
Providing Reliability-Aware Virtualized Network
Function Services for Mobile Edge Computing

Jing Li†, Weifa Liang†, Meitian Huang†, and Xiaohua Jia‡
†Research School of Computer Science, The Australian National University, Canberra, Australia

‡Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong

Emails: u6013763@anu.edu.au, wliang@cs.anu.edu.au, meitian.huang@anu.edu.au, csjia@cityu.edu.hk

Abstract—Mobile Edge Computing (MEC) has emerged as
a promising paradigm to address the conflict between increas-
ing computing-intensive applications and resource-constrained
mobile Internet-of-Thing (IoT) devices with portable size and
storage. In MEC environments, Virtualized Network Functions
(VNFs) are deployed for provisioning network services to users
to reduce the service cost on top of dedicated hardware in-
frastructures. However, VNFs may suffer from failures and
malfunctions while network service providers have to guarantee
continuously reliable services to their users to meet ever-growing
service demands of the users. In this paper, we focus on reliable
VNF service provisioning in MECs, by provisioning primary
and backup VNF instances in order to meet the reliability
requirements of mobile users. We first formulate a novel VNF
service reliability problem with the aim to maximize the revenue
collected by admitting as many as user requests while meeting
individual user service reliability requirements. We then develop
two efficient on-line scheduling algorithms for the problem
under two different backup schemes: on-site (local) and off-site
(remote) schemes, by adopting the primal and dual updating
technique. Particularly for the on-site scheme, the proposed on-
line algorithm achieves a provable competitive ratio with bounded
moderate resource violations. We finally evaluate the proposed
algorithms through experimental simulations. The experimental
results demonstrate that the proposed algorithms are promising,
compared with existing baseline algorithms.

I. INTRODUCTION

The recent advancement of Internet of the Things (IoTs)

has further flourished new applications of mobile IoT de-

vices [1]. However, due to their portable sizes and limited

computing capacities, mobile IoT devices are unable to meet

the demands of both computing and storage resources of

these applications [2]. To meet ever-growing mobile users’

resource demands, MEC as a promising paradigm has been

introduced, which extends cloud computing services to the

edge of mobile networks by utilizing cloudlets (servers, or

clusters of servers) co-located with Access Points (APs) within

the proximity of mobile users. In addition, Network Functions

Virtualization (NFV) is a promising technique that contributes

to applications of MEC [10], and the instances of NFVs are

employed to replace dedicated hardware equipment due to not

only the cost reduction but also the advantage of adjusting

services with agility to cope with rapid-changing user demands

without the hassle of deployment and maintenance of physical

infrastructures [3], where each network function is implemented

in a virtual machine as a piece of software that is referred to

as an instance of the Virtualized Network Function (VNF).

Meeting user service reliability requirements is critical to

any network service provider [4]. Reliability of a network is

defined as the ability of the network to provide stable services

that ensure an agreed level of operational performance facing

the risk of failures of underlying network components [5].

There are several prevention and recovering mechanisms to

deal with such failures. In reality, a mobile user not only

requests specific VNF services but also with a certain reliability

requirement, and a common and practical approach to meet

the reliability requirement is utilizing redundancy [6]. In this

paper, VNF replicas are deployed as backups to meet the

requested reliability requirements of mobile users. This poses a

challenge to maximize the revenue of network service providers

by admitting as many as user requests through developing

efficient on-line algorithms for their request admissions.

The risk of a single VNF instance failure could be mitigated

by deploying the other backup instances of the VNF in the

same cloudlet [7]. We refer to this recovering scheme as

the on-site scheme that utilizes local redundancy to meet the

required reliability, which guarantees low switching latency

from primary VNF instances to their backup VNF instances

in the same cloudlet. However, the VNF reliability under the

on-site scheme is restricted by the reliability of the cloudlet at

which the VNF instances located, because all VNF instances

in a cloudlet will not be able to function when the cloudlet

fails. Instead, another recovering scheme - the off-site scheme,

is proposed, which can mitigate this restriction. The off-site

scheme instantiates backup VNF instances at cloudlets that are

physically separated from the cloudlet hosting the primary VNF

instances [8]. Although the off-site scheme can improve VNF

reliabilities, it suffers drawbacks. Since it utilizes geographic

redundancy, the recovery time will be slightly longer, and

will incur extra costs of network traffic between the cloudlets

hosting primary and backup VNF instances [9].

The novelty of this paper is that we study the VNF service
reliability problem for IoT applications under both on-site

and off-site schemes in MEC environments. To the best of

our knowledge, we are the first to consider the provisioning

of reliable VNF services in MEC to meet both resource

demands and service requirements of different users so that

the revenue collected from the admitted requests is maximized,

by proposing efficient on-line algorithms.

The main contributions of this paper are as follows. We

first formulate a VNF service reliability problem with the

732

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDCS.2019.00077

aim to maximize the revenue by admitting as many as user

requests while meeting their individual reliability requirements

under both on-site and off-site schemes. We then propose an

on-line algorithm for the problem under the on-site scheme,

which achieves a provable competitive ratio with moderate

resource capacity violations. We also develop a heuristic

algorithm for the problem under the off-site scheme by

adopting the primal-dual dynamic updating technique. We

finally evaluate the performance of the proposed algorithms

through experiments. The experimental results demonstrate

that the proposed algorithms are promising, and outperform

baseline algorithms.

The remainder of this paper is organized as follows. Sec-

tion II reviews the related work. Section III defines the system

model and formulates the problem under both on-site and off-

site schemes. Sections IV and V propose on-line algorithms for

the problem under both on-site and off-site schemes. Section VI

evaluates the performance of the proposed algorithms by

experimental simulation, and Section VII concludes the paper.

II. RELATED WORK

Several existing methods on the improvement of VNF

instance reliability are summarized in [9]. They include state

management, VNF migration, and rollback recovery. The

authors in [11] addressed the problem of optimizing the

allocation of VNF backups. They proposed a survivability

architecture and adopted the maximum matching method.

However, they only considered one backup VNF instance

for each primary VNF instance, and did not consider mul-

tiple backup VNF instances to meet reliability requirements.

Especially, infrastructures, where VNF instances run, could

also suffer from failures and malfunctions. Therefore, the

awareness of infrastructure reliability poses challenges on

reliability provisioning for VNF instance deployments. [15]

proposed a coordinated protection mechanism that employs

both network-layer protection and VNF replicas. They focused

on minimizing the total computing resource consumption. The

authors in [7] studied the problem of how to enhance the

reliability of Service Function Chains (SFCs) more efficiently,

and proposed the Cost-aware Importance Measure (CIM) in

selecting the qualified backups. [16] considered reliabilities

of both VNFs and dedicated infrastructures, and discussed

the resource cost saving by sharing the resource among all

backup VNF instances.[12] introduced an on-site pooling

mechanism which improves the resource utilization and thus

reduces resource consumption. [13] studied the VNF placement

problem under the off-site scheme to provision reliable Service

Chains (SCs). Both on-site or off-site schemes are practical

strategies to guarantee the safeness of data and robustness of

the provided services. In this paper, we study the VNF service

reliability problem for IoT applications in MEC environments,

by jointly considering reliabilities of both VNF instances and

cloudlets that accommodate the VNF instances, with the aim of

maximizing the revenue of the service provider. In addition, we

admit user requests while meeting their individual reliability

requirements under both on-site and off-site schemes.

