes within this

projected circle can be collected by the UAV when it hovers

at the center of the ball.
It is well known that there are infinite potential hovering

locations for the UAV in the sky. To make the problem

tractable, we here assume that the hovering locations of the

UAV are finite, by partitioning the hovering region into finite

numbers of equal squares with edge length δ > 0, and the

UAV can only hover at the square centers for data collection.

For a given data collection period T , assume that the volume

of data stored at each aggregate sensor node v ∈ V is Dv ,

which consists of its own sensory data and the data forwarded

by its neighboring IoT devices that are not aggregate sensor

nodes. Fig. 1(a) is an illustrative example of data collection in

an aggregate sensor network G with a UAV.
We assume that the monitoring region by IoT devices is par-

titioned into M squares: s1, s2, . . . , sM , and the UAV performs

data collection at the centers of these squares sj = (xj , yj , H)
as its hovering locations, let C(sj) be the set of aggregate sen-

sor nodes whose distances to the projected location (xj , yj , 0)
of sj in the ground are no greater than the hovering coverage

range R0 of the UAV, i.e., the data in an aggregate sensor

node vi ∈ V with coordinates (xi, yi, 0) can be collected

by the UAV if vi is within the ball of the UAV centered at

hovering location sj , i.e.,
√

(xi − xj)2 + (yi − yj)2 ≤ R0

and R0 =
√
R2 −H2 (see Fig. 1 (b)). Notice that the data

transmission time of an aggregate sensor node from the ground

to the UAV usually is determined by their distance, the volume

of data the node contains, and the transmission bandwidth of

the node. Given two aggregate sensor nodes in the coverage

circle of the UAV at different locations, it is well known

that their transmission time and bandwidth will be different

even if they have the same amounts of data to be transmitted.

However, such differences are negligible if the UAV altitude

H is relatively low (not too high). For the sake of discussion

simplicity, in this paper we assume that all sensors within

the hovering coverage range of the UAV have the same data

transmission rates B or transmission bandwidths.

The hovering (sojourn) duration of the UAV for data

collection at hovering location sj is

t(sj) = max
vi∈V

{Dvi

B
|
√
(xi − xj)2 + (yi − yj)2 ≤ R0}, (1)

the total volume of data collected at location sj is

P (sj) =
∑
vi∈V

{Dvi |
√
(xi − xj)2 + (yi − yj)2 ≤ R0}, (2)

and the total amount of energy consumed by the UAV at sj
on data collection is

w1(sj) = t(sj) · ηh. (3)

C. Problem Definitions

In this paper we define two data collection maximization

problems using a single UAV, under the assumption of whether

the data at each sensor can be collected once or multiple times

as follows.

Definition 1: Given an aggregate sensor network G(V ∪
{d}, E) and a UAV with energy capacity E , each aggregate

sensor node v ∈ V has a volume Dv of data for collection,

the data collection maximization problem using the UAV for

collecting data is to find a closed tour for the UAV such that

the accumulative volume of data collected by it in the closed

tour is maximized, subject to the energy capacity E of the UAV,

assuming that the data stored at each IoT device covered by

the UAV at its hovering location will be fully collected.

We will deal with the data collection maximization problem

under two different settings. That is, whether the hovering

coverage ranges of the UAV at any two different hovering

locations are allowed to be overlapping. We thus have two

cases for the problem: the data collection maximization prob-

lem with and without hovering coverage overlapping.

Sometimes, the UAV may not need to collect all data

stored at an IoT device at its hovering location, this may

help the UAV to save energy for collecting more data from
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Fig. 2. An illustration of the partial data collection in an IoT sensor network
G via a UAV.

other IoT devices at other hovering locations. We here use

an example (see Fig. 2) to illustrate this scenario. Assume

that the UAV can stop at two hovering locations s1 and s2
with hovering coverage overlapping. We further assume that

it takes 10 minutes and 6 minutes to collect all data when

it is located at s1 and s2, respectively. If it is allowed to

collect partial data from the IoT devices when it is located

at s1 and s2, for example, it takes 5 minutes to collect partial

data at s1 and 6 minutes to collect partial data at s2. The

same amount of data will be collected from both hovering

locations in the end. However, its total amount of energy

consumed on full data collection at these two locations is

(10 + 6)ηh energy units, while the total energy consumption

on the partial data collection at the two locations is (5+ 6)ηh
energy units, thereby saving energy of the UAV. Motivated by

this example, given a positive integer K ≥ 1, we can partition

the sojourn duration t(sj) of the UAV for data collection at

each hovering location sj into K equal sojourn durations:

t(sj)/K, 2 · t(sj)/K, . . . , K · t(sj)/K, respectively. In

other words, for each hovering location sj ∈ S, there are

K corresponding virtual hovering locations sj,1, sj,2, . . . , sj,K
with sojourn durations being t(sj)/K, 2 · t(sj)/K, . . . , K ·
t(sj)/K. The maximum amount of data collected at the virtual

hovering location sj,k with the sojourn duration k · t(sj)/K
is

P (sj,k) =
∑

v∈C(sj)

