
QoS-Aware Task Offloading in Distributed Cloudlets with
Virtual Network Function Services

Mike Jia

Research School of Computer Science

The Australian National University

Canberra, ACT, Australia 2601

u5515287@anu.edu.au

Weifa Liang

Research School of Computer Science

The Australian National University

Canberra, ACT, Australia 2601

wliang@cs.anu.edu.au

Zichuan Xu

School of Software

Dalian University of Technology

Dalian, China 116024

z.xu@dlut.edu.cn

ABSTRACT
Pushing the cloud frontier to the network edge has attracted tremen-

dous interest not only from cloud operators of the IT service/software

industry but also from network service operators that provide vari-

ous network services for mobile users. In particular, by deploying

cloudlets in metropolitan area networks, network service providers

can provide various network services through implementing virtu-

alized network functions to meet the demands of mobile users. In

this paper we formulate a novel task offloading problem in a metro-

politan area network, where each offloaded task requests a specific

network function with a maximum tolerable delay and different of-

floading requests may require different network services. We aim to

maximize the number of requests admitted while minimizing their

admission cost within a finite time horizon. We first show that the

problem is NP-hard, and then devise an efficient algorithm through

reducing the problem to a series of minimum weight maximum

matching in auxiliary bipartite graphs. We also consider dynamic

changes of offloading request patterns over time, and develop an

effective prediction mechanism to release and/or create instances

of network functions in different cloudlets for cost savings. We fi-

nally evaluate the performance of the proposed algorithms through

experimental simulations. Experimental results indicate that the

proposed algorithms are promising.

KEYWORDS
cloudlets; task offloading; request QoS requirement; functional-

ity service virtualization; request admission cost minimization;

network function virtualization; offloading algorithms; wireless

metropolitan area networks; resource allocation of cloudlets.

1 INTRODUCTION
Mobile devices such as smart phones and tablets have become the

main communication tools of users for business, social network-

ing, and personal banking. Due to their portable size, the comput-

ing/storage and energy powering these mobile devices are criti-

cal, making their processing and storage ability very limited. One

promising technique is to offload their tasks to nearby cloudlets

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MSWiM ’17, November 21–25, 2017, Miami, FL, USA
© 2017 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

via WiFi or bluetooth for processing. For example, an inspector

takes a photo of a stranger in his monitoring area, and uploads the

photo to the cloudlets to verify the identity of the stranger, assum-

ing that there is a database of personal identities on the cloudlets.

Cloudlet technology also looks particularly promising for emerging

augmented reality (AR) applications and products. In the recent

2017 F8 Developers Conference, Facebook CEO Mark Zuckerberg

laid out a vision of the near future where artists could display vir-

tual artwork in public spaces [1], and friends could share virtual

notes and objects with each other, using their mobile devices. From

these examples, it can be seen that different offloading tasks have

different network functions and quality of service requirements.

As different network functions in cloudlets are implemented by

different virtual machines (referred to as Virtualized Network Func-

tions (VNFs)), we may group all offloading tasks with the same

network function services together and implement them in virtual

machines. To share the computing resources among offloaded tasks

with the same network service while meeting their individual QoSs,

network service providers usually instantiate some instances of the

VMs of each network function service in each cloudlet.

Provisioning network services in a mobile edge cloud, having

instantiated instances of network function services in its cloudlets,

poses several challenges. That is, how many instances are to be

instantiated at which cloudlets, such that the computing resource

of cloudlets can be maximally utilized while the cost and delay of in-

stance instantiation can be minimized? How should offloaded tasks

be assigned to different cloudlets while meeting their QoSs? and

how can the admission cost of offloaded task requests be minimized

by utilizing existing instances of their requested network function

services? Finally, how can the number of required instances be

predicted, and how should the creation and removal of instances

be managed in the network? In this paper we will address these

challenges, by comprehensively studying the problem of task of-

floading with network function service requirements in a mobile

edge cloud. To the best of our knowledge, we are the first to explore

the possibility of utilizing existing VNF instances of network func-

tion services in cloudlets for cost-effective task offloading while

meeting different QoS requirements of offloaded tasks, by formu-

lating a novel QoS-aware task offloading optimization problem,

and providing an optimization framework. To respond to dynamic

changes of offloading request patterns over time to further reduce

request admission costs, we also develop an effective prediction

mechanism to predict the instance demands in the future through

the removal and creation of different numbers of VNF instances of

each network function service at each cloudlet.

Session: Mobile Cloud/Fog/Edge Computing MSWiM’17, November 21-25, 2017, Miami, FL, USA

109

https://doi.org/10.1145/nnnnnnn.nnnnnnn

The main contributions of this paper are as follows. We first

formulate a novel QoS-aware task offloading problem in a wireless

metropolitan area network consisting of Access Points (APs) and

cloudlets (servers) that are co-located with the APs, where each

offloading task request has a specific network function requirement

with a given tolerable delay, and different offloading tasks request

have different VNFs. We assume some instances of the VNFs have

already been instantiated on the cloudlets, and others can be dy-

namically created if there are sufficient resources in cloudlets. We

aim to maximize the number of offloading requests admitted within

a finite time horizon while minimizing the admission cost of re-

quests and meeting their individual end-to-end delay requirements.