III. PRELIMINARIES

In this section, we first introduce the system model and then

define the problem precisely.

A. Network System Model

We consider a Mobile Edge Computing (MEC) network

consisting of APs, cloudlets, and links that connect APs. Each

cloudlet is co-located with an AP while an AP may or may not

be co-located with a cloudlet. The MEC network is represented

by an undirected graph G = (V,E) where V is the set of APs,

cloudlets are co-located with APs, and E is the set of links

between APs. Mobile users issue their requests with reliability

requirements through their nearby APs.

Let F = {f1, f2, . . . , fn} be a set of different types

of Virtualized Network Functions (VNFs), e.g., Virtualized

Load Balancers, Firewalls, and Intrusion-Detection Systems.

We assume that different VNFs need different amounts of

computing resource for their implementations. Without loss of

generality, we assume that the required amount of computing

resource for a specific type of VNF, fi ∈ F , is measured by

computing units, denoted by c(fi). Furthermore, different VNFs

have different reliabilities, denoted by r(fi) as the reliability

of fi with 0 < r(fi) < 1.

Let C = {c1, c2, . . . , cm} be the set of cloudlets in G with

m ≤ |V |. Each cloudlet has a limited amount of computing

resource. We assume that for each cloudlet ci ∈ C, its

computing capacity is capi. For a specific type of VNF, fi ∈ F ,

the cloudlets can implement fi as a piece of the software

component in a virtual machine with the computing resource

demanded, i.e., c(fi). In addition, different cloudlets have

different reliabilities, and each cloudlet ci ∈ C is associated

with a reliability r(ci), with 0 < r(ci) < 1. When a cloudlet ci
fails, all VNF instances in ci will not be able to offer services

to mobile users anymore and thus become unavailable.

B. User request scheduling

We consider that the MEC network is in a discrete-time

fashion and assume that the given monitoring period is slotted

into equal time slots, each of which is a time unit. And the set

of time slots is denoted by T = {1, 2, . . . , T}. Consequently,

the arrival time of a request can be represented by a time slot

label, while the processing duration of the request in MEC is

expressed by the number of time slots needed.

We assume that each mobile user requests only one VNF

instance service per request, and the request ρi of the user is

defined by a tuple (fi, Ri, ai, di, payi), where fi ∈ F is the

requested VNF instance, Ri is the reliability requirement of

request ρi with 0 < Ri < 1, ai ∈ T is the arrival time slot

of the request, di is the requested duration and payi is the

payment. For simplicity, we assume that di is a positive integer

and payi is the payment received for the implementation of

request ρi.
We assume that a request arrives at the beginning of each

time slot, and only consider the set of requests that are ending at

the specified time horizon. Denote by R the set of all requests

within the given time horizon T , i.e., for a request ρi, we

733

consider it only in the event that ai + di − 1 ∈ T. For a

better presentation of both the arrival time and the requested

execution duration, we introduce Vi, which is a binary vector

with the length of T , and generated by both ai and di. In

a certain time slot t, Vi[t] = 1 represents that the requested

execution duration of request covers time slot t, and Vi[t] = 0
otherwise, e.g., in the case T = 3, ai = 1, di = 2, then we let

Vi = [1, 1, 0].
Suppose that the admission scheduling of requests is on-

line, and there is a hypervisor to deal with incoming requests,

where the requests arrive one by one without the knowledge of

future request arrivals. If the hypervisor accepts request ρi, it

will allocate the resource from a cloudlet to accommodate the

primary and backup VNF instances for the request and find a

routing path for the data traffic of the request.

Let Xi ∈ {0, 1} denote whether request ρi is admitted.

Namely, Xi = 1 if the request is admitted; and Xi = 0
otherwise. If request ρi is admitted, then the probability of that

at least one of its primary and backup VNF instances of fi is

available is no less than its reliability requirement Ri must be

guaranteed. We denote this event as Ai, i.e.,

P (Ai) ≥ Ri, ∀ρi ∈ R. (1)

Let Yij ∈ {0, 1} denote whether or not a primary or backup

VNF instance of request ρi is placed in cloudlet cj ∈ C, that

is, Yij = 1 if a primary or backup VNF instance of ρi is

placed in cloudlet cj , and Yij = 0 otherwise. Associated with

each request ρi, we assume that its payment and reliability

requirement are given too.

C. Problem definitions

In this paper, we deal with the VNF service reliability prob-

lem under both the on-site and off-site schemes, respectively.

We first consider the offline version of the problem, which will

be used as the benchmark for the performance evaluation of

the proposed on-line algorithms for the on-line version of the

problem under two different schemes defined as follows.

1) The VNF service reliability problem under the on-site
scheme: Under this scheme, all primary and backup VNF

instances of each request are hosted by a single cloudlet. Let

Nij be the minimum number of primary and backup VNF

instances needed to be placed in cloudlet cj ∈ C for request

ρi in order to meet its reliability requirement Ri. Then,

P (Ai) = r(cj) ∗ (1− (1− r(fi))
Nij) ≥ Ri, ∀ρi ∈ R, (2)

where (1−r(fi))
Nij is the failure probability of all primary and

backup VNF instances of request ρi, while 1−(1−r(fi))
Nij is

the probability of at least one VNF instance survival. Because

all VNF instances of ρi are in a single cloudlet, we have

P (Ai) = r(cj) ∗ (1− (1− r(fi))
Nij).

If r(cj) > Ri, Nij can be calculated as follows.

Nij = �log1−r(fi)(1−
Ri

r(cj)
)�. (3)

Otherwise (r(cj) ≤ Ri), the reliability requirement of ρi
cannot be met, and the VNF instances of ρj should not be

placed in cloudlet cj . Notice that both r(cj) and Ri are given

constants, Nij thus is constant. For the sake of simplicity, in

the rest of discussions, we assume that r(cj) > Ri, ∀cj ∈
C, ∀ρi ∈ R, under the on-site scheme.

To meet the capacity constraint on each cloudlet, we have
∑

ρi∈R
Vi[t]∗Nij ∗c(fi)∗Yij ≤ capj , ∀t ∈ T, ∀cj ∈ C. (4)

Constraint (4) ensures that in each time slot, the computing

capacity of each cloudlet will not be violated.

To ensure only one cloudlet is chosen to accommodate all

VNF instances of request ρi, we have
∑

cj∈C
Yij = Xi, ∀ρi ∈ R. (5)

The VNF service reliability problem under the on-site scheme
can be formulated as an Integer Linear Programming (ILP)

with the optimization objective to

maximize
∑

ρi∈R
Xi ∗ payi, (6)

subject to

(4), (5),

Xi ∈ {0, 1}, ∀ρi ∈ R, (7)

Yij ∈ {0, 1}, ∀ρi ∈ R, ∀cj ∈ C. (8)

2) The VNF service reliability problem under the off-site
scheme: In this scheme, the VNF instances of a request can

be placed at different cloudlets. As one cloudlet c ∈ C fails,

all VNF instances in cloudlet c will fail. Therefore, we assume

that only one VNF instance of the request will be placed in

each cloudlet under this off-site scheme.

To admit a request ρi among all cloudlets cj ∈ C, we need to

identify which of the cloudlets will accommodate the primary

and backup VNF instances of ρi while the capacity constraints

on identified cloudlets are met.
∑

ρi∈R
Vi[t] ∗ c(fi) ∗ Yij ≤ capj , ∀t ∈ T, ∀cj ∈ C. (9)

Constraint (9) ensures that the computing capacity of each

cloudlet at each time slot will not be violated.

