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ABSTRACT
Mobile Edge Computing (MEC) is essential for enabling new in-
novative technologies that depend on low-latency computation
environments such as Augmented Reality (AR). As AR applications
continue to deliver better graphics with richer interactive features,
AR devices will increasingly rely on nearby cloudlets to assist with
the demanding computation requirements of AR applications. Sup-
porting multiplayer interactions in an MEC environment brings
many challenges. Processing user interactions can be computation-
intensive especially when multiple users in close proximity to each
other are acting simultaneously; the limited resources of a cloudlet
could be overwhelmed if there are toomany players involved. In this
paper, we envision a scenario in the near future where players wear-
ing AR heads-up display devices engage with other players over a
large area with densely deployed cloudlets. We first propose a novel
system model, and then formulate the Decentralized Multiplayer
Coordination (DMC) Problem with the aim of minimizing the game
frame duration among players, and devise an efficient algorithm for
the problem. We finally evaluate the performance of the proposed
algorithm through experimental simulations. Experimental results
demonstrate that the proposed algorithm is promising.
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1 INTRODUCTION
Mobile Edge Computing (MEC) has recently emerged as a key talk-
ing point in implementing the next generation of wireless cellular
systems. MEC pushes cloud computing capabilities to the edge of
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the network by densely deploying cloudlets collocated with micro-
base stations in urban areas [1]. By providing a reliable low latency
computing environment for mobile users, MEC meets the require-
ments of new innovative technologies such as vehicle automation
and augmented reality.

Augmented Reality (AR) is a technology that superimposes inter-
active digital elements on top of the real world view of a user device,
and has attracted considerable investment from major technology
companies. In 2017 at the F8 developer conference, Facebook CEO
Mark Zuckerberg spoke at length about the potential of AR and
described a future where artists could display digital artwork in
public spaces and friends could share virtual signs and objects. AR
could also disrupt the work environment, with AR headset dis-
plays like Microsoft Hololens and the Intel Vaunt smartglass being
marketed as productivity tools that improve collaborations among
colleagues. However, AR has been particularly successful in games,
as demonstrated by the explosive popularity of the mobile AR game
Pokemon Go. Pokemon Go was released in July 2016 and became
the most active mobile game in the United States while generating
more than 160 million US dollars through in-game purchases before
the end of the month [16].

As AR applications continue to deliver better graphics and richer
interactive features, the computation and network bandwidth de-
mands of AR will increase. However, the computation resource
of portable AR devices remain limited, and as a result AR devices
will increasingly depend on cloudlets deployed throughout mobile
networks to deliver cached contents and provide low latency com-
putation environments. Since AR integrates digital elements into
the real world, many AR applications and services will be specific
to certain locations. In [5] Jia et. al., discuss how a local cloudlet
could host virtualized network functions (VNFs) for processing AR
service requests and serve multiple users in the same area. However,
the authors did not consider the multiplayer interactions, and the
additional challenges of a multiplayer system have yet to be ad-
dressed. Processing user interactions can be computation-intensive
especially when multiple users in close proximity to each other
are acting simultaneously; the limited resources of a cloudlet could
be overwhelmed if there are too many players involved. To sup-
port a large number of players simultaneously, it is necessary that
the workload of processing user interactions in an MEC network
is evenly distributed among the cloudlets, to ensure that players
receive feedback from their actions with short delay. However, co-
ordinating a decentralized multiplayer system with large numbers
of users is a challenge.

In this paper, we make the following contributions. We first en-
vision a scenario in the near future where game players wearing
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AR heads-up display devices engage with other players over a large
area with densely deployed cloudlets, and introduce a novel system
model for supporting a massive multiplayer game in AR. We then
formulate the Decentralized Multiplayer Coordination (DMC) Prob-
lem with the aim of minimizing the game frame duration among
players, and devise an efficient algorithm for the problem. We fi-
nally evaluate the performance of the proposed algorithm through
experimental simulations. Experimental results demonstrate that
the proposed algorithm is promising.