We achieve this by fully making use of the VNF instances in the

cloudlets to reduce the admission cost and shorten the response

time of the requests. We then devise an efficient online algorithm

for offloading request admissions through a non-trivial reduction

that reduces the problem to a series of minimum-weight maximum

matching problems in auxiliary bipartite graphs. We also investi-

gate offloading request patterns over time, and develop an effective

prediction mechanism that can predict the numbers of instances of

each network function at different cloudlets, through releasing the

occupied resources by idle VNF instances back to the system, and

creating new VNF instances of other highly demanded network

functions in cloudlets to meet the need of future offloading task

requests. We finally evaluate the performance of the proposed al-

gorithms through experimental simulations. Experimental results

demonstrate that the proposed algorithms are promising.

The remainder of the paper is arranged as follows. Section 2 will

survey the state-of-the-arts on this topic, and detail the difference

of this work from previous studies in task offloading. Section 3

will introduce the system model, notations and problem definition.

Section 4 will devise algorithms for the problem. Section 5 will pro-

vide some experimental results on the performance of the proposed

algorithm, and Section 6 concludes the paper.

2 RELATEDWORK
Offloading tasks to cloudlets has been extensively studied in the

past several years. Generally, the model for application offloading

systems [2, 3] in mobile cloud computing consists of a client com-

ponent on a mobile device, and a server component on the cloudlet

to remotely execute offloaded tasks from the device. As the options

for user applications are too numerous for server components to

be stored in the cloudlet, most works [2, 4, 5] assume the use of

virtual machines (VM) as a platform for task offloading. A VM im-

age of a mobile device is transferred to the cloudlet, and tasks are

remotely executed on the device’s VM in the cloudlet, using task

offloading operations. Once a task on the VM in the cloudlet has

been executed, the result will be returned to its user.

Most previous studies assumed that each user connects to a

dedicated VM in the cloudlet, without consideration of whether an

existing VM for the same application could be used to serve multiple

users. However, as many emerging applications and services are

location-specific, it is more realistic to assume that multiple users in

a local area will request the same computing service from cloudlets.

In [6], the authors introduced a mobile task offloading architecture

specifically for mobile augmented reality in a museum setting. In

their model, a user turns on his mobile device’s camera to capture

a scene. The location and direction of the camera are calculated

for each captured video frame and the data is sent to a nearby

cloudlet where a rendering process generates the 2D image of a

virtual exhibit, which is then overlayed on top of the original video

frame. The resulting image is then sent back to the user’s device

for display, creating the impression of seeing the virtual exhibit in

the real world through the camera viewport. Since the processing

of each user video frame can be modeled as an individual task, it

is possible for a VM instance on a cloudlet to serve multiple users.

However, it then becomes a challenge to assign users to existing

VM instances, or create additional instances to serve more users

while ensuring the QoS requirement of each user is met, as they

share computing resources on the cloudlet.

In recent years, several studies focused on network planning

problems in deploying cloudlets for public use. For example, Jia

et al [7] considered the assignment of user requests to different

cloudlets in a WMAN, by developing a heuristic for it. Jia et al [8]

also dealt with minimizing the maximum delay among offloaded

tasks in a distributed cloudlet network through balancing the work-

load between cloudlets. Xu et al [9, 10] devised assignment al-

gorithms for user offloading requests to different cloudlets, by

proposing efficient approximation and online algorithms with per-

formance guarantees. Xia et al [11] considered opportunistic task

offloading under link bandwidth, mobile device energy, and cloudlet

computing capacity constraints. Xia et al [12] studied the location-

aware task offloading problem for mobile devices. All of these men-

tioned studies assumed that each offloaded task will be assigned

the amounts of computing resources they demanded, there is no

consideration for whether there are already VMs in cloudlets for

serving them, not to mention whether such services meet their

QoS requirements. However, the emergence of AR applications and

IoT computing strongly suggest that many offloaded tasks may

request for the same type of services in the near future. If the VM

for that service has been established, the offloading cost will be less

expensive and the service can be carried out immediately.

3 PRELIMINARIES
In this section, we first introduce the system model and notations,

and then define the problems precisely.

3.1 System model
Given a WMAN G = (V ∪ C,E) where V is the set of AP nodes

and E is the set of links between AP nodes. There is a subset of

nodes C ⊆ V of cloudlets co-located with the AP nodes. Each

cloudlet c j ∈ C has computing capacity capj with 1 ≤ j ≤ m and

m = |C |. Assuming that time is divided into equal time slots. The

amounts of available resources at the beginning of different time

slots varies, due to request admissions and departures. Let capj (t)
be the available computing capacity of cloudlet c j at time slot t
with 1 ≤ j ≤ m.

Computing resource in the cloudlets is used to instantiate a

certain number of VNFs to implement offloading requests from

mobile users. We thus assume that there is a set of network func-

tions fi ∈ F with 1 ≤ i ≤ N and N = |F |, which are virtualized

and implemented in VMs in cloudlets. If the implementation of an

Session: Mobile Cloud/Fog/Edge Computing MSWiM’17, November 21-25, 2017, Miami, FL, USA

110

offloading request with a network function fi ∈ F demands the
basic resource unit of fi , we term this implementation as an instance
of network function fi for the request, or an VNF instance of fi ;
otherwise (if the implementation of the request needs x (≥ 1) times

the basic resource unit of fi), we term that the request implemen-

tation takes x instances of fi for each fi ∈ F . We further assume

that each cloudlet has instantiated some instances of virtualized

network functions. Denote by ni j (t) the number of instantiated

instances of fi in cloudlet c j at time slot t .
Each mobile device can offload its tasks to cloudlets inG , via APs.