{B · k · t(sj)
K

| Dv

B
≥ k · t(sj)/K}+

∑
v′∈C(sj)

{Dv′ | Dv′

B
< k · t(sj)/K}, (4)

where C(sj) is the set of IoT devices within the coverage

range of the UAV at hovering location sj , and the IoT

devices in C(sj) are further partitioned into two subsets:

their data transmission time is no less than k · t(sj)/K and

their transmission time is strictly less than k · t(sj)/K with

1 ≤ k ≤ K.

t(sj,k) = k · t(sj)/K. (5)

That is, the amount of data collected by the UAV at each

hovering location sj can be from the partial volume of data

to the full volume of data, i.e., P (sj,1) ≤ P (sj,2) ≤ . . . ≤
P (sj,K) with t(sj,1) < t(sj,2) < . . . < t(sj,K). We formulate

this partial data collection via a UAV as follows.

Definition 2: Given an aggregate sensor network G(V ∪
{d}, E) and a UAV with energy capacity E located at a depot

d initially, each IoT device v ∈ V has a volume Dv of data for

collection, the partial data collection maximization problem in

G is to find a closed tour including depot d of the UAV such

that the accumulative volume of data collected by the UAV in

the tour is maximized, subject to the energy capacity E of the

UAV, assuming that the UAV is allowed to collect partial data

at each hovering location.

D. NP-hardness of the Defined Problems

It can be seen that the data collection maximization problem

is a special case of the partial data collection maximization

problem when K = 1. Unfortunately, both problems are NP-

hard, which are stated by the following theorem.

Theorem 1: Both the data collection maximization problem

and the partial data collection maximization problem in an

aggregate sensor network G(V ∪ {d}, E) are NP-hard.

Proof: We show that the data collection maximization

problem without hovering coverage overlapping is NP-hard,

by a reduction from a well-known NP-hard problem - the

orienteering problem. We consider a special case of the data

collection maximization problem where the potential hovering

location of the UAV is on top of each aggregate sensor node,

and there is not any energy consumption on data collection

at each hovering location. We further assume that there is not

any hovering coverage overlapping between any two hovering

locations. Even for this special data collection maximization

problem, we show that the problem is equivalent to an orien-

teering problem in G as follows.

Given a node- and edge-weighted undirected graph

G(V,E), in which each node v ∈ V has a positive award

p(v) = Dv and each edge (u, v) ∈ E has a positive integral

length l(u, v)ηt, and a given integral length L, the orienteering

problem is to find a closed tour in G including a specified node

(the depot d) such that the total award collected from the nodes

in the closed tour is maximized, subject to the tour length no

greater than L [2], [1], [13].

We reduce the orienteering problem in G to this special

data collection maximization problem as follows. The award

collected at each hovering location sj ∈ S (the coordinates of

sj are (xj , yj , H) assuming that the coordinates of vj ∈ V
is (xj , yj , 0)) is P (sj) = Dvj , L = � E

ηt
�, and the hovering

energy consumption at each potential hovering location sj ∈ S
(S = V by the assumption) is zero. As the orienteering

problem is NP-hard [13], the data collection maximization

problem is NP-hard.

The data collection maximization problem is a special case

of the partial data collection maximization problem when K =
1, the latter is NP-hard, too.
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IV. APPROXIMATION ALGORITHM FOR THE DATA

COLLECTION MAXIMIZATION PROBLEM WITHOUT

HOVERING COVERAGE OVERLAPPING

In this section, we first deal with the problem without hov-

ering coverage overlapping, by proposing an approximation

algorithm, under the assumption that the hovering locations

within each square are indistinguishable, or the differences of

data collected by the UAV when it is located at any locations

within a square can be ignored. We then analyze the time

complexity of the proposed algorithm.

A. Overview of the Approximation Algorithm

The basic idea behind the proposed algorithm is to reduce

the problem to the orienteering problem [13], an approximate

solution to the latter in turn returns an approximate solution

to the former. However, the challenge of such a reduction lies

in that the amounts of hovering energy consumed of the UAV

at different hovering locations are different. We aim to find

a closed tour including depot d for the UAV such that the

accumulative volume of data collected by the UAV at the

hovering locations in the tour is maximized, while its total

amount of energy consumed on hovering and traveling is no

greater than its energy capacity E . We tackle this challenge by

constructing an auxiliary graph and assigning each edge with

an energy weight in the auxiliary graph for both hovering at the

endpoints of the edge and traveling along the edge as follows.

Since there are infinite numbers of potential hovering loca-

tions for the UAV, to enable the problem to be tractable, we

partition the hovering region (or the IoT device deployment

region) into a number of squares with edge length δ > 0.

We assume that the volume differences of the data collected

by the UAV at different hovering locations in each square are

negligible if the value of δ is sufficiently small. We further

assume that the center of each square is a potential hovering

location for the UAV when it is in the square.