The remainder of the paper is organized as follows. Section 2
will survey state-of-the-arts of related topics in Augmented Real-
ity, Massive Multiplayer Online Game Architectures, and Mobile
Edge Computing. Section 3 will introduce the system model and
formulate the problem, Section 4 will devise the algorithm for the
problem, and Section 5 will provide the experimental results of the
proposed algorithm. Finally, Section 6 will conclude the paper.

2 RELATEDWORK
In this section we describe the unique requirements of gameplay in
Augmented Reality, multiplayer game architectures, and previous
studies on mobile edge networks.

Mobile Edge Computing (MEC) is a promising technology that
brings high bandwidth, low latency computing environments close
to mobile users. While cloud computing provides an abundance
of computing resources for applications with intense computation
demands, the internet delay between the remote cloud and users
poses a serious issue for applications with sensitive delay toler-
ances [1, 11]. MEC pushes cloud computing capabilities to the edge
of the mobile network, by deploying clusters of computers known
as cloudlets within a Radio Area Network (RAN) close to mobile
users [3, 5, 12, 13]. The close proximity of cloudlets to end users
also enables the development of new services, such as Augmented
Reality (AR).

Since AR combines virtual elements with real world environ-
ments, many AR games and objects will exist in the context of a
specific environment, e.g., digital fish swimming in a real world
fountain. These AR games and elements can thus be hosted on
nearby cloudlets and accessed by users in the area who connect
to the cloudlet [4, 10]. While some studies [2] have explored how
MEC or similar technologies can be used to improve multiplayer
games, these studies focused on mobile games that have different
requirements to multiplayer AR games, and assumed that all player
interactions take place on a central multiplayer game server in the
cloud.

An AR device displays digital elements to a user by proceeding
in frames [10]. At the start of a frame, an image is captured on the
device’s camera, and the user’s precise position and orientation are
aggregated from the raw data stream of sensors like accelerome-
ters. The image frame may also be analyzed to identify surfaces,
obstacles, landmarks that may effect the appearance or behavior of
the digital elements. A view of the digital elements is then rendered
according to the aggregated data and integrated with the captured
image. The image is displayed to the user and the next frame begins.
Real-time multiplayer games also proceed frame by frame, where
actions performed by players are taken as input at the beginning of
the game frame, and a sequence of events are generated as output

at the end of each game frame. The duration of a game frame is
of critical importance to the user experience, as it represents the
length of time for a player to receive feedback from his or her action.
Long and erratic game frames can irritate the player and potentially
render the game unplayable.

There are two types of game architectures in multiplayer game
systems: the traditional centralized game architecture; and the
multi-server architecture [14]. In the former, a central coordina-
tor also called a game server, receives player actions as input and
generates a sequence of events as output. Its advantage is that the
server has a complete picture of all player actions and can generate
the authoritative sequence of events in the game. However gener-
ating events for player actions in richly interactive games is very
computation-intensive, especially when there are a large number of
players. Hosting the central coordinator on either a cloudlet in the
mobile edge network or in the remote cloud has significant draw-
backs. A cloudlet will have close proximity to the players and can
provide low latency computation, but can only support a limited
number of players due to its limited computing resource. On the
other hand, the remote cloud has abundant computing resources
but the latency between players and the remote cloud can lead to a
poor game experience for players.

In the multi-server game architecture, multiple servers at differ-
ent locations share the workload of processing player actions. A
common approach to distributing this workload across multiple
servers or cloudlets, is to partition players into different regions and
assign a region coordinator from among the cloudlets to process
player actions for each region [7, 9, 15]. The advantage is that the
player’s game experience benefits from the low latency to their
region coordinators, while the workload of each region coordi-
nator remains manageable. In [7, 15], both studies proposed that
game developers first divide the game world into different regions
(possibly with different features and challenges for each region)
where the actions of players in each region are processed by a spe-
cific region coordinator. Knutsson et.al., assumed in [7] that while
players can travel from one region to another via a hand-off from
one server to another, players cannot interact with objects outside
their regions. [15] improves upon this model by making use of a
dynamic hierarchy to support user movement and interactions be-
tween different regions. A drawback of the fixed region assumption
in [7, 15] is that players tend to flock to certain profitable areas of
the game world, which can overwhelm the server or cloudlet that
is coordinating the region. An alternative is to partition players
into regions periodically, such that the workload of each region is
roughly balanced.