Consider a set of requests for offloading their tasks to the cloudlets

inG for processing, each request with a specified network service

will be implemented in a VM of that function, which is termed as

an instance of the specified virtualized network function (VNF).

Let S (t) be the set of user requests at time slot t . Each user request

rk ∈ S (t) is represented by a tuple (idk , lock ,VNFk , λk ,dk), where
idk is the request identity, lock is the location of the request user,

VNFk is the computing service that rk requests, which in fact is a

virtualized network function, λk ≥ 0 is the packet rate of rk , and
dk is the end-to-end delay requirement of rk .

3.2 End-to-end delay requirements of
offloading requests

The end-to-end delay experienced by each admitted request rk
include the queuing delay that it spent in waiting for an available

instance of its VNF, processing delay by its assigned VNF instance,

instantiation delay of creating a new VNF when necessary, and

network latency from its location lock to its assigned cloudlet c j .
Queuing delay and processing delay: each offloaded packet

with packet rate λk of rk will be queued in the VM of VNFk in a

cloudlet prior to its processing by the VM, which will incur both

queuing and processing delays when each packet passes through

the VM of the VNF. To differentiate user requests with different

delay requirements, the requests in each cloudlet ck are partitioned

into N groups with each group consisting of requests for the same

service. We thus assume that there is an M/M/n queue at each

cloudlet for each type of service fi ∈ F . Each group of requests

will eventually be processed by instances of network service fi ∈ F ,

with 1 ≤ i ≤ N . The average queuing delay of the M/M/n queue

for function fi at cloudlet c j thus is

τk j (λ) =
1

ni j (t)µi − λ
, (3.1)

where λ is the sum of packet rates of all requests that require VNF

fi and are assigned to cloudlet c j , and µi is the data processing rate
of VNF fi . Considering that the data processing rate of VNF fi is
µi , the processing delay of fi thus is

1

µi .

Instantiation delay:without loss of generality, we assume that

the instantiation delay of an VNF instance is a given constant dinsi
for VNF fi .

Network latency: assuming that data traffic in network G is

transferred via a shortest path between each pair of source and

destination, the network latency of request rk thus is the accumu-

lative delay incurred in the edges of a shortest path plock ,c j from

its source location lock to its assigned cloudlet c j . Let d (e) be the

delay of link e of network G, the network latency dnetk thus is

dnetk =
∑

e ∈plock ,cj

d (e). (3.2)

The end-to-end delay Dk experienced by a request rk for VNF

fi at cloudlet c j thus can be calculated by

Dk =

τk j +
1

µi + d
net
k , if ni j (t) > 0

dinsi + 1

µi + d
net
k , otherwise.

(3.3)

The end-to-end delay requirement of each offloading request rk
thus is

Dk ≤ dk . (3.4)

3.3 The admission cost
For each request rk ∈ S (t) with network function fi (= VNF ik),
its implementation can either make use of some of existing VNF

instances of fi in a cloudlet c j if it joins in other admitted requests

with the same network function fi , and the delay requirements of

all requests can be met. Specifically, let Ri j be the set of offloaded

requests with network function fi in cloudlet c j when rk is being

considered, and assume that the admission of rk to Ri j will not
violate the delay constraint of any of them. The operational cost of

admitting rk in c j then is the cost sum of its data packet transmis-

sion cost (between its location via its nearby AP) and cloudlet c j
and its processing cost c (VNF ik) at c j . Otherwise (the addition of

rk resulting in the violation of computing or delay constraints of re-

quests in Ri j), if there are available computing resources in cloudlet

c j , we then allocate the demanded resources for rk by increasing

the number of instances for VNF ik in c j , the admission costw (rk)
of rk per packet thus is the cost sum of its packet transmission cost,

the creation of new instances for rk , and its processing cost in c j .

3.4 Problem definition
Given a WMANG (V ∪C,E), a set of user requests S (t) at time slot

t with each request having an end-to-end delay requirement, and

a finite time horizon T , assume that the set of network functions

by the requests in S (t) is F , and some instances of each network

function f ∈ F have already been installed in cloudletsC , the opera-
tional cost minimization problem inG is to find a schedule of request

admissions such that as many requests as possible are admitted

during a monitoring period of T while the cumulative operational

cost of admitted requests is minimized, subject to the computing

resource capacity constraint, and end-to-end delay requirement of

each user request.

Theorem 3.1. The operational cost minimization problem inG (V∪
C,E) is NP-hard.

Proof We consider an extreme case where there are only two

cloudlets in the network with identical computational capacities.

We assume that each request in S (t) has a different service (i.e., a
different network function), we can ignore the delay requirement of

each request. Our task is to assign the requests to the two cloudlets

to see whether all of the requests can be admitted. Clearly, for

each request rk ∈ S (t), we need to create a VM for implementing

its network function that is associated with computing resource

Session: Mobile Cloud/Fog/Edge Computing MSWiM’17, November 21-25, 2017, Miami, FL, USA

111

demand ck , subject to the computing capacity constraints on the

two cloudlets.

We reduce the well-known summation problem to the mentioned

assignment problem in polynomial time as follows. Given n positive

integers a1,a2, . . . ,an , the summation problem is to partition the n
integers into two subsets such that the sum of integers in each sub-

set is equal, which is NP-hard. As the special case of the minimum

operational cost problem is equivalent to the summation problem,

the operational cost minimization problem thus is NP-hard too.