The reliability constraint on each admitted request ρi is as

follows.

P (Ai) = 1−
∏

cj∈C
(1− r(fi) ∗ r(cj) ∗ Yij) ≥ Ri. (10)

If Yij = 1, the failure probability of a VNF instance fi at cj
is 1−r(fi)∗r(cj)∗Yij = 1−r(fi)∗r(cj). Otherwise (Yij = 0),

1−r(fi)∗r(cj)∗Yij = 1. Thus,
∏

cj∈C(1−r(fi)∗r(cj)∗Yij)
is the probability that both primary and backup VNF instances

of ρi fail, while 1 − ∏
cj∈C(1 − r(fi) ∗ r(cj) ∗ Yij) is the

success reliability of ρi by a scheduling. However, if ρi is

rejected, for each cloudlet cj ∈ C, Yij should be 0, i.e., no

VNF instance will be placed in any cloudlet cj and Inequality

734

(10) does not hold. We now modify Inequality (10) through a

transformation, using the following technique, ∀ρi ∈ R,

Ri ∗Xi ≤ 1−
∏

cj∈C
(1− r(fi) ∗ r(cj) ∗ Yij) ≤ Xi. (11)

Lemma 1. Inequality (11) meets the reliability requirement of
request ρi if the request is admitted.

Proof: If Xi = 1, request ρi is admitted, Inequality (11)

is shown as follows.

Ri ≤ 1−
∏

cj∈C
(1− r(fi) ∗ r(cj) ∗ Yij) ≤ 1. (12)

As 0 < 1 − r(fi) ∗ r(cj) ∗ Yij ≤ 1, it can be seen that

Inequality (12) and Inequality (10) are equivalent, satisfying

the reliability requirement of request ρi.
Otherwise (Xi = 0), request ρi will be rejected, and

1 ≤
∏

cj∈C
(1− r(fi) ∗ r(cj) ∗ Yij) ≤ 1. (13)

It can be seen that we ensure that
∏

cj∈C(1− r(fi)∗ r(cj)∗
Yij) = 1, since 0 < r(fi) < 1 and 0 < r(cj) < 1, we have

Yij = 0 for each cloudlet cj ∈ C, i.e., if request ρi is rejected,

none of its VNF instances will be placed in any cloudlet. The

lemma thus follows.

The VNF service reliability problem under the off-site scheme
can be formulated as an Integer Non-linear Programming (INP)

problem as follows.

The optimization objective is to

maximize
∑

ρi∈R
Xi ∗ payi, (14)

subject to

∑

ρi∈R
Vi[t] ∗ c(fi) ∗ Yij ≤ capj , ∀t ∈ T, ∀cj ∈ C, (15)

1−
∏

cj∈C
(1− r(fi) ∗ r(cj) ∗ Yij) ≥ Ri ∗Xi, ∀ρi ∈ R,

(16)

1−
∏

cj∈C
(1− r(fi) ∗ r(cj) ∗ Yij) ≤ Xi, ∀ρi ∈ R, (17)

Xi ∈ {0, 1}, ∀ρi ∈ R, (18)

Yij ∈ {0, 1}, ∀ρi ∈ R, ∀cj ∈ C, (19)

where Inequality (15) is the cloudlet capacity constraint, In-

equalities (16) and (17) are the request reliability requirements.

D. The competitive ratio of an on-line algorithm

When considering an on-line maximization problem P, we

say an on-line algorithm with competitive ratio α for the

problem if the solution delivered by the on-line algorithm is no

less than OPT (P)off/α, where OPT (P)off is the optimal

solution of the offline version of problem P with α > 1.

IV. ALGORITHM FOR THE VNF SERVICE RELIABILITY

PROBLEM UNDER THE ON-SITE SCHEME

In this section, we deal with the VNF service reliability

problem under the on-site scheme, and denote by this problem

P1. The general strategy for P1 is as follows. We first solve

the Linear Programming (LP) relaxation of P1, and denote by

this relaxation P2, and denote by P3 the dual of P2. A feasible

solution to P3 will return a feasible solution to P1 ultimately.

To adopt the primal and dual dynamic updating tech-

nique [17], we perform the LP relaxation on P1 and we have

maximize
∑

ρi∈R
Xi ∗ payi, (20)

subject to

(5), (9),

Xi ≤ 1, ∀ρi ∈ R, (21)

Xi ≥ 0, Yij ≥ 0, ∀ρi ∈ R, ∀cj ∈ C. (22)

Lemma 2. Any feasible solution for P1 is a feasible solution
for P2. Let OPT1 and OPT2 be the optimal solutions of P1
and P2, then OPT1 ≤ OPT2.

As P3 is the dual of P2, to solve P2, we now solve P3, by

adopting the primal-dual dynamic updating technique [17] as

follows.

minimize
∑

t∈T,cj∈C
capj ∗ λtj +

∑

ρi∈R
δi, (23)

subject to

βi + δi − payi ≥ 0, ∀ρi ∈ R, (24)
∑

t∈T
Vi[t] ∗Nij ∗ c(fi) ∗ λtj − βi ≥ 0, ∀ρi ∈ R, ∀cj ∈ C,

(25)

λtj ≥ 0, βi ≥ 0, δi ≥ 0, ∀ρi ∈ R, ∀cj ∈ C, ∀t ∈ T, (26)

where λtj , βi, and δi are dual variables, corresponding to

constraints (9), (5) and (21) respectively in P2.

We then rewrite (24) and (25) as follows.

βi ≥ payi − δi, ∀ρi ∈ R, (27)

βi ≤
∑

t∈T
Vi[t] ∗Nij ∗ c(fi) ∗ λtj , ∀ρi ∈ R, ∀cj ∈ C. (28)

From Inequality (28), we have

βi ≤ min
cj∈C

∑

t∈T
Vi[t] ∗Nij ∗ c(fi) ∗ λtj , ∀ρi ∈ R. (29)

Combining Inequalities (27) and (29), we have

payi − δi ≤ min
cj∈C

∑

t∈T
Vi[t] ∗Nij ∗ c(fi) ∗ λtj , ∀ρi ∈ R. (30)

Lemma 3. If Inequality (30) holds, there always exists a
feasible βi to satisfy constraints (25) and (26).

Proof: Because Vi[t] ≥ 0, Nij > 0, c(fi) > 0, λtj ≥
0, ∀cj ∈ C, ∀t ∈ T, it can be seen that mincj∈C{

∑
t∈T Vi[t]∗

735

Nij ∗ c(fi) ∗ λtj} ≥ 0. Since βi ≥ 0, if Inequality (30) holds,

there exists a βi such that Inequality (31) holds.

payi − δi ≤ βi ≤ min
cj∈C

∑

t∈T
Vi[t] ∗Nij ∗ c(fi) ∗ λtj . (31)

Then, Inequalities (27) and (28) hold. Constraints (25)

and (26) hold. The lemma then follows.

Following Lemma 26, we now eliminate dual variable βi,

and then only consider dual variables δi and λtj to guarantee

Inequality (30) to be satisfied. We perform a transformation

on Inequality (30) as follows, ∀ρi ∈ R,

δi ≥ payi − min
cj∈C

∑

t∈T
Vi[t] ∗Nij ∗ c(fi) ∗ λtj . (32)

The basic idea of the primal-dual dynamic updating tech-

nique is to update the variables in both primal and dual

problems simultaneously such that they can form a primal-dual

pair. For request ρi, the set of execution time slots is denoted as

T
′
i ⊂ T, and its duration is di = |T′i|. Dual variables λtj and βi

are 0 initially. Upon the arrival of request ρi, the dual variables

are required to be set properly to satisfy Inequality (32). To

this end, we first calculate Nij for each cloudlet cj ∈ C.