Assume that the entire hovering region of the UAV is parti-

tioned into M squares. Denote by S = {s1, s2, . . . , sM}∪{d}
the set of the squares. Notice that M is a linear function of

the number of aggregate sensor nodes in V . For example,

assume that the coverage range of the UAV at a hovering

location is a circle with radius R0, then, the number of its

potential hovering locations for collecting data from an IoT

device v ∈ V will be no greater than �π·R2
0

δ2 � in terms of the

number of squares covering v. Thus, the maximum number of

squares in S is no greater than
∑

v∈V �π·R2
0

δ2 � ≤ (
πR2

0

δ2 +1) · |V |
as both R0 and δ usually are constants. It must be mentioned

that a square may or may not contain any IoT devices. In the

rest of our discussion, we assume that the measurement unit of

the UAV movement in its hovering region is the edge length

δ of each square. Or the coordinates of potential hovering

locations in each square are indistinguishable.

Having partitioned the hovering region of the UAV into M
squares, we now construct a node and edge weighted, undi-

rected graph Gs = (S,Es; p(·), w1(·), w2(·, ·)) as follows. S
is the set of potential hovering locations of the UAV, and Es

is the set of edges that the UAV hovering from one hovering

location to another hovering location. The functions related to

nodes and edges in Gs are defined as follows. p : S 	→ R
≥0

is the award function, w1 : S 	→ R
>0 is the hovering energy

consumption function, and w2 : Es 	→ R
≥0 is the energy

consumption function on both hovering and traveling. There

is an edge (si, sj) ∈ Es between each pair of nodes si and sj
in S.

For each potential hovering location sj ∈ S, the award (the

amount of data collected) p(sj) is

p(sj) =
∑

vi∈C(sj)

Dvi , (6)

where C(sj) is the set of IoT devices in the data coverage

range of the UAV when it is at hovering location sj , i.e.,

C(sj) = {vi | vi ∈ V &
√

(xi − xj)2 + (yi − yj)2 ≤ R0},

assuming that the UAV is at location sj = (xj , yj , H). If

C(sj) = ∅, then p(sj) = 0, t(sj) = 0 and w1(sj) = 0. Dvi
is

the volume of data stored at sensor node vi that is a function

of the monitoring duration T and the sensing data generation

rates of neighboring sensors of v within the period.

The hovering duration t(sj) of the UAV at location sj for

collecting data from the sensors in C(sj) is

t(sj) = max
vi∈C(sj)

{Dvi

B
}, (7)

where B is the transmission bandwidth of an aggregate sensor

node (an IoT device).

The amount of energy consumed by the UAV on data

collection at location sj thus is

w1(sj) = t(sj) · ηh. (8)

We assign a weight w2(sj , sk) to each edge (sj , sk) ∈ Es

as follows.

w2(sj , sk) =
w1(sj) + w1(sk)

2
+ l(sj , sk) · ηt (9)

where the first term in the right hand side of Eq. (9) is half

the sum of the amounts of hovering energy consumed by the

UAV for data collection at locations sj and sk, respectively,

the second term is the amount of traveling energy consumption

of the UAV along edge (sj , sk), and l(sj , sk) is the Euclidean

distance between locations sj and sk.

B. Algorithm

Having constructed the auxiliary graph Gs(S,Es; p(·),
w1(·), w2(·, ·)), the orienteering problem in Gs is to find

a closed tour including depot d such that the total award

collected from the hovering locations in the tour is maximized,

subject to that the tour length (measured in terms of energy)

is no greater than the energy capacity E of the UAV. It can be

seen that a solution to this orienteering problem in Gs returns

a solution to the data collection maximization problem in G
without hovering coverage overlapping. Thus, an approximate

solution to the former gives an approximate solution to the

latter. The detailed algorithm is given in Algorithm 1.
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Algorithm 1 Approximation algorithm for the data collection

maximization problem without hovering coverage overlapping

Input: An aggregate sensor network G = (V,E) with a set V of aggregate
sensor nodes, a UAV with energy capacity E at depot d, and each node
v ∈ V has data volume Dv , and a given constant δ > 0 but δ ≤ R0.

Output: Find a closed tour including the depot d for the UAV such that the
volume of data collected from all aggregate sensor nodes covered by
the UAV at hovering locations in the tour is maximized, subject to the
energy capacity of the UAV.

1: Partition the monitoring region into M squares s1, s2, . . . , sM with the
edge length of each square being δ; let S = {d, s1, s2, . . . , sM};

2: Compute t(sj), p(sj), and w1(sj) for each sj ∈ S with 1 ≤ j ≤ M ;
3: Construct an auxiliary graph Gs = (S ∪ {d′}, Es ∪ {(v, d′) | (v, d) ∈

Es}; p(·), w1(·), w2(·, ·)), where d′ is a dummy depot;
4: Find a simple path P in Gs between the depot d and the dumpy depot

d′ such that the total award collected in the path is maximized (as
there is no coverage overlapping between any two hovering locations
by the assumption), subject to the energy capacity E of the UAV, by
the approximation algorithm for the orienteering problem in metric
graphs [1];

5: return A closed tour C derived from P for the UAV, which contains the
hovering locations and the sojourn time at each of the hovering locations.