4 ONLINE ALGORITHM
In this section we first consider admissions of requests in S (t) in the

beginning of each time slot t . We then deal with dynamic request

admissions within a finite time horizonT , by proposing an efficient

online algorithm for the operational cost minimization problem in

WMAN G (V ∪C,E).

4.1 Algorithm for offloading requests at each
time slot

Given a set of arrived requests S (t) in the beginning of each time

slot t , we aim to admit as many requests in S (t) as possible while
minimizing the admission cost of the admitted requests andmeeting

their delay requirements. The basic idea behind our algorithm is to

reduce the operational cost minimization problem inG to a series of

minimum weight maximummatching problems in a set of auxiliary

bipartite graphs. Each matched edge in the maximum matching

of an auxiliary bipartite graph corresponds to an assignment of

offloading requests to cloudlets in the network G, where the end-
to-end delay requirement of each admitted request can be met. The

detailed description of this reduction is as follows.

For each cloudlet c j , we construct a bipartite graph G j (t) =
(X j ∪ {x0, j },Yj ,Ej ;w), where X j is the set of VNF instances in

cloudlet c j , and x0, j represents available resources for creating new
instances for any of network functions in c j , and Yj is the set of
requests rk ∈ S (t). There is an edge in Ej between a node vi j ∈ X j
and rk ∈ Yj if sharing the resources for rk does not violate the

resource and delay requirements of other running requests for the

network function. Specifically, there is an edge between rk ∈ X j
and the instance node of fi in cloudlet c j if (i) the VNF of rk is fi ; (ii)
the demanded instance of fi by rk is no greater than ni j (t); (iii) the
addition of rk into the set of admitted requests sharing the instance

does not violate the delay constraints of other admitted requests

in Ri j ; and (iv) the total delay incurred by the assignment of rk is

no greater than dk . The weight assigned to this edge is the cost

of implementing request rk in cloudlet c j , which consists of the

routing cost between the mobile device location and the cloudlet

and the cost of processing the packet at the VNF instance of fi .
There is an edge between rk and x0, j if its demanded computing

resource is no greater than capj (t) and its delay is no greater than

dk (including the instance creation delay). The weight of the edge

thus is the sum of the routing cost, the processing cost and the

instance creation cost for the request.

Assume that there are m cloudlets in G. An auxiliary bipar-

tite graph G (t) =
⋃m
j=1G j (t) = (X (t),Y (t),E (t);w) is then de-

rived from G, where X (t) = ∪mj=1 (X j ∪ {x0, j }), Y (t) =
∑m
j=1 Yj =

{r1, r2, . . . , rn }, and E (t) = ∪
m
j=1Ej .

To admit requests in S (t) in the beginning of each time slot t , the
admission algorithm proceeds iteratively. Let G1 (t) = G (t). Within

iteration l with 1 ≤ l ≤ m, a minimum weight maximum matching

Ml inGl (t) is found. Then, allocate the demanded resources for the

requests inMl , remove all matched requests inMl from S (t), update
the available instances and cloudlet resources at each cloudlet in the

network, and construct the next auxiliary bipartite graph Gl+1 (t).
This procedure continues until there are no matchings in Gl+1 (t).

The union of all found minimum weight maximum matchings

∪ml=1Ml forms a solution to the problem, i.e., each matched edge

corresponds to an admission of a request in S (t). The weighted

sum

∑L
l=1 c (Ml) of the edges in ∪Ll=1Ml is the implementation

cost of admitted requests in S (t), where L is the number of it-

erations which depends on requests in S (t). Alternatively, L ≤
max

1≤l ≤L {deд(Gl (t))}whichdeд(Gl (t)) is the maximum degree of

nodes in auxiliary graphGl (t). The details are given in Algorithm 1.

Algorithm 1 Admission_Algorithm_Each_Time_Slot (G (t), S (t))

Require: m cloudlets with each having its available resource capacity

capj (t), the number of instances of VNFs of each fi ∈ F , and a set of

requests S (t) at each time slot t .
Ensure: maximize the number of requests admitted (i.e., a subset S ′(t) ⊆

S (t)) for each time slot t while minimizing the total admission cost.

For each request rk , if it is admitted, then to which cloudlet it will be

sent and to which instance of VNF it should join/or create will be given

in the solution.

1: /* perform request admissions for requests in S (t) */
2: Mt ← ∅; costt ← 0; /* the assignment of requests in S (t) while

minimizing their implementation cost costt */
3: Construct the weighted bipartite graph G (t);
4: G1 (t) ← G (t); l ← 1; costt ← 0;

5: while there is a minimum weight maximum matching Ml in Gl (t) do
6: Find the minimum weight maximum matching Ml in Gl (t), by

invoking an efficient algorithm for the weighted maximum matching;

7: if Ml , ∅ then
8: Mt ← Mt ∪Ml ;

9: c (Ml) ←
∑
e∈Ml

w (e);
10: costt ← costt + c (Ml);
11: Allocate resources to the requests in Ml ;

12: Update the amounts of available resources and instances of each

network function at each cloudlet;

13: S (t) ← S (t) \ r (Ml); /* Remove requests in Ml from S (t),
where r (Ml) is the set of requests in Ml */

14: l ← l + 1;
15: Construct Gl (t) according to the updated resources, instances

of VNFs, and the request set S (t);
return Mt corresponds to the assignment of requests in S (t), while
costt is their implementation cost.

4.2 Online algorithm for the minimum
operational cost problem

In the previous subsection, we considered the admissions of of-

floading requests within one time slot. In reality, requests arrive

into or depart from the system dynamically, request admissions at

the current time slot should take into account their impact on the

admissions of requests in future.