We then calculate the value of
∑

t∈T Vi[t] ∗Nij ∗ c(fi) ∗ λtj

associated with each cloudlet cj ∈ C. We finally identify the

cloudlet cj with mincj∈C{
∑

t∈T Vi[t] ∗ Nij ∗ c(fi) ∗ λtj}. If

payi −mincj∈C{
∑

t∈T Vi[t] ∗Nij ∗ c(fi) ∗ λtj} ≤ 0, request

ρi will be rejected. Otherwise, it will be admitted and all its

VNFs will be accommodated in cloudlet cj , and the value of

δi is updated as follows.

δi := payi − min
cj∈C

{
∑

t∈T
Vi[t] ∗Nij ∗ c(fi) ∗ λtj}. (33)

Then, λtj associated with the selected cloudlet cj ∈ Ci and

t ∈ T
′
i is updated as follows.

λtj := λtj ∗ (1 + Nij ∗ c(fi)
capj

) +
Nij ∗ c(fi) ∗ payi

di ∗ capj . (34)

The proposed on-line algorithm for the VNF service

reliability problem under the on-site scheme is given in

Algorithm 1.

Let aij = Nij ∗ c(fi), ∀ρi ∈ R, ∀cj ∈ C, amax =
maxρi∈R,cj∈C{aij}, and amin = minρi∈R,cj∈C{aij}.
Lemma 4. Let P and D be the values of the solutions delivered
by the proposed algorithm of P2 and P3, respectively, Then
(1 + amax) ∗ P ≥ D, where amax = maxρi∈R,cj∈C{Nij ∗
c(fi)}.

Proof: It can be seen that P = D = 0 initially, thus,

we prove the claim by showing that when request ρi arrives,

(1 + amax) ∗ΔP ≥ ΔD, where ΔP and ΔD are the value

differences of objective functions before and after the request

arrives.

If request ρi is rejected, ΔP = ΔD = 0, and (1 + amax) ∗
ΔP ≥ ΔD. Otherwise, ΔP = payi and ΔD =

∑
t∈T′

i
capj ∗

Δλtj + δi, where Δλtj is the difference before and after the

Algorithm 1 On-line Scheduling Algorithm for the VNF

Service Reliability Problem under the on-site Scheme

Input: An MEC network G = (V,E) and incoming requests.
Output: An on-line scheduling of incoming requests.
1: Initialize Xi, Yij , λtj , βi =0, ∀ρi ∈ R, ∀cj ∈ C, ∀t ∈ T;
2: while Upon arrival of the request ρi do
3: for cloudlet cj ∈ C do
4: Calculate Nij and

∑
t∈T Vi[t] ∗Nij ∗ c(fi) ∗ λtj for cj ;

5: end for;
6: select cloudlet cj′ such that
7:

∑
t∈T Vi[t] ∗Nij′ ∗ c(fi) ∗ λtj′ = mincj∈C{

∑
t∈T Vi[t] ∗Nij ∗

c(fi) ∗ λtj};
8: if payi −

∑
t∈T Vi[t] ∗Nij′ ∗ c(fi) ∗ λtj′ > 0 then

9: Admit request ρi, update Xi ← 1 and Yij′ ← 1;
10: Update δi ← payi −

∑
t∈T Vi[t] ∗Nij′ ∗ c(fi) ∗ λtj′ ;

11: According to the selected cloudlet cj′ , and execution timeslot
t ∈ T

′
i,

12: λtj′ ← λtj′ ∗ (1 +
Nij′∗c(fi)

capj′)
) +

Nij′∗c(fi)∗payi
di∗capj′

;

13: else
14: Reject request ρi;
15: end if;
16: end while;

update to λtj , which is associated with the selected cloudlet

cj . By the update function (34) of λtj , we have

ΔD =
∑

t∈T′
i

capj ∗Δλtj + δi

=
∑

t∈T′
i

capj∗(Nij∗c(fi)
capj

∗ λtj +
Nij ∗ c(fi) ∗ payi

di ∗ capj)+δi

=
∑

t∈T′
i

(Nij ∗ c(fi) ∗ λtj) +
∑

t∈T′
i

(
Nij ∗ c(fi) ∗ payi

di
) + δi

=
∑

t∈T
Vi[t] ∗Nij ∗ c(fi) ∗ λtj + δi +Nij ∗ c(fi) ∗ payi

=payi +Nij ∗ c(fi) ∗ payi (35)

=(1 +Nij ∗ c(fi)) ∗ payi
≤(1 + amax) ∗ payi
=(1 + amax) ∗ΔP. (36)

Notice that Inequality (35) holds, because from the update

function (33), λtj is the value derived by identifying a cloudlet

cj with min
∑

t∈T Vi[t] ∗ Nij ∗ c(fi) ∗ λtj , we have payi =∑
t∈T Vi[t] ∗Nij ∗ c(fi) ∗ λtj + δi. Hence, the lemma follows.

Lemma 5. Algorithm 1 delivers a feasible solution for P3.

Proof: Following Algorithm 1, Constraint (32) is

satisfied by the update rule of δi when request arrives.

Notice that the update function (34) of λtj is non-decreasing,

payi −mincj∈C{
∑

t∈T Vi[t] ∗ Nij ∗ c(fi) ∗ λtj} thus is non-

increasing. Constraint (32) still holds when updating the value

of λtj . The lemma then follows.

Denote by paymax and paymin the maximum and minimum

payments, dmax and dmin the maximum and minimum exe-

cution durations among requests, and capmax and capmin the

maximum and minimum capacities of cloudlets, respectively.

736

Lemma 6.

λtj ≥ paymin

dmax
∗ ((1 + amin

capmax
)
∑

ρi∈R
Vi[t]∗Yij − 1). (37)

Proof: We prove the claim by induction. Clearly, the RHS

of Inequality (37) is 0 before the arrival of the first request.

Thus, this induction hypothesis holds when λtj = 0. Let

λtj(start) and λtj(end) be the values of variable λtj before

and after request ρi′ arrives. We then perform the induction

based on whether or not the value of λtj is updated.

Case (i). λtj is not updated. This happens when the request

is either rejected, or admitted but its VNF instances are not

placed in cloudlet cj , or its execution time slots do not include

time slot t, i.e., Vi′ [t]∗Yi′j = 0. In this case, there is no update

on λtj , i.e., λtj(end) = λtj(start). We then have

λtj(end) =λtj(start)

≥paymin

dmax
∗ ((1 + amin

capmax
)
∑

ρi∈R\i′ Vi[t]∗Yij − 1)

≥paymin

dmax
∗ ((1 + amin

capmax
)
∑

ρi∈R\i′ Vi[t]∗Yij∗

(1 +
amin

capmax
)Vi′ [t]∗Yi′j − 1), by Vi′ [t] ∗ Yi′j = 0

=
paymin

dmax
∗ ((1 + amin

capmax
)
∑

ρi∈R
Vi[t]∗Yij − 1).