C. Algorithm Analysis

In the following, we first show that the auxiliary graph Gs

is a metric graph as the given approximation algorithm is

only applicable to metric graphs. We then analyze the time

complexity of the proposed approximation algorithm. Notice

that this is an approximation algorithm under the assumption

that there are no distinctions among the hovering locations

within each square; otherwise, the problem is intractable due

to infinite numbers of hovering locations even for a small

square area. The solution is truly an approximate solution

to the problem when the value of δ is sufficiently small, or

approaches zero.

Lemma 1: The auxiliary graph Gs is a metric graph.

Proof: Since there is an edge for each pair of nodes in

Gs, we show that the edge weights in Gs meet the triangle

inequality. For the three edges formed by any three nodes

sj , sk, and sl in S, we have

w2(sj , sk) + w2(sk, sl)

= (
w1(sj) + w1(sk)

2
+ l(sj , sk) · ηt)+

(
w1(sk) + w1(sl)

2
+ l(sk, sl) · ηt)

=
w1(sj) + w1(sl)

2
+ w1(sk) + (l(sj , sk) + l(sk, sl)) · ηt

≥ w1(sj) + w1(sl)

2
+ w1(sk) + l(sj .sl) · ηt

≥ w1(sj) + w1(sl)

2
+ l(sj , sk) · ηt

= w2(sj , sl). (10)

Thus, Gs is a metric graph.

Theorem 2: Given an aggregate sensor network G(V,E)
with each node v ∈ V having a data volume Dv for collection,

and a UAV with energy capacity E and its depot d, assuming

that the moving unit of the UAV is measured by a value of

δ > 0 and its coverage range at each hovering location is a

circle with radius R0, there is a 3-approximation algorithm

for the data collection maximization problem in G without

hovering coverage overlapping, assuming that the difference

of the distances among the locations within each square is

negligible. The algorithm takes O(Tort(
π·R2

0

δ2 · |V |, π2·R4
0

δ4 ·
|V |2)) time, where Tort(|V ′|, |E′|) is the time complexity

of the approximation algorithm of Bansal et al. [1] for the

orienteering problem in a graph with |V ′| nodes and |E′|
edges.

Proof: We first show that the solution obtained by

Algorithm 1 is feasible. It is obvious that the closed tour

C is a simple closed tour including the depot d. We show

that the total energy consumption of the UAV on the closed

tour C is no greater than E . As the total length of C is no

greater than E , the energy consumption of the UAV on C (

hovering at nodes and traveling on edges) is the weighted sum

of the edges in C, which is no greater than its energy capacity.

Furthermore, for each hovering location sj in C, assume that

si and sk are its two neighboring hovering locations in C,

then the hovering energy consumption w(sj) of the UAV at

location sj is distributed to its two incident edges (si, sj) and

(sj , sk) as part of their weights, i.e., the energy weights of the

two edges are w2(si, sj) =
w1(si)+w1(sj)

2 + l(si, sj) · ηt and

w2(sj , sk) =
w1(sj)+w1(sk)

2 + l(sj , sk) · ηt, respectively. Thus,

the UAV has sufficient energy at each hovering location sj to

collect the data from the IoT devices in C(sj).
We then analyze the time complexity of the proposed algo-

rithm, Algorithm 1. It can be seen that Gs contains |S| =
O(

π·R2
0

δ2 · |V |) nodes and |Es| = O(|S|2) = O(
π2·R4

0

δ4 · |V |2)
edges. Finding a 3-approximate solution (a closed tour C)

for the orienteering problem in Gs starting at node d takes

O(Tort(
π·R2

0

δ2 · |V |, π2·R4
0

δ4 · |V |2)) time, by the approximation

algorithm due to Bansal et al. [1], assuming that the distances

of hovering locations within each square are negligible, where

Tort(|V ′|, |E′|) is the time complexity of the approximation

algorithm of Bansal et al. [1] for the orienteering problem in

a graph with |V ′| nodes and |E′| edges.

V. HEURISTIC ALGORITHM FOR THE DATA COLLECTION

MAXIMIZATION PROBLEM WITH HOVERING COVERAGE

OVERLAPPING

In this section we deal with the data collection maximization

problem with hovering coverage overlapping, by proposing an

efficient heuristic algorithm.

A. Algorithm

The basic idea behind the proposed algorithm is to find the

closed tour for the UAV iteratively. The closed tour consists of

the depot only initially. Within each iteration, a new hovering

location is added to the tour. For the sake of convenience, we

assume that a partially closed tour that consists of hovering

locations s0, s1, . . . , sj−1 has been constructed. Let Sj−1 =
{s0, s1, s2, . . . , sj−1} be the set of hovering locations for the

UAV so far and s0 = d, which also implies that the sum of en-

ergy consumptions on these j hovering locations and traveling

along the closed tour TSP (Sj−1) is no more than E , where
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TSP (Sj−1) is the length of the closed tour induced by all

nodes in set Sj−1, which is obtained by applying Christofides’s

algorithm for the Travelling Salesman Problem [3]. Recall that

the coordinates of location sj are (xj , yj , H), and C(sj) =
{vi | vi ∈ V &

√
(xi − xj)2 + (yi − yj)2 ≤ R0} is set of

IoT devices covered by the UAV at hovering location sj , i.e.,

each IoT device in C(sj) is able to transmit its data to the

UAV when the UAV is located at sj . The rest is to determine

the next hovering location sj as follows.