Notice that on one hand, new VNF instances of some network

functions have been created to admit newly arrived requests. On

the other hand, idle VNF instances will be released back to the

Session: Mobile Cloud/Fog/Edge Computing MSWiM’17, November 21-25, 2017, Miami, FL, USA

112

system if they will not be used in the near future. Two types of

simple solutions can be adopted to handle such resource releases:

(1) never release VNF instances in case of being used by future

requests; (2) immediately release VNF instances that become idle.

The first solution is based on the rationale that some VNF instances

will be shared with subsequent admitted requests. Thus, in spite of

the departures of some admitted requests, their occupied resources

(or VNF instances) will still be kept by their VMs without releasing

back to the system. Consequently, more and more VNF instances

of each network function in the system will become idle, while

the available resources at each cloudlet become more scarce. This

will incur unnecessary operational costs, while at the same time

preventing new requests from being admitted due to the lack of

VNF instances or computing resources. The second solution is

to avoid maintaining idle instances of VNFs. However, if a VNF

instance is demanded by a request right after its release, the delay

requirement of an admitted request might be violated, considering

that creating a new instance for it will incur a delay. To avoid such

situations, we make VNF creation and release decisions based on a

smart predictionmethod that predicts the idle VNF instance releases

and new VNF instance creations, such that the operational cost is

minimized while the delay requirements of admitted requests are

still met.

In the following we propose a prediction mechanism to predict

idle VNF instance releases and new VNF instance creations to re-

spond to changing request patterns over time. Thus, the system will

perform resource collection, by releasing the occupied resources

by idle VNF instances back to the system if the cost overhead on

maintenance of these idle VNFs is beyond a given threshold after

a certain time slots. Specifically, let ni j (t) be the number of VNF

instances of fi in cloudlet c j at time slot t , its actual usage number is

n′i j (t) (≤ ni j (t)), the number of idle VNF instances of fi in cloudlet

c j in time slot t thus is

δi j (t) = ni j (t) − n
′
i j (t). (4.1)

Let each idle instance of fi in cloudlet c j incur a fixed cost γi j at
each time slot, and there is a given cost overhead threshold θ (≥

n0 ·maxfi ∈F {c (fi)}). The systemwill release the occupied resources

by idle VNF instances at a specific time slot if the accumulative cost

of these idle VNF instances at that time slot is greater than the given

threshold θ . Clearly, at least n′i j VNF instances of fi should be kept

in order to meet the end-to-end delay requirements of the running

requests in Ri j (t). However, consider the worst scenario where an

VNF instance of fi is just released back to the system at the current

time slot, only to have the same instance be created again at the next

time slot to accommodate a new request. To avoid this, we develop

an efficient prediction method to determine the expected number

of instances of each network function to be kept in the system.

To determine which idle VNF instances should be released to the

system, we make use of historic offloading request traces (patterns)

at each cloudlet to predict the number of VNF instances needed of

each network function in that cloudlet in future. Specifically, we

adopt an auto-regression method to predict the number of VNF

instances n̂i j (t) of fi in cloudlet c j at the next time slot,

n̂i j (t) = α1ni j (t − 1) + α2ni j (t − 2) + . . . + αkni j (t − k), (4.2)

where αk ′ (> 0) is a constant with 0 ≤ αk ′ ≤ 1,

∑t
l=1 αl = 1, and

αk1 ≥ αk2 if k1 < k2. Thus, the number of VNF instances of fi in
cloudlet c j should be kept after time slot t is max{n̂i j (t),n

′
i j (t)}.

Similarly, if the number of VNF instances of a network function

fi keeps growing at each time slot, by adding extra computing

resources to its VM, more VNF instances of that network function

will be created. This incurs an extra cost at each instance creation.

Instead, we may create the expected number of VNF instances at

once to meet its future need, instead of adding computing resources

for each new request to its VM incrementally. This can be achieved

by using the similar auto regression method. That is, let ai j (t) be
the number of new VNF instances of fi in cloudlet c j added at

time slot t . If the number of instances added since the last time

slot t0 exceeds a given threshold Ξ, i.e.,
∑t
l=t0

ai j (l) ≥ Ξ, then the

predicted number of new instances âi j of fi added at time slot t is

âi j (t) = β1ai j (t − 1) + β2ai j (t − 2) + . . . + βkai j (t − k), (4.3)

where Ξ is the given threshold, βk ′ (> 0) is a constant with 0 ≤

βk ′ ≤ 1,

∑k
l=1 βl = 1, and βk1 ≥ βk2 if k1 < k2. Thus, the number of

VNF instances of fi after time slot t installed in cloudlet c j should
be âi j (t) + ni j (t).

So far we assumed that there are sufficient resources at each

cloudlet to meet the need of creating different VNF instances. How-

ever, if there are not enough residual resources at each cloudlet

to meet different instance creations, then which VNF instances

should we create? To fairly allocate the computing resource for

instance creations, we proportionally scale down the number of

instances of each different network functions at each cloudlet. In

other words, let RCj be the residual computing resource andDIj the
total computing resource demanded by different instance creations

in cloudlet c j . If DIj ≤ RCj , this implies that all needed numbers of

VNF instances can be created; otherwise, let µ j =
RCj
DIj be the ratio,

for each requested number of VNF instances, e.g., the total comput-

ing resource for creating ai j (t) VNF instances for fi is ai j (t)C (fi),

then we actually create a′i j (t) = ⌊
ai j (t)C (fi) ·µ j

C (fi)
⌋ VNF instances for

fi at c j . The details are given in Algorithm 2.