(38)

Case (ii). λtj is updated. This happens when the request is

admitted and all its VNF instances are placed in cloudlet cj
in time slot t, i.e., Vi′ [t] ∗ Yi′j = 1. We then have

λtj(end) =λtj(start) ∗ (1+Nij ∗ c(fi)
capj

)+
Nij ∗ c(fi) ∗ payi

di ∗ capj
≥λtj(start) ∗ (1 + amin

capmax
)+

amin ∗ paymin

dmax ∗ capmax
.

Apply hypothesis (37), we have

λtj(end) ≥paymin

dmax
∗ ((1 + amin

capmax
)
∑

ρi∈R\i′ Vi[t]∗Yij − 1)∗

(1 +
amin

capmax
) +

amin ∗ paymin

dmax ∗ capmax

=
paymin

dmax
∗ ((1 + amin

capmax
)
∑

ρi∈R\i′ Vi[t]∗Yij∗

(1 +
amin

capmax
)− 1)

≥paymin

dmax
∗ ((1 + amin

capmax
)
∑

ρi∈R\i′ Vi[t]∗Yij∗

(1 +
amin

capmax
)Vi′ [t]∗Yi′j − 1), by Vi′ [t] ∗ Yi′j = 1

=
paymin

dmax
∗ ((1 + amin

capmax
)
∑

ρi∈R
Vi[t]∗Yij − 1).

Hence, the lemma follows.

Lemma 7. λtj <
paymax

amin
∗ (1 + amax

capmin
) + amax∗paymax

dmin∗capmin
.

.

Proof: Recall that the value of λtj is initialized 0. We only

admit a new request ρi if payi −mincj∈C
∑

t∈T Vi[t] ∗Nij ∗
c(fi)∗λtj > 0 and update λtj associated with the cloudlet with

mincj∈C
∑

t∈T Vi[t] ∗Nij ∗ c(fi) ∗ λtj . Then, for the selected

cloudlet cj , we have

payi −
∑

t∈T
Vi[t] ∗Nij ∗ c(fi) ∗ λtj > 0

⇒
∑

t∈T
Vi[t] ∗ λtj <

payi
Nij ∗ c(fi)

⇒
∑

t∈T
Vi[t] ∗ λtj <

paymax

amin

⇒ λtj <
paymax

amin
. (39)

As a result, λtj will not be updated if λtj ≥ paymax

amin
, with

the update function (34) of λtj , we thus have

λtj <
paymax

amin
∗ (1 + Nij ∗ c(fi)

capj
) +

Nij ∗ c(fi) ∗ payi
di ∗ capj

<
paymax

amin
∗ (1 + amax

capmin
) +

amax ∗ paymax

dmin ∗ capmin
.

(40)

The lemma then follows.

Lemma 8. The violation of the capacity constraint of each
cloudlet for P2 in the solution delivered by Algorithm 1
is bounded by ξ, where ξ = amax

capmin∗log2(1+
amin

capmax
)
∗

log2(
paymax∗dmax

paymin
∗ (1

amin
+ amax

amin∗capmin
+ amax

dmin∗capmin
)+1).

Proof: Combining lemmas 6 and 7, we have

paymin

dmax
∗ ((1 + amin

capmax
)
∑

ρi∈R
Vi[t]∗Yij − 1)

<
paymax

amin
∗ (1 + amax

capmin
) +

amax ∗ paymax

dmin ∗ capmin

Then, we have
∑

ρi∈R
Vi[t] ∗ Yij

<
log2(

paymax∗dmax

paymin
∗(1

amin
+ amax

amin∗capmin
+ amax

dmin∗capmin
)+1)

log2(1+
amin

capmax
)

.

(41)

To calculate the capacity violation, we have
∑

ρi∈R
Vi[t] ∗Nij ∗ c(fi) ∗ Yij

≤
∑

ρi∈R
Vi[t] ∗ amax ∗ Yij

≤ amax

log2(1 +
amin

capmax
)
∗ log2(

paymax ∗ dmax

paymin
∗

(
1

amin
+

amax

amin ∗ capmin
+

amax

dmin ∗ capmin
) + 1), by (41).

Considering the capacity constraint (9), we have the capacity

violation bounded by ξ. Hence, the lemma follows.

Theorem 1. Given the MEC network G = (V,E), there is
an on-line algorithm Algorithm 1 for the VNF service

737

reliability problem under the on-site scheme, with a (1+amax)-
competitive ratio while the violation of the computing ca-
pacity at any cloudlet is bounded by ξ, where amax =
maxρi∈R,cj∈C{Nij ∗ c(fi)} and ξ is defined in Lemma 8.

Proof: Let OPT3 be the optimal solution of P3. Following

Lemma 4, we have P ≥ D
1+amax

. Following Lemma 5, D

is a feasible solution to P3, thus, D ≥ OPT3 as P3 is

a minimization problem. Following the weak duality and

Lemma 2, we have OPT3 ≥ OPT2 and OPT2 ≥ OPT1.

We then have

P ≥ D

1 + amax
≥ OPT3

1 + amax
≥ OPT2

1 + amax
≥ OPT1

1 + amax
.

Following Lemma 4, P is the value of objective function

to P2 which is the LP relaxation of P1. In Algorithm 1, we

always update the decision variables as 0 or 1. So the solution

delivered by Algorithm 1 is also the solution to P1 and P is

the value of the objective function of P1 as well. Combining

Lemma 8, the violation of the computing capacity at cloudlets

is bounded by ξ.

The time complexity analysis is omitted due to space

limitation.

V. ALGORITHM FOR THE VNF SERVICE RELIABILITY

PROBLEM UNDER THE OFF-SITE SCHEME

In this section, we deal with the VNF service reliability

problem under the off-site scheme. We denote this problem as

P4. The strategy for this problem is similar to the one for P1.

That is, we first consider the LP relaxation of P4 and denote

this relaxation as P5. We then solve P6 which is the dual of P5.

A feasible solution to P6 ultimately returns a feasible solution

to P4. As P4 is an INP problem in Section III, the primal-dual

dynamic updating technique cannot be applied to this INP

problem directly due to the fact that both Inequalities (16)

and (17) in its INP formulation are nonlinear. Fortunately,

through a non-trivial equivalent transformation, we can convert

the INP formulation of P4 into an equivalent ILP formulation,

and solve the problem. As Inequalities (16) and (17) are

reliability constraints that are driven from Inequality (10), we

focus on converting Inequality (10) into a linear one, we thus

have
∏

cj∈C
(1− r(fi) ∗ r(cj) ∗ Yij) ≤ 1−Ri, ∀ρi ∈ R. (42)

Property 1. Function ln(x) is monotonically increasing with
the growth of the value of x > 0, i.e., when 0 < x1 ≤ x2,
ln(x1) ≤ ln(x2).

Since 0 < r(ci) < 1, 0 < r(cj) < 1, 0 < Ri < 1 and

Yij ∈ {0, 1}, it is clear that
∏

cj∈C(1−r(fi)∗r(cj)∗Yij) > 0
and 1 − Ri > 0. With regard to Property 1, we show that

Inequality (42) is equivalent to the following Inequality.

ln
∏

cj∈C
(1− r(fi) ∗ r(cj) ∗ Yij) ≤ ln (1−Ri),

⇒
∑

cj∈C
ln (1− r(fi) ∗ r(cj) ∗ Yij) ≤ ln (1−Ri). (43)

Lemma 9.

ln (1− r(fi) ∗ r(cj) ∗ Yij) = (ln (1− r(fi) ∗ r(cj))) ∗ Yij ,

Yij ∈ {0, 1}, ∀ρi ∈ R, ∀cj ∈ C.