The volume P ′(sj) of data collected by the UAV when it

is located at sj is

P ′(sj) =
∑

{Dv | v ∈ C(sj) \ ∪j−1
j′=0C(sj′)}, (11)

i.e., if the data of an aggregate sensor node has been collected

in any of the previous j − 1 hovering locations of the UAV,

it will not contribute any award towards the optimization

objective anymore.

The hovering duration t′(sj) of the UAV for data collection

at hovering location sj is

t′(sj) = max
sj∈S\Sj−1

{Dv

B
| v ∈ C(sj) \ ∪j−1

l=0C(sl)}. (12)

Denote by the ratio ρ(sj) of the volume of data collected to

the total amount of energy consumed by the UAV on hovering,

and traveling to and from location sj as follows.

ρ(sj) =
P ′(sj)

t′(sj) · ηh + (TSP (Sj)− TSP (Sj−1)) · ηt
if

∑
sj′∈Sj−1∪{sj}

t′(sj′) · ηh + TSP (Sj) · ηt ≤ E , (13)

where Sj = Sj−1 ∪{sj}. Notice that
∑

sj′∈Sj−1
t′(sj′) · ηh +

TSP (Sj−1) · ηt ≤ E always holds, as Sj−1 is a feasible

solution to the problem, following the assumption.

The hovering location sj is chosen as the next hovering

location of the UAV if its ratio ρ(sj) is the maximum one

among all potential hovering locations in S\Sj−1, and the total

energy consumption of the UAV in the closed tour including

sj is no greater than its energy capacity. This procedure of

adding hovering locations continues until no more hovering

locations can be added to the closed tour without violating

the energy capacity of the UAV.

The detailed algorithm is given in Algorithm 2.

B. Analysis of the Proposed Algorithm

In the following, we analyze the time complexity of the

proposed algorithm, Algorithm 2.

Theorem 3: Given an aggregate sensor network G(V,E)
with each node v ∈ V having a data volume Dv for collection,

and a UAV with energy capacity E and its depot d, assuming

that the moving unit of the UAV is measured by δ > 0 and its

coverage range at each hovering location is a circle with radius

R0, there is an efficient heuristic algorithm, Algorithm 2,

for the data collection maximization problem in G with

hovering coverage overlapping, assuming that the differences

of the distances among potential hovering locations in each

Algorithm 2 A heuristic algorithm for the data collection

maximization problem with hovering coverage overlapping

Input: An aggregate sensor network G = (V,E) with a set V of aggregate
sensor nodes, a UAV with energy capacity E at depot d, and each node
v ∈ V has data volume Dv , and a given constant δ > 0.

Output: Find a closed tour including depot d for the UAV such that the
volume of data collected from all aggregate sensor nodes covered by it
at its hovering locations in the tour is maximized, subject to the energy
capacity of the UAV.

1: Partition the monitoring region into M squares s0, s1, . . . , sM , let S =
{s0, s1, . . . , sM , d′};

2: Construct the closed tour for the UAV iteratively, S0 = {d} initially;
3: j ← 1;
4: while

∑
sj′∈Sj−1

t′(sj′ ) · ηh + TSP (Sj−1) · ηt < E do
5: choose the next hovering location sj ∈ S \ Sj−1

such that the ratio ρ(sj) is the maximum one, i.e.,

sj = argmaxsj′∈S\Sj−1
{ P ′(sj′ )
t′(sj′ )·ηh+(TSP (Sj)−TSP (Sj−1))·ηt |

∑
sj′∈Sj−1∪{sj} t

′(sj′ ) · ηh + TSP (Sj) · ηt ≤ E};

6: Sj ← Sj−1 ∪ {sj};
7: j ← j + 1;
8: end while;
9: return the closed tour with the hovering location sequence

s0, s1, . . . , sj .

square are negligible. The algorithm takes O(
π4·R8

0

δ8 · |V |4)
time.

Proof: Algorithm 2 proceeds iteratively, and the num-

ber of iterations is bounded by |S| = M . Within iteration j
with 1 ≤ j ≤ M , identifying the next hovering location sj is

performed through the calculations of ρ(sj) for all sj ∈ S \
Sj−1. This takes O(|S\Sj−1|·|V |+|Sj |3) = O(M ·|V |+M3)
time, due to the fact that the calculation of TSP (Sj) takes

O(|Sj |3) time by Christofides’ algorithm [3]. The proposed

algorithm thus takes O(M2 · |V | + M4) = O(
π4·R8

0

δ8 · |V |4)
time. Notice that in practice, the values of both δ and R0

are constants, the time complexity of Algorithm 2 thus is

O(|V |4).
VI. AN ALGORITHM FOR THE PARTIAL DATA COLLECTION

MAXIMIZATION PROBLEM

In this section, we consider the partial data collection

maximization problem by devising an efficient algorithm for

it. It can be seen that there are hovering coverage overlapping

among UAVs at the K virtual hovering locations derived

from each potential hovering location. We tackle the partial

data collection maximization problem, by adopting a similar

technique for the data collection maximization problem with

hovering coverage overlapping in the previous section.