5 PERFORMANCE EVALUATION
In this section we evaluate the performance of the proposed algo-

rithms by experimental simulations. We also study the impact of

different parameters on algorithmic performance.

5.1 Experimental settings
We assume that a WMAN G (V ,E) follows a network topology [7]

consisting of 100 APs, where the network is generated using the

Barabasi-Albert Model [13], and there are 20 cloudlets randomly

deployed in G. Each cloudlet c j has a computing capacity capj
within the range from 2,000 to 4,000 MHz [14]. We allow 20 network

functions to be available on the cloudlets, where each instance of

a network function requires between 40 and 400MHz. We assume

that the delay of a link between two APs in the network is between

2 milliseconds (ms) and 5ms [15]. The running time obtained is

based on a machine with a 3.4GHz Intel i7-4770 CPU and 16GiB

RAM.

Session: Mobile Cloud/Fog/Edge Computing MSWiM’17, November 21-25, 2017, Miami, FL, USA

113

Algorithm 2 Admission_Algorithm_Finite_Horizon (G (t), S (t))

Require: m cloudlets with each having its available resource capacity

capj (t), a number of instances of VNFs of each fi ∈ F , and a set of

requests S (t) at each time slot t for a finite time horizon 1 ≤ t ≤ T ,
each idle instance of VNF fi has a cost γi j and the given cost threshold

Ξ.
Ensure: maximize the number requests admitted (i.e., a subset S ′(t) ⊆

S (t)) for all t during the finite time horizon T with 1 ≤ t ≤ T while

minimizing the total operational cost. For each request rk , if it is ad-
mitted, then to which cloudlet it will be sent and to which instance of

VNF it should join/or create will be given in the solution.

1: cost ← 0;M ← ∅; /* the total cost of admitted task offloading requests

to the system during a period of T , and request assignment M */;

2: for all t with 1 ≤ t ≤ T do
3: /* STAGE one: (a) perform release some occupied resources by idle

instances if needed */

4: li j ← t0 /* The resource release procedure was performed in the

last time slot t0 with t0 < t */;
5: for each cloudlet c j do
6: for each fi ∈ F do
7: if

∑t
l=t−li j

δi j (l) · γi j ≥ θ then
8: Predict the number n̂i j (t) of instances of fi to be kept

in c j by Eq. (4.2);

9: Keep max{n′i j (t), n̂i j (t) } instances of fi in cloudlet c j ;
10: Release the occupied resources by the rest ni j (t) −

max{n′i j (t), n̂i j (t) } instances of fi in cloudlet c j ;
11: Update the amounts of available resources at cloudlet

c j ;
12: li j ← t ; /* reset the start time slot of the next idle VNF

instances of fi release in c j */

13: /* STAGE two: (b) increase the number of instances of a network

function fi */;
14: Ii j ← t0 /* the number of instances of fi was increased in the last

time slot t0 with t0 < t */;
15: for each cloudlet c j do
16: for each fi ∈ F do
17: if

∑t
l=t−Ii j

ai j (l) · γi j ≥ Ξ then
18: Predict the number of instances of fi to be increased âi j

by Eq. (4.3);

19: Let RCj be the residual computing resource of cloudlet

c j , and DIj be the total computing resource needed by creating new

instances;

20: if RCj < DIj then
21: There will be ⌊

RCj
DIj
· (ni j (t) + âi j (t))⌋ instances of

fi in cloudlet c j at time slot t ;
22: else
23: There will be ni j (t) + âi j (t) instances of fi in

cloudlet c j at time slot t ;

24: Update the available resources at cloudlet c j ;
25: Ii j ← t ; /* reset the start time slot of the next VNF

instance increase of fi in cloudlet c j */

26: /* STAGE two: perform request admissions for the requests in S (t)
*/

27: Mt and costt will be returned by applying Algorithm 1 to G (t);
28: M ← M ∪Mt ; cost ← cost + costt .

returnM corresponds to the assignment of requests, while cost is the
total admission cost to the system during a period of T ;

Unless otherwise stated, the default settings for network parame-

ters will be as follows. The default number of requests per time slot

is 1,000, each request has a packet rate between 10 and 80 packets

per seconds (similar to the range of application frame rates in typi-

cal interactive applications [16]), and a delay bound dk between 0.2

and 1.2 seconds. The network function requested by each request

is randomly selected from the 20 different network functions.

Using the hourly price of a general purpose m3.xlarge Amazon

EC2 instance as reference, we assume the operating cost is 0.25

per MHz in each time slot, while the cost of instantiating a new

function instance varies between 20 to 50. We assume the cost of

transferring a packet between two APs to be proportional to the

latency, and so the cost of transferring a packet along a network

link varies between 0.002 and 0.005.

We evaluate the proposed algorithms against a greedy baseline

which is described as follows. The greedy algorithm assigns each

request rk to the cloudlet with the highest rank in terms of the

product of its available number of service chain instances and the

inverse of the implementation cost of admitting rk in the cloudlet.

The rationale of this method is to find a cloudlet with high number

of available service chain instances and low implementation cost,

such that as many as requests are admitted while the implementa-

tion cost is minimized. We refer to this highest-rank-first baseline

heuristic and the proposed algorithm as HRF and ALG respectively.
Each experiment plot is the average of 100 simulation runs.