Most existing studies assumed that each player is only able to
interact with objects and players within a limited Area Of Interest
(AOI) around the player. Fig. 1 is an illustrative example where
the AOI of each player is illustrated by the dotted circle around
him/her. Since players i and j are within each other’s AOI, actions
performed by i and j should be processed together as their actions
may affect each other. However, since player i belongs to region
r2 and player j belongs to the region r3, it is necessary for the
region coordinators to exchange the player actions of i and j with
each other to generate the correct sequence of events for players
i and j. When deciding how to partition players into regions, it is
necessary to consider the communication cost of exchanging player
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Figure 1: Partitioning players into groups with overlapping
AOIs

data across partition boundaries. It can also be seen from Fig. 1 that
the population of region r1 is disproportionately larger than regions
r2 and r3, and could potentially overwhelm the compute capacity of
its region coordinator. Thus, there is clearly a trade-off between the
computation workload of each region coordinator and the volume
of communication between adjacent region coordinators when
partitioning players into regions. This trade-off is addressed in [9],
where its authors presented an algorithm that partitions players
into a given number of regions, with the objective of minimizing
the weighted sum of the computation cost incurred by the region
coordinators and the communication cost between different region
coordinators.While [9] dynamically partitions players into different
regions, the study does not consider bandwidth constraints between
region coordinators, and assumes that all servers have identical
computation resources. Furthermore, their system model does not
capture unique aspects of multiplayer AR, such as offloading routine
but computation-intensive AR tasks from a player’s device to a local
cloudlet. In this work we address these issues and provide a detailed
system model that accurately reflect the state of the art in MEC and
AR.

3 SYSTEM MODEL
In this section, we first give an overview of the system model. We
then formally define our objective, and then we finally define the
Decentralized Multiplayer Coordination Problem.

3.1 Overview
We describe a system that can support the demanding bandwidth
and computation needs of an AR multiplayer game. We assume
that players wear AR heads-up display devices that overlay dig-
ital elements on the real world, while wearable sensors capture
the player’s physical actions and gestures. The game is real-time,
where player actions are processed immediately, allowing play-
ers to fluidly interact with each other. Let there be K cloudlets
{c1, c2...cK } which are densely deployed in the mobile edge net-
work, a remote cloud denoted by c0, N players {1, 2, ...,N }, andM
regions {r1, r2, ..., rM }, to which each player belongs to only one
region. Each player wirelessly connects to a nearby cloudlet which

Figure 2: Overview of a game frame

manages the player’s view of nearby game elements and communi-
cates with the region coordinator that is responsible for managing
the player’s interaction with the other players in the region.

The multiplayer game system executes in a series of game frames,
where each game frame begins by capturing the actions of each
player, and concludes when all player actions have been processed
by their region coordinators, which is illustrated in Fig. 2.

A game frame consists of three stages, which details as follows.
In stage one, the actions of player i are captured and uploaded

to the player’s connected cloudlet. The player’s device and body
sensors for detecting gestures must continuously collect large vol-
umes of raw data in each game frame and process it to extract the
player’s aggregated action data, i.e. the player’s location, movement,
orientation, and intentions. Processing the raw data into action data
is computation-intensive, and offloading the computation from the
player device to the connected cloudlet can reduce the duration
of each game frame, improving user experience. Since raw data
typically has a larger volume than the action data, there is a non-
trivial tradeoff between the time spent wirelessly uploading raw
data directly to the cloudlet, and the time spent processing the raw
data on the local device.