Due to space limitation, the proof is omitted.

Following Lemma 9 and Inequality (43), we have ∀ρi ∈ R,

∑

cj∈C
(ln (1− r(fi) ∗ r(cj))) ∗ Yij ≤ ln (1−Ri). (44)

Inequality (43) can be rewritten as follows,

L ∗Xi ≤
∑

cj∈C
(ln (1− r(fi) ∗ r(cj))) ∗ Yij ≤ ln (1−Ri) ∗Xi,

(45)

where L = minρi∈R{
∑

cj∈C ln (1− r(fi) ∗ r(cj))} is a lower

bound of
∑

cj∈C(ln (1− r(fi) ∗ r(cj)))∗Yij . L is constant as

both r(fi) and r(cj) are constants.

Lemma 10. Inequality (45) meets the reliability requirement
when a request ρi is admitted, and no VNF instance will be
placed in cloudlets when the request is rejected.

Proof: If Xi = 1, request ρi is admitted, Inequality (45)

is shown as follows.

L ≤
∑

cj∈C
(ln (1− r(fi) ∗ r(cj))) ∗ Yij ≤ ln (1−Ri), ∀ρi ∈ R.

(46)

It can be seen that L ≤∑
cj∈C(ln (1− r(fi) ∗ r(cj))) ∗Yij

always holds, while
∑

cj∈C(ln (1− r(fi) ∗ r(cj))) ∗ Yij ≤
ln (1−Ri) by Inequality (44). Otherwise (Xi = 0), request

ρi is rejected. We have

0 ≤
∑

cj∈C
(ln (1− r(fi) ∗ r(cj))) ∗ Yij ≤ 0

⇒
∑

cj∈C
(ln (1− r(fi) ∗ r(cj))) ∗ Yij = 0.

(47)

Since 0 < r(fi) < 1, and 0 < r(cj) < 1, we have Yij = 0
for each cloudlet cj ∈ C, i.e., no VNF instance will be placed

in any cloudlet. The lemma then follows.

P4 now can be reformulated as an equivalent ILP as follows.

maximize
∑

ρi∈R
Xi ∗ payi, (48)

subject to:

∑

ρi∈R
Vi[t] ∗ c(fi) ∗ Yij ≤ capj , ∀t ∈ T, ∀cj ∈ C, (49)

∑

cj∈C
(ln (1− r(fi)∗r(cj)))∗Yij≤(ln (1−Ri))∗Xi, ∀ρi ∈ R,

(50)
∑

cj∈C
(ln (1− r(fi) ∗ r(cj))) ∗ Yij ≥ L ∗Xi, ∀ρi ∈ R, (51)

Xi ∈ {0, 1}, ∀ρi ∈ R, (52)

Yij ∈ {0, 1}, ∀ρi ∈ R, ∀cj ∈ C. (53)

738

We then perform the LP relaxation of the defined ILP, and

thus P5 can be reformulated equivalently as follows.

maximize
∑

ρi∈R
Xi ∗ payi, (54)

subject to

(49), (50), (51),

Xi ≤ 1, ∀ρi ∈ R, (55)

Xi ≥ 0, Yij ≥ 0, ∀ρi ∈ R, ∀cj ∈ C. (56)

Lemma 11. Any feasible solution for P4 is a feasible solution
for P5. Let OPT4 and OPT5 be the optimal solutions to P4
and P5, respectively. Then, we have OPT4 ≤ OPT5.

We then have P6, which is the dual of P5 as follows,

minimize
∑

t∈T,cj∈C
capj ∗ λtj +

∑

ρi∈R
δi, (57)

subject to

ln (1−Ri) ∗ βi + L ∗ μi + δi ≥ payi, ∀ρi ∈ R, (58)
∑

t∈T
Vi[t] ∗ c(fi) ∗ λtj + ln (1− r(fi) ∗ r(cj)) ∗ (βi − μi) ≥ 0,

∀ρi ∈ R, ∀cj ∈ C, (59)

λtj ≥ 0, βi ≥ 0, μi ≥ 0, δi ≥ 0, ∀ρi ∈ R, ∀cj ∈ C, ∀t ∈ T,
(60)

where λtj , βi, μi and δi are dual variables corresponding to

constraints (49), (50), (51) and (55) respectively.

Let us first examine Constraint (58). Because L is a lower

bound of
∑

cj∈C(ln (1− r(fi) ∗ r(cj)))∗Yij , it can be treated

as −∞ in an extreme case. To satisfy this constraint, with

μi ≥ 0, ∀ρi ∈ R, we can set μi = 0 and it can be eliminated.

Then, constraints (58) and (59) can be rewritten as follows.

βi ≥ payi−δi
− ln (1−Ri)

, ∀ρi ∈ R, (61)

βi ≤
∑

t∈T
Vi[t]∗c(fi)∗λtj

− ln (1−r(fi)∗r(cj)) , ∀ρi ∈ R, ∀cj ∈ C. (62)

From Inequality (62), we have

βi ≤ min
cj∈C

∑
t∈T Vi[t] ∗ c(fi) ∗ λtj

− ln (1− r(fi) ∗ r(cj)) , ∀ρi ∈ R. (63)

Combining Inequalities (61) and (63), we have ∀ρi ∈ R,

payi − δi
− ln (1−Ri)

≤ min
cj∈C

∑
t∈T Vi[t] ∗ c(fi) ∗ λtj

− ln (1− r(fi) ∗ r(cj)) . (64)

Lemma 12. If Inequality (64) holds, ∀ρi ∈ R, there always
exists a feasible βi to satisfy constraints (58) and (59).

Proof: Because Vi[t] ≥ 0, c(fi) > 0, λtj ≥ 0, 0 <
r(fi) < 1, and 0 < r(cj) < 1, ∀ρi ∈ R, ∀cj ∈ C, ∀t ∈ T,

then mincj∈C
∑

t∈T
Vi[t]∗c(fi)∗λtj

− ln (1−r(fi)∗r(cj)) ≥ 0. As βi ≥ 0, if Inequality

(64) holds, there always exists a certain βi to make the

following inequality hold.

payi − δi
− ln (1−Ri)

≤ βi ≤ min
cj∈C

∑
t∈T Vi[t] ∗ c(fi) ∗ λtj

− ln (1− r(fi) ∗ r(cj)) . (65)

Algorithm 2 An on-line algorithm for the VNF service

reliability problem under the off-site Scheme

Input: An MEC network G = (V,E) and incoming requests.
Output: An on-line scheduling of incoming requests.
1: Initialize λtj =0, ∀cj ∈ C, ∀t ∈ T;
2: Upon arrival of the request ρi
3: for cloudlet cj ∈ C do
4: Calculate

∑
t∈T

Vi[t]∗λtj

− ln (1−r(fi)∗r(cj)) ;

5: if payi + ln (1−Ri) ∗ c(fi) ∗
∑

t∈T
Vi[t]∗λtj

− ln (1−r(fi)∗r(cj)) ≤ 0 then
6: no VNF instance is placed at cloudlet cj ;
7: end if;
8: end for;

9: Sort cloudlets in non-decreasing order of

∑
t∈T

Vi[t]∗λtj

− ln (1−r(fi)∗r(cj)) ;

10: while consider cloudlet cj in the sorted cloudlet sequence do
11: if (cj has enough residual resource during the execution timeslots of

request ρi) then
12: S(i)← S(i) ∪ {cj} /* S(i) is set of cloudlets for hosting its

VNF instances of request ρi */
13: if the reliability requirement of ρi is met with S(i) then
14: break ;
15: end if;
16: end if;
17: end while;
18: if the reliability requirement of ρi is met with S(i) then
19: Admit request ρi by putting one VNF instance in each of the selected

cloudlets;
20: Update λtj by formula (67);
21: else
22: Reject request ρi;
23: end if;

Inequalities (61) and (62) then hold. Thus, constraints (58)

and (59) hold, and the lemma follows.