5.2 Algorithm performance within a single
time slot

We first investigate the performance of the proposed algorithm ALG
and algorithm HRF within a single time slot, by varying the number

of requests within the time slot from 600 to 2,400 and creating some

instances of each NFV in each cloudlet randomly.

Fig. 5.1 shows the results. From Fig. 5.1 (a), we can see that

algorithm ALG admits much more requests than algorithm HRF,
while also delivering a lower operation cost, as seen from Fig. 5.1

(b). The reason is as follows.

As both algorithms target requests with the cheapest resource

requirements, an increasing number of low cost requests are admit-

ted as we scale the number of initial requests. However, because

algorithm ALG matches (assigns) several requests to cloudlets si-

multaneously, multiple instances of network functions are placed

among the cloudlets, spreading the workload when subsequent

requests for the network function are admitted. In contrast, as al-

gorithm HRF admits requests one by one, new queues for network

functions are instantiating less frequently. As a result, many re-

quests with tight delay tolerances fail to be admitted by a cloudlet

that has already instantiated their requested network functions,

and thus fewer requests are admitted compared to algorithm ALG.
Initially, when the number of requests is low, algorithm HRF de-

livers a slightly lower operation cost compared to algorithm ALG,
as HRF has instantiated fewer new queues and instances. However,

as the number of admitted requests increases, the operation cost

delivered by algorithm HRF increases sharply as the algorithm is

forced to allocate resources for more expensive requests. The oper-

ation cost delivered by algorithm HRF plateaus, as HRF reaches the

limit in the number of requests it can admit. In contrast, the growth

in operation cost delivered by algorithm ALG is much slower, as

the initially higher operation cost from instantiating more queues

Session: Mobile Cloud/Fog/Edge Computing MSWiM’17, November 21-25, 2017, Miami, FL, USA

114

(a) The number of requests admitted by different al-

gorithms

(b) Operation cost delivered by different algorithms (c) Running time of different algorithms in millisec-

onds

Figure 5.1: Performance of Algorithm ALG and HRF when the number of requests varies from 600 to 2400, while the number of
cloudlets in the network is 20.

and network instances allows subsequent requests be more cheaply

admitted to the network.

Fig. 5.1 (c) illustrates the running time of algorithms ALG and HRF
with the growth of the number of user requests. As can be seen,

the running time increases dramatically for both algorithms with

the number of requests, while the running time of algorithm ALG
increases at a faster rate than that of algorithm HRF.

We next evaluate the performance of algorithms ALG and HRF
within a single time slot, by varying the number of cloudlets be-

tween 4 and 24, while creating some instances of each NFV in each

cloudlet randomly. Fig. 5.2 shows the result.

From Fig. 5.2. (a) we can see that algorithm ALG admits more re-

quests than algorithm HRF. Since low cost requests are admitted into

the network first, the remaining requests are increasingly expensive

and require more cloudlet resources to meet their demands. Due to

algorithm ALG instantiating multiple network function instances

on different cloudlets, requests that have short delay tolerances

are more easily admitted, resulting in a higher number of admitted

requests compared to algorithm HRF.
Fig. 5.2. (b) displays the operation cost of the cloudlets when

the number of requests is 1,500, and the number of cloudlets in

the network ranges from 4 to 24. Both algorithms have similar

plots, and deliver operation costs that have an approximately linear

correlation with the number of cloudlets. While algorithm ALG
delivers a slightly higher operation cost compared to algorithm

HRF as the number of cloudlets increases, it should be noted that

algorithm ALG admits significantly higher numbers of requests

compared to algorithm HRF.
Fig 5.2. (c) illustrates the running time of algorithm ALG and algo-

rithm HRF as the number of cloudlets in the network increases. The

running time of algorithm HRF increases linearly with the number of

cloudlets. Interestingly the running time of algorithm ALG decreases
slightly as the number of cloudlets increases. This is because the

number of requests admitted in each round of matching is limited

to the number of cloudlets. As the number of cloudlets increases,

more requests are admitted per round of matching, resulting in

fewer rounds of matching and a shorter running time. However it is

clear that the change in running time when increasing the number

of cloudlets is negligible compared to changes in the number user

requests, as the number of requests is orders of magnitude larger

than the number of cloudlets.

5.3 Online algorithm performance
We now consider a time horizon consisting of 100 time slots. The

number of requests in each time slot samples the Poisson distribu-

tion with a mean of 500, and each admitted request spans 1 to 5

time slots randomly.

Fig. 5.3(a) shows the accumulative number of requests admitted

by algorithms ALG and HRF across the time horizon. We can see that

algorithm ALG outperforms algorithm HRF by an average of 31%,

due to more efficient allocation of resources. Fig. 5.3(b) shows the

accumulative operation cost delivered by algorithms ALG and HRF
across the time horizon. We can see that algorithm ALG has a lower

operation cost compared to algorithm HRF by an average of 90%.

Fig. 5.4 illustrates how the idle cost threshold affects the total

number of admitted requests and the total operation cost across a

time horizon consisting of 100 slots. Both plots show an increase

in total admitted requests and total operation cost with the thresh-

old. A low threshold results in the prediction model being more

frequently invoked, and since the cloudlet must maintain at least

enough network function instances to handle existing requests,

overusing the prediction mechanism can lead to over-provisioning

resources to network function instances. As resources are con-

strained, this restricts the number of requests that can be admitted.