In stage two, the action data of players in each region needs to
be transmitted from the player’s connected cloudlet to the region
coordinator. We assume that a cloudlet may only serve as the region
coordinator for at most one region, and the remote cloud may be
appointed as the region coordinator for some regions if there is
insufficient computing resources among cloudlets. Let Pk be the
set of players in the region rk , 1 ≤ k ≤ M . As seen in Fig. 2,
players in region r1 are close enough to players from region r2
to interact with them. As a result, the region coordinator of r1
must take into account the action data from these players outside
r1, as their actions could affect the players in r1. To this end, we
assume that the region coordinator of a given region rk maintains
a complete set of players P+k that are within its scope from which
it must receive action data, where Pk ⊆ P+k (recall that Pk denotes
the set of players in region rk ). Stage two of the game frame for
players in region rk concludes once the connected cloudlets of
players in P+k have transmitted the action data of the players to
the region coordinator of rk . We assume that cloudlet-to-cloudlet
communication is implemented through densely connected optic
fiber cables, and the link between two given cloudlets ci and c j
has a limited bandwidth B(ci , c j ) and a short delay l(ci , c j ) when
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transmitting player action data. As a result, the cloudlet locations of
the region coordinators is important to ensuring a short game frame
duration for players and avoiding congestion between cloudlets in
the network.

In stage three, the region coordinator of r1 can process the action
data of the players, and transmit the outcome back to the players
in the region (players in region r2 receive updates from the region
coordinator of r2, not r1). The duration of each stage will vary from
player to player and region to region, but the game frame con-
cludes only when all region coordinators have finished processing
the action data and all players have received updates from their
region coordinator. We assume that the game frame duration is
universal for all players to avoid the situation where some players
are privileged with a shorter game frame duration, giving them an
advantage over other players with a longer game frame duration.

The duration of each game frame is of critical importance to
the user experience; noticeable latency between a player action
and the resulting event occurring in the game is distracting and
can produce feelings of nausea. As a result, special care must be
taken in planning player-to-cloudlet connections, the offloading of
critical data processing tasks from player devices to their connected
cloudlets, and the positions of region coordinators, to fully optimize
the duration of the game frame and to provide a positive game
experience for all players.

3.2 Objective Definition
As our objective is to minimize the duration of each game frame,
we now detail the duration of each stage in a game frame.

In stage one, player i performs a gesture, which is captured
by the player’s body sensors as raw data and is converted into
action data. Let oi be the average volume of raw data collected from
player i per game frame, while the action data of player i has an
average volume o′i . Suppose the wireless transmission rate between
player i and its connected cloudlet c j is wi j . Let vector variable
X = {x1,x2, ..., xN } indicate the wireless connections between
users and cloudlets, where xi is the index of the cloudlet to which
player i is connected, i.e., if player i is connected to cloudlet c j ,
then xi = j, for all i and j with 1 ≤ i ≤ N and 1 ≤ j ≤ K . Let
dL(i, j) and dO (i, j) denote the delay of processing the player’s raw
data at the local device and the delay of offloading the raw data
and processing it remotely at cloudlet c j , respectively. Let vector
variable Y = {y1,y2, ..., yN } indicate the decision to process the
raw data of each player on the player’s local device or on a cloudlet,
where yi = 0 indicates the raw data of player i will be processed
locally and yi = 1 indicates the raw data will be processed on the
player’s connected cloudlet.

We assume that the processing delay can be modelled with an
M/M/1 queue. Let µui and µcj be the service rates for a unit of com-
putation on the local device of player i and its connected cloudlet c j ,
respectively, and let λP denote the units of computation required
to process each unit of raw data. When the raw data is processed
into action data on the local device, then the delay dL(i, j) between
player i and its connected cloudlet c j is defined as the sum of the
transmission time for the processed action data, the queuing time

on the player’s device and the computation time, i.e.,

dL(i, j) =

(
o′i
wi j
+

1
µui − oi · λP

+
oi · λP
µui

)
, (1)

where wi j is the data rate between the player and the connected
cloudlet. By offloading the task of raw data processing to the cloudlet,
this increases the workload of the cloudlet.