Following Lemma 12, the dual variable βi now can be

eliminated. Inequality (64) can be rewritten as follows, ∀ρi ∈
R,

δi ≥payi + ln (1−Ri) ∗ c(fi) ∗ min
cj∈C

∑
t∈T Vi[t] ∗ λtj

− ln (1− r(fi) ∗ r(cj)) .
(66)

Clearly, we now only need to consider constraint (66), and

two dual variables λtj ≥ 0 and δi ≥ 0, ∀ρi ∈ R, ∀cj ∈
C, ∀t ∈ T to solve the problem. We devise an on-line

algorithm Algorithm 2 for the VNF service reliability
problem under the off-site scheme. The dual variable λtj is 0

initially. We then calculate
∑

t∈T
Vi[t]∗λtj

− ln (1−r(fi)∗r(cj)) for each cloudlet

cj . If payi + ln (1−Ri) ∗ c(fi) ∗
∑

t∈T
Vi[t]∗λtj

− ln (1−r(fi)∗r(cj)) ≤ 0, no

VNF instance will be placed in cloudlet cj . What followed is

to sort cloudlets in non-decreasing order of
∑

t∈T
Vi[t]∗λtj

− ln (1−r(fi)∗r(cj)) .

We finally identify a set of cloudlets for hosting VNF instances

of the request in their sorted order until it exists a scheduling

such that the capacity of each chosen cloudlet and the reliability

requirement of the request is met. If such scheduling can not

be found, the request is rejected. Otherwise, the request is

admitted by putting one VNF instance in each of the selected

cloudlets and the value of δi is updated as follows.

λtj :=λtj(1 +
ln (1−Ri) ∗ c(fi)

ln (1− r(fi) ∗ r(cj)) ∗ capj)

+
ln (1−Ri) ∗ c(fi) ∗ payi

ln (1− r(fi) ∗ r(cj)) ∗ di ∗ capj , (67)

739

where di is the execution duration.

Theorem 2. Given an MEC network G = (V,E), there is
an on-line algorithm, Algorithm 2, for the VNF service
reliability problem under the off-site scheme, which runs in
polynomial time.

Proof: Although Algorithm 2 aims to solve P5 that is

a LP relaxation of P4, we always select a cloudlet instead of

a fraction of a cloudlet in Algorithm 2. Furthermore, the

solution delivered meets the capacity constraints on the selected

cloudlets until the reliability requirement of each admitted

request is met. If the reliability requirement of a request

cannot be met, the request will be rejected. Thus, no capacity

constraints on cloudlets are violated. Due to space limitation,

the time complexity analysis of the proposed algorithm is

omitted.

VI. PERFORMANCE EVALUATION

In this section, we study the performance of the proposed

algorithms for the VNF service reliability problem under both

on-site and off-site schemes.

A. Environment settings

To evaluate the performance of the proposed algorithm

Algorithm 1 under the on-site scheme, we do not directly

implement the proposed algorithm, because the solution deliv-

ered by the algorithm may violate resource capacity constraints

on cloudlets and links. Thus, for the on-site case, we adopt the

scaling approach [14] to avoid the resource capacity violation.

We augment the required amount of resource for all users, i.e.,

we scale the amount of resource required for implementing the

requested VNF instances such that no actual capacity constraint

violation occurs. We assume that there are 10 types of VNFs

with reliabilities between 0.9 and 0.9999 and the amounts of

computing resource demanded for their implementations are

ranged from 1 to 3 computing units [15]. We adopt real network

topologies in [18] while requests along with the reliability

and capacity of each cloudlet are randomly generated, using

the data sets in [19]. We introduce two benchmarks that are

used to evaluate the proposed algorithm performance. The

first one is a greedy algorithm which always tries to admit

all coming requests by preferring to place VNF instances in

cloudlets with high reliabilities. Then, as we formulate the

problem as an ILP under the on-site case while we reduce

the problem under the off-site scheme from an INP to an ILP,

we are able to obtain optimal results of the problems in its

off-line setting by utilizing CPLEX Optimizer. To investigate

the impact of variation of request payment rates, we denote the

payment rate of each request ρi as pri with pri =
payi

di∗c(fi)∗Ri
,

where payi, di, c(fi) and Ri are the payment, execution

duration, resource consumption of the number of requested

VNF instances, and the reliability requirement of request ρi,
respectively. The maximum and minimum payment rate are

denoted by prmax and prmin, respectively. The ratio H of

prmax to prmax is defined as the variation of request payment

rates, i.e., H = prmax

prmin
. Denote by rcmax and rcmin the

maximum and minimum cloudlet reliabilities respectively. The

ratio of rcmax to rcmin is defined as the variation of cloudlet

reliabilities which is denoted as K, i.e., K = rcmax

rcmin
.

B. Performance evaluation of the proposed algorithms

As the number of requests is an essential factor in evaluating

on-line algorithms. When the number of requests is large, it

can be seen that not all requests can be admitted due to the

limited network resource available. So we need a strategy

to maximize the revenue collected by admitting requests

without the knowledge of future request arrivals. We keep

the other settings and parameters the same such as the cloudlet

capacities, and only increase the number of requests in the

given time horizon. In addition, the requirements and payments

of requests are randomly generated but in the same specific

ranges respectively. Figure 1 demonstrates the performance

of different algorithms by varying the number of requests

considered.

200 400 600 800

2,000

4,000

6,000

Number of requests

R
ev

en
u

e

Optimal Solution
Algorithm 1

Greedy Algorithm

(a) Performance of Algorithm 1

200 400 600 800
1,000

2,000

3,000

4,000

5,000

6,000

Number of requests

R
ev

en
u

e

Optimal Solution
Algorithm2

Greedy Algorithm

(b) Performance of Algorithm 2

Fig. 1. Performance of the proposed algorithms by varying numbers of
requests.

We first evaluate the performance of Algorithm 1 by

varying the number of requests in a given finite horizon.

Figure 1(a) shows that Algorithm 1 always achieves better

performance than that by the greedy algorithm. Notice that

when the number of requests is small, both Algorithm 1 and

the greedy algorithm can achieve nearly optimal performance.

This can be justified that the network has abundant resource to

meet the resource demands of all request. However, with the

increase in the number of requests, Algorithm 1 outperforms

the greedy algorithm significantly by 31.8% when the number

of requests reaches 800. We then evaluate the performance of

Algorithm 2 by varying the number of requests in a given

finite horizon. It can be seen from Figure 1(b) that Algorithm 2

outperforms the greedy algorithm by 15.4% in terms of the

performance.

C. Impact of parameters on the performance of the proposed
algorithms.

To exploit the impact of the variation of request payment

rates, we conduct experiments with different values of H by

fixing prmax while varying prmin. Note that among all requests,

the payment rates of requests follow a uniform distribution over

a value interval [prmin, prmax]. Fig 2(a) shows the performance

results of different algorithms.