As the threshold increases, resources are more efficiently allocated

within each time slot, leading to a slight increase in admitted re-

quests. However operation cost also increases with the threshold, as

when the prediction model is less frequently used, fluctuation in the

number of required instances across time slots are more common

and incur additional instantiation costs.

6 CONCLUSIONS
In this paper, we studied a novel task offloading problem in a wire-

less metropolitan area network, where each offloading task has

a maximum tolerable delay and different requests need different

types of services from the cloudlets in the network. We focused on

maximizing the number of offloading request admissions while min-

imizing their admission cost within a given time horizon. To this

Session: Mobile Cloud/Fog/Edge Computing MSWiM’17, November 21-25, 2017, Miami, FL, USA

115

(a) The number of requests admitted by different al-

gorithms

(b) Operation cost delivered by different algorithms (c) Running time of different algorithms in millisec-

onds

Figure 5.2: Performance of algorithms ALG and HRF when the number of cloudlets in the network varies from 4 to 24 while the
number of requests is fixed at 1,500.

(a) The accumulative number of requests

admitted by different algorithms

(b) The accumulative operation cost de-

livered by different algorithms

Figure 5.3: Performance of algorithms ALG and HRF for a time
horizon with 100 time slots, where the number of requests in
each time slot follows a Poisson distribution with a mean of
500.

(a) The total number of requests admit-

ted by algorithm ALG
(b) The total operation cost delivered by

algorithm ALG

Figure 5.4: Threshold impact on the performance of algorithm
ALG for a time horizon with 100 time slots.

end, we developed an efficient algorithm for the problem through

a novel reduction that reduces the problem to a series of minimum

weight maximum matching problems in auxiliary bipartite graphs,

and an effective prediction mechanism to predict instance releases

and creations in different cloudlets within the network for further

cost savings. We finally evaluated the performance of the proposed

algorithm through experimental simulations. Experimental results

indicate that the proposed algorithm is promising.

REFERENCES
[1] “Facebook f8 developers conference 2017,” https://www.fbf8.com/, 2017, accessed:

2017-04-25.

[2] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: elastic

execution between mobile device and cloud,” Proceedings of the sixth conference
on Computer systems. ACM, 2011.

[3] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and

P. Bahl, “Maui: making smartphones last longer with code offload,” Proceedings
of the 8th international conference on Mobile systems, applications, and services,
ACM, 2010.

[4] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair: Dynamic

resource allocation and parallel execution in the cloud for mobile code offloading,”

INFOCOM, 2012 Proceedings IEEE, IEEE, 2012.
[5] E. Y. Chen and M. Itoh, “Virtual smartphone over ip,” Proc of World of Wireless

Mobile and Multimedia Networks (WoWMoM), IEEE, 2010.
[6] B. G. Rodrıguez-Santana, A. M. Viveros, B. E. Carvajal-Gámez, and D. C. Trejo-

Osorio, “Mobile computation offloading architecture for mobile augmented

reality, case study: Visualization of cetacean skeleton,” International Journal of

Advanced Computer Science & Applications, vol. 1, no. 7, pp. 665–671.
[7] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and user to cloudlet

allocation in wireless metropolitan area networks,’ To appear in IEEE Transactions
on Cloud Computing, IEEE, 2015.

[8] M. Jia, W. Liang, Z. Xu, and M. Huang, “Cloudlet load balancing in wireless

metropolitan area networks,” in Proc of INFOCOM, IEEE, 2016.

[9] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo, “Capacitated cloudlet placements in

wireless metropolitan area networks,” Proc. of 2015 IEEE 40th Conference on Local
Computer Networks (LCN), IEEE, 2015.

[10] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo, “Efficient algorithms for capacitated

cloudlet placements,” IEEE Transactions on Parallel and Distributed Systems, vol. 27,
no. 10, pp. 2866–2880, IEEE, 2016.

[11] Q. Xia, W. Liang, and W. Xu, “Throughput maximization for online request

admissions in mobile cloudlets,” Proc of 2013 IEEE 38th Conference on Local
Computer Networks (LCN), IEEE, 2013.

[12] Q. Xia, W. Liang, Z. Xu, and B. Zhou, “Online algorithms for location-aware task

offloading in two-tiered mobile cloud environments,” Proc of 2014 IEEE/ACM 7th
International Conference on Utility and Cloud Computing (UCC), IEEE, 2014.

[13] R. Albert, H. Jeong, and A.-L. Barabási, “Internet: Diameter of the world-wide

web,” Nature, vol. 401, no. 6749, pp. 130–131, 1999.
[14] “Hewlett-packard company - enterprise computer server systems and network

solutions,” https://www.hpe.com/au/en/servers.html/, 2017, accessed: 2017-04-25.

[15] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The internet

topology zoo,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 9,
pp. 1765–1775, IEEE, 2011.

[16] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based

cloudlets in mobile computing,” Pervasive Computing, IEEE, vol. 8, no. 4, pp.
14–23, 2009.

Session: Mobile Cloud/Fog/Edge Computing MSWiM’17, November 21-25, 2017, Miami, FL, USA

116

https://www.fbf8.com/
https://www.hpe.com/au/en/servers.html/

	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 System model
	3.2 End-to-end delay requirements of offloading requests
	3.3 The admission cost
	3.4 Problem definition

	4 Online Algorithm
	4.1 Algorithm for offloading requests at each time slot
	4.2 Online algorithm for the minimum operational cost problem

	5 Performance Evaluation
	5.1 Experimental settings
	5.2 Algorithm performance within a single time slot
	5.3 Online algorithm performance

	6 Conclusions
	References