A. Algorithm

We show how to modify Algorithm 2 for this purpose.

Specifically, we treat each virtual hovering location derived

from each potential (real) hovering location as a potential

hovering location of the UAV as we did for Algorithm 2.

However, (i) we only allow one virtual hovering location

from each potential hovering location to be included in the

closed tour as the tour must be a simple closed tour. If two

virtual hovering locations sj,k1
and sj,k2

derived from the

same hovering location sk are chosen to be included in the

closed tour with 1 ≤ k1 < k2 ≤ K, then only location sj,k2
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will be included while location sj,k1
will be discarded. Notice

that the amount of data that was supposed to be collected by

the UAV at location sj,k1 for the sojourn duration t′(sj,k1)
will be collected by the UAV at location sj,k2 , since the UAV

at sj,k2
takes a longer sojourn duration t′(sj,k2

) > t′(sj,k1
)

than it is at location sj,k1
. And there will be no increase on the

traveling energy consumption, but there will result in the extra

amount of (k2−k1)·t′(sj)·ηh/K of hovering energy consumed

for the extra amount of data collection. (ii) It is also noted that

the volume of data in each sensor v ∈ V may be collected

by the UAV at multiple hovering locations if the data in v
has not been fully collected yet. We here use an example to

illustrate this situation. Assume that the duration of collecting

all data from a sensor v is t(v) = Dv/B time units. We

further assume that v is covered by the UAV at three different

hovering locations sj1 sj2 and sj3 with sojourn times t1, t2 and

t3, respectively, i.e., v ∈ C(sj1), v ∈ C(sj2), and v ∈ C(sj3).
If t(v) ≥ t′(sj1)+ t′(sj2)+ t′(sj3) = t1+ t2+ t3, then the rest

of data stored at sensor v can still be collected by the UAV

at these three hovering locations. Therefore, the residual data

volume and the hovering duration at some to-be-considered

virtual hovering locations must be recalculated after a virtual

hovering location sj is added to the closed tour, since the

data of some aggregate sensor nodes in C(sj) are contained

by these potential virtual hovering locations and their data

have been partially collected in the previous hovering locations

already. The detailed algorithm is given in Algorithm 3.

Algorithm 3 A heuristic algorithm for the partial data collec-

tion maximization problem

Input: A sensor network G = (V,E) with a set V of aggregate sensor
nodes, a UAV with energy capacity E at depot d, and each node v ∈ V
has data volume Dv , and a given constant δ > 0.

Output: Find a closed tour for the UAV including depot d such that
the volume of data collected from aggregate sensor nodes within the
hovering locations in the tour is maximized, subject to the energy
capacity of the UAV.

1: Partition the monitoring region into M squares s0, s1, . . . , sM ;
2: S′ ← ∪K

k=1{sj,k | sj ∈ S};
3: Construct the closed tour for the UAV, S′

0 = {d} initially;
4: j ← 1;
5: while

∑
s′j∈S′

j−1
t′(sj′ ) · ηh + TSP (S′

j−1) · ηt < E do
6: Choose a location sj,k ∈ S′ \ S′

i−1 such that

the ratio ρ(sj,k) is the maximum one, i.e., sj,k =

argmaxsj′,k∈S′\S′
j−1

{ P ′(sj′,k)
t′(sj′,k)·ηh+(TSP (S′

j)−TSP (S′
j−1))·ηt

|
∑

sj′,k∈S′
j−1∪{sj′,k} t′(sj′,k) · ηh + TSP (Sj) · ηt < E};

7: S′
j ← S′

j−1 ∪ {sj,k} \ {sj,k′ | 1 ≤ k′ < k};

8: S′ ← S′ \ {sj,k′ | 1 ≤ k′ ≤ k}; /* as only one virtual hovering
location from each hovering location is added to the tour */

9: if ∃k′ : sj,k′ ∈ S′
k−1 with k′ < k then

10: S′
j ← S′

j−1 \ {sj,k′};

11: Calculate the data volume D
(j)
v of each sensor v ∈ C(sj,k);

12: Calculate P ′(sj′,k′ ) and t′(sj′,k′ ) for each potential location
sj′,k′ ∈ S′ \ S′

j if C(sj′,k′ ) ∩ C(sj,k) �= ∅;
13: end if;
14: j ← j + 1;
15: end while;
16: return the closed tour that consists of the hovering location sequence

s0, s1, . . . , sj can be derived from S′
j .

B. Analysis of the Proposed Algorithm

The rest is dedicated to the correctness and time complexity

analyses of the proposed algorithm. We first show that the

amount of data that is supposed to be collected by the UAV

at sj,k1
will be collected by the UAV at sj,k2

if k1 < k2 by

the following lemma.