It can be seen from Figure 2(a) that the revenue decreases

with the growth of the value of H , because we reduce prmin to

740

0 5 10 15 20

1,000

2,000

3,000

4,000

5,000

H

R
ev

en
u

e

Optimal Solution
Algorithm 1

Greedy Algorithm

(a) Impact of H on Algorithm 1

1.2 1.4 1.6 1.8 2

2,000

3,000

4,000

5,000

K

R
ev

en
u

e

Optimal Solution
Algorithm 2

Greedy Algorithm

(b) Impact of K on Algorithm 2

Fig. 2. Impact of parameters on the performance of the proposed algorithms

increase H , i.e., the users tend to pay less but want to consume

more resources. As the total amount of resource is fixed, we

can only collect less and less revenue with the increase in the

value of H . We also notice that the impact of the value of H
is significant when H increases from 1 to 5, but its impact

then diminishes and becomes negligible. This is because the

network tends to reject requests with low payment rates.

The intention of placing VNF instances in reliable cloudlets

seems to consume less resource because of fewer required

backup VNF instances. However, when the number of requests

is large, an optimal strategy should fully utilize the limited

cloud computing resources at different cloudlets.

To investigate the impact of the variation of request payment

rates, we conduct experiments with different K by fixing rcmax

while varying rcmin. Note that among all cloudlets, cloudlet

reliability follows a uniform distribution over the interval

[rcmin, rcmax]. Fig 2(b) shows the performance results. The

experimental results show that Algorithm 2 always achieves

better performance than that of the greedy algorithm by varying

the value of K. It can be seen from Figure 2(b) that the revenue

decreases with the growth of K. It is because we fix rcmax

and reduce rcmin to increase K, i.e., the cloudlets tend to

be less reliable. Albeit the same total amount of available

resource, implementations of requests need to consume more

resource because more backup VNF instances are required

to be established. We also notice that the greedy algorithm

performs poorly, especially when K is large. The justification is

that in the off-site scheme, backup VNF instances are placed in

each of chosen cloudlets to meet the reliability requirements of

requests, i.e., to admit a request, multiple cloudlets with enough

residual resource are usually needed while only one cloudlet is

required in the on-site scheme. The greedy algorithm always

puts VNF instances in reliable cloudlets while the proposed

algorithm and the optimal solution are able to fully utilize all

cloudlets, but the greedy algorithm does not. In the extreme

case where all resource in reliable cloudlets is exhausted, the

greedy algorithm fails to admit any incoming requests in spite

of existing lots of failure-prone cloudlets in the MEC.

VII. CONCLUSION

In this paper, we studied the reliable VNF service pro-

visioning for IoT applications in an MEC environment to

meet service reliability requirements of mobile users. We

first formulated a novel VNF service reliability problem with

the aim to maximize the revenue collected by user request

admissions. We then developed an on-line algorithm with a

provable competitive ratio for the problem under the on-site

scheme with bounded moderate computing resource violations.

We also devised an efficient on-line heuristic for the problem

under the off-site scheme via adopting the primal-dual dynamic

updating technique. We finally evaluate the proposed algorithms

through experimental simulations. The experimental results

demonstrated that the proposed algorithms are promising, and

outperform the mentioned benchmark.

REFERENCES

[1] F. Wang, J. Xu, X. Wang and S. Cui, Joint Offloading and Computing
Optimization in Wireless Powered Mobile-edge Computing Systems, Proc.
of IEEE ICC’17, 2017.

[2] C. Wang, J. Kuo. D. Yang and W. Chen, Green Software-Defined Internet
of Things for Big Data Processing in Mobile Edge Networks, Proc. of
IEEE ICC’18, 2018.

[3] J. Zhang, D. Zeng, L. Gu, H. Yao and M. Xiong, Joint Optimization of
Virtual Function Migration and Rule Update in Software Defined NFV
Networks, Proc of IEEE Globecom’17, 2017.

[4] Y. Sang, B. Ji, G. Gupta, X. Du and L. Ye, Provably Efficient Algorithms
for Joint Placement and Allocation of Virtual Network Functions, Proc of
IEEE Globecom’17, 2017.

[5] W. Ding, H. Yu and S. Luo, Enhancing the Reliability of Services in NFV
with the Cost-efficient Redundancy Scheme, 2017 IEEE International
Conference on Communications (ICC), 2017.

[6] H. Chantre and N. Fonseca, Redundant Placement of Virtualized Network
Functions for LTE Evolved Multimedia Broadcast Multicast Services,
2017 IEEE International Conference on Communications (ICC), 2017.

[7] W. Ding, H. Yu and S. Luo, Enhancing the Reliability of Services in NFV
with the Cost-efficient Redundancy Scheme, Proc. of IEEE ICC’17, 2017.

[8] W. Chang and P. Wang, An Adaptable Replication Scheme in Mobile
Online System for Mobile-edge Cloud Computing, Proc. INFOCOM
WKSHPS, 2017.

[9] B. Han, V. Gopalakrishnan, G. Kathirvel and A. Shaikh, On the Resiliency
of Virtual Network Functions, IEEE Communications Magazine, vol. 55,
no. 7, pp. 152-157, 2017.

[10] J. Pan and J. McElhannon, Future Edge Cloud and Edge Computing for
Internet of Things Applications, IEEE Internet of Things Journal, vol. 5,
no. 1, pp. 439-449, 2018.

[11] Y. Kanizo, O. Rottenstreich, I. Segall and J. Yallouz, Optimizing
Virtual Backup Allocation for Middleboxes, IEEE/ACM Transactions
on Networking, vol. 25, no. 5, pp. 2759-2772, 2017.

[12] J. Fan, M. Jiang and C. Qiao, Carrier-grade Availability-aware Mapping of
Service Function Chains with On-sites, 2017 IEEE/ACM 25th International
Symposium on Quality of Service (IWQoS), 2017.

[13] A. Hmaity, M. Savi, F. Musumeci, M. Tornatore and A. Pattavina, Virtual
Network Function Placement for Resilient Service Chain Provisioning,
2016 8th International Workshop on Resilient Networks Design and
Modeling (RNDM), 2016.

[14] Q. Fan and N. Ansari, Cost Aware Cloudlet Placement for Big Data
Processing at the Edge, Proc. of IEEE ICC’17, 2017.

[15] J. Kong, I. Kim, X. Wang, Q. Zhang, H. Cankaya, W. Xie, T. Ikeuchi
and J. Jue, Guaranteed-availability Network Function Virtualization with
Network Protection and VNF Replication, GLOBECOM 2017 - 2017
IEEE Global Communications Conference, 2017.

[16] M. Beck, J. Botero and K. Samelin, Resilient Allocation of Service Func-
tion Chains, 2016 IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN), 2016.

[17] B. Yin, Y. Cheng, L. Cai and X. Cao, Online SLA-Aware Multi-Resource
Allocation for Deadline Sensitive Jobs in Edge-Clouds, Proc of IEEE
Globecom’17, 2017.

[18] S. Knight et al. The internet topology zoo. IEEE Journal on Selected
Areas in Communications, Vol 29, pp. 17651775, 2011.

[19] Google Cluster Data, J. L. Hellerstein, 2010. Available:
https://ai.googleblog.com/2010/01/google-cluster-data.html. [Accessed: 15-
May- 2018]

741