Lemma 2: For a given hovering location sj , if one of its

virtual hovering locations sj,k1 is included in the closed tour

and its another virtual hovering location sj,k2
is chosen to

be added to the tour, then we have k2 > k1 and sj,k1
will

be removed from the closed tour by the proposed algorithm,

Algorithm 3. By doing so will not reduce the amount of

data collected when the UAV at hovering location sj , and the

correctness of the proposed algorithm holds.

Proof: We note that for each hovering location, there

is at most one of its virtual hovering locations included in

the closed tour. Following Algorithm 3, if at most one

virtual hovering location derived from each potential hovering

location in S is included in the closed tour, the solution is

feasible. Otherwise, assume that we add a virtual hovering

location sj,k1
of sj at iteration i1 of the algorithm into the

closed tour already. We now add another virtual location sj,k2

of sj at iteration i2 to the closed tour with 1 ≤ i1 < i2 ≤ |S|.
To make sure that at most one virtual hovering location for

each hovering location is added to the closed tour, we remove

sj,k1 from the tour and add sj,k2 to the tour, and all the other

virtual hovering locations sj,k′ of sj with k′ < k2 will be

removed from S for further consideration by the algorithm.

Despite that the volume of data collected and sojourn durations

at each hovering location from iterations i1+1 to i2−1 could

be changed due to the removal of sj,k1 from the closed tour,

we will not update these hovering locations and their sojourn

durations as the residual volume of data at each IoT device in

C(sj,k1
) (iteration i1) in fact is larger than when the virtual

hovering location sj,k1
is included in the tour. The volume

of all data that was supposed to be collected by the UAV at

location sj,k1 with a sojourn duration k1 · t(sj)/K will be

later collected by the UAV at location sj,k2
(iteration i2) with

a sojourn duration k2 ·t(sj)/K. Thus, the total volume of data

collected from the closed tour by the removal of sj,k1
from it

does not change.

We then have the following theorem.

Theorem 4: Given an aggregate sensor network G(V,E)
with each node v ∈ V having a data volume Dv for collection,

and a UAV with energy capacity E and its depot d, assuming

that the moving unit of the UAV is measured by δ > 0 and its

coverage range at each hovering location is a circle with radius

R0, there is a heuristic algorithm, Algorithm 3, for the

partial data collection maximization problem in G, assuming

that the differences of the distances among potential hovering

locations in each square are negligible. The algorithm takes

O(
π4·R8

0

δ8 · K4 · |V |4) time, where K is a given integer with

K ≥ 1.

Proof: The correctness of the solution delivered by

Algorithm 3 is shown by Lemma 2, omitted. The time
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complexity analysis of Algorithm 3 is similar to the one

in the proof body of Theorem 3, and the only difference lies

in the fact that we now have M ′ = K · M virtual squares

instead of M squares in Theorem 3, omitted.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

algorithms for the full (or partial) data collection maximization

problems through experimental simulations. We also inves-

tigate the impact of important parameters on the algorithm

performance.

A. Experimental Settings

We consider a sensor network that consists of 500 aggregate

sensor nodes randomly deployed in a 1,000 × 1,000 square

meters. The data volume of each aggregate sensor node is

randomly drawn in the range from 100 MB to 1,000 MB.

Without loss of generality, we assume that the hovering

coverage range R0 of each aggregate sensor node is 50 meters
and its transmission bandwidth is 150 MB/s [12]. We assume

that a UAV is initially deployed at a depot d. The UAV

has energy capacity E = 3 × 105 joules at constant flying

speed 10 m/s. The energy consumption rates of the UAV on

traveling and hovering are ηt = 100 J/s and ηh = 150 J/s,

respectively [11]. The value in each figure is the mean of

the results out of 15 network instances of the same size. The

running time of an algorithm is obtained based on a machine

with 3.6 GHz Intel i7 single-core CPU and 16 GB RAM.

Unless otherwise specified, these parameters will be adopted

in the default setting.

To evaluate the performance of the proposed algorithms for

the data collection maximization problems, we here introduce

a heuristic benchmark which proceeds iteratively. It starts

finding a closed tour C that includes all aggregate sensor nodes

and the depot by the Christofides algorithm. If the total amount

of energy consumed in C is no greater than the energy capacity

of a UAV, done. Otherwise, a node in the tour is chosen if its

removal will result in the minimum loss of data volume per

unit energy consumption. This procedure continues until the

total energy consumption of the resulting closed tour is no

greater than E .

B. Performance Evaluation of Different Algorithms for the
Problem Without Hovering Coverage Overlapping

We first investigate the performance of different algorithms

for the data collection maximization problem without hovering

coverage overlapping. As shown in Fig.3(a), the collected

data volumes by both algorithms increase as the UAV has

more energy capacity. It can be seen that Algorithm 1

outperforms the benchmark algorithm. For example, when

E = 3× 105 joules, the collected data volume by the former

is around twice the amount of the one by the benchmark

algorithm, and the gap of then collected data volume between

them becomes larger and larger, with the growth on the

energy capacity E . Fig. 3(b) plots the time curves of the

two mentioned algorithms, from which it can be seen that

the running time of Algorithm 1 increases with the growth

of the UAV energy capacity, while the running time of the

benchmark algorithm decreases with the growth of the UAV

energy capacity, this is because fewer nodes will be pruned

from the initial TSP tour, since more energy can be consumed

for the tour.

(a) Collected data volume by differ-
ent algorithms

(b) The running time of different al-
gorithms

Fig. 3. Performance of different algorithms for the Data collection maxi-
mization problem without hovering coverage overlapping.

C. Performance Evaluation of Algorithms for the Problem
With Hovering Coverage Overlapping

We then study the performance of Algorithm 2 and

Algorithm 3 for the data collection maximization problem

with hovering coverage overlapping against the benchmark al-

gorithm. It can be seen from Fig.4(a) that both algorithms out-

perform the benchmark algorithm significantly. Furthermore,

Algorithm 3 is superior to Algorithm 2, as the latter is

a special case of the former when K = 1. Particularly, when

δ = 5 meters, the collected data volumes by Algorithm 2

and Algorithm 3 (K = 2) are 132.8 GB and 147.7 GB,

respectively, which are higher than the benchmark algorithm

(74.14 GB) by 79.12% and 99%, respectively.

We also study the performance of Algorithm 3 by varying

the partitioning K of the sojourn duration at each hovering

location. It can be seen from Fig. 4(a) that a larger K
will result in more data collected per tour, this is due to

more accurate planning for data collection per unit energy

consumption. For instance, the collected data volume increases

from 147.7 GB to 150.7 GB when K increases from 2

to 4. Fig. 4(b) indicates that Algorithm 3 takes a longer

running time than that of Algorithm 2 with the growth of

K due to the problem size increase. For example, the running

time of Algorithm 3 is about 54.1 minutes when K = 4,

which is around 50 times of the running time 1.61 minutes of

Algorithm 2 when K = 1.

D. Parameter Impacts on the Performance of the Proposed
Algorithms for the Problem With Hovering Coverage Over-
lapping

In the following we study the impact of parameters δ, E and

|V | on the performance of Algorithm 2 and Algorithm 3.

We start with the impact of δ on the performance of the two

mentioned algorithms. It can be seen from Fig. 4 that with the

increase of δ, for a fixed number K ≥ 1 of partitioning of the

sojourn duration at each hovering location, the total volume

of data collected per tour reduces, so do the running times of
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(a) Collected data volume by differ-
ent algorithms

(b) The running time of different al-
gorithms

Fig. 4. Performance of different algorithms by varying the value of δ from
5 meters to 30 meters when |V | = 500.

the two algorithms, because the number of potential hovering

locations for the UAV becomes smaller, and less data will be

collected. E.g., when K = 4, it can be seen from Fig.4(a)

Algorithm 3 when δ = 5 meters is about 13.9% higher

than that by itself when δ = 30 meters. Therefore, when δ
is sufficiently small, the total volume of data collected by the

UAV is maximized. Fig. 4(b) depicts the running times of the

two mentioned algorithms.

(a) Collected data volume by differ-
ent algorithms

(b) The running time of different al-
gorithms

Fig. 5. Performance of different algorithms by varying the UAV’s battery
capacity so that the longest flying time varying from 3 × 105 joules to
9× 105 joules.

We then investigate the impact of the energy capacity E of

the UAV on the performance of different algorithms, by vary-

ing it from 3×105 Joules to 9×105 Joules while fixing the

value of δ at 10 meters. Fig. 5(a) illustrates that the collected

data volume goes up with the increase in the energy capacity

of the UAV, since the UAV can visit more hovering locations

with longer hovering durations to collect more data from its

hovering locations. For example, when K = 4, the collected

data increased by 82% with the increase of the energy capacity

of the UAV from 3× 105 Joules to 9× 105 Joules. Fig. 5(b)

demonstrates the impact of the battery capacity of UAV on

the running time of the algorithm. A larger battery capacity

implies that Algorithm 2 and Algorithm 3 can visit more

hovering locations, hence increasing the running time of the

algorithm. On the other hand, with more energy supplies for

the UAV, the benchmark algorithm will remove fewer nodes

from the found closed tour C initially, which leads to shorter

running time. Therefore, Algorithm 3 takes more running

time while the benchmark algorithm takes less running time,

with the growth of the energy capacity of the UAV.

VIII. CONCLUSIONS

In this paper, we studied data collection for IoT applications,

using an energy-constrained UAV. We first proposed a novel

data collection framework that enables the UAV to collect

sensory data from multiple IoT devices simultaneously. We

then formulated two data collection maximization problems

that allow the UAV to fully or partially collect sensory data

from IoT devices at each hovering location, and showed that

both the problems are NP-hard. Instead, we devised efficient

approximation and heuristic algorithms for the problems. We

finally evaluated the performance of the proposed algorithms

through simulations. Simulation results demonstrate that the

proposed algorithms are promising.
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