We then consider the case when the player’s raw data is offloaded
to a cloudlet. Let λT (c j ) denote the workload of cloudlet c j . As
cloudlet c j may also be serving as a region coordinator, we formally
define the total workload λT (c j ) of c j later, in Eq. (9). Recall that
dO (i, j) denotes the delay for offloading the raw data of player i and
processing it on the connected cloudlet c j . dO (i, j) can be calculated
as the sum of the transmission time of the raw data, the queuing
time on the cloudlet and the computation time, that is,

dO (i, j) =

(
oi
wi j
+

1
µcj − λT (c j )

+
oi · λP
µcj

)
. (2)

We can then calculate the stage one time t1(i) of the game frame
for player i , that is the time taken for the action data of player i to
be available on the cloudlet:

t1(i) = (1 − yi )dL(i,xi ) + yi · dO (i,xi ). (3)

In stage two, the action data needs to be transmitted to the
player’s region coordinator. Let vector variableZ = {z1, z2, ..., zM }
denote the location of the region coordinator for each region, where
zk is the unique index of the remote cloud or cloudlet location for
the coordinator of region rk . Recall P+k denotes the set of all players
within the scope of the region coordinator of rk , and l(ci , c j ) de-
notes the latency between cloudlets ci and c j . We can then calculate
the stage two time t2(rk ) for players belonging to the region rk , as
the maximum of the time taken to reach the end of stage one for
each individual player in P+k (given in Eq. (3)), plus the data trans-
mission delay from the player’s connected cloudlet to the region
coordinator:

t2(rk ) = max
h∈P+k

{t1(h) + l(xh , zk )} . (4)

Note that t2(rk ) covers the duration of the stage one time t1(i) for
all players i within the scope of region rk , and measures the total
time taken from the beginning of the game frame to the end of
stage two for region rk .

Recall that there is a bandwidth limit B(ci , c j ) between cloudlets
ci and c j . As data transfer occurs between cloudlets directly con-
nected to players and cloudlets serving as region coordinators, we
calculate the total amount of data b(ci , c j ) transferred from a con-
nected cloudlet ci to the cloudlet c j which is the region coordinator
of rk :

b(ci , c j ) =
∑

h∈Uj∩P+k

o′h , (5)

where Uj is the set of players connected to cloudlet c j , i.e. Uj =
{ i | xi = j, xi ∈ X }. We then have the following bandwidth con-
straint:

b(ci , c j ) ≤ B(ci , c j ), ∀1 ≤ i, j ≤ K . (6)
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We assume there is no broadband limit for transmitting player data
from a connected cloudlet to a region coordinator located in the
remote cloud, since cloudlets make use of the backhaul network to
connect to the remote cloud via the Internet.

In stage three, each region coordinator must process the player
action data. The compute requirement of each region coordinator
to process player actions depends on the total volume of the action
data to be processed.

Let τk (c j ) denote the total computing delay of processing the
player action data of the region coordinator of rk at location c j . If
the region coordinator of rk is assigned to the remote cloud c0, then
computing resources are effectively unlimited and we can assume
a fixed processing delay in the cloud dC for processing the player
action data for players in rk , that is,

τk (c0) = dC .

However, if the region coordinator has been assigned to a cloudlet,
then we must take into account the limited cloudlet resources when
calculating the computing delay.

Let Ψ(·) be a non-decreasing function of the amount of computa-
tion units needed to process action data with its variable parameter
being a set of players, and recall that we denote by P+k the set
of players within the scope of region rk , µcj is the service rate of
cloudlet c j , and λT (c j ) is the total workload on cloudlet c j . The
total computing delay τk (c j ) to process the player action data of
the region coordinator of rk on cloudlet c j consists of the queuing
time on cloudlet c j and the computation time, which is defined as
follows.

τk (c j ) =
1

µcj − λT (c j )
+

1
µcj
· Ψ

(
P+k

)
, (7)

where 1 ≤ j ≤ K . We now formally define the total workload of the
cloudlet λT (c j ). Recall that players connected to cloudlet c j may
offload their raw data to c j . Let O j denote the total volume of raw
data to be processed by cloudlet c j :

O j =
∑
i ∈Uj

yi · o
′
i , (8)

recall that Uj is the set of players connected to cloudlet c j , i.e.
Uj = { i | xi = j, xi ∈ X }. The workload λT (c j ) of cloudlet c j can
thus be defined as the sum of the computation required to process
the volume of raw dataO j in stage one and (if the cloudlet c j is the
region coordinator of a given region rk ) the computation required
to process the action data of players in region rk in stage three:

λT (c j ) = O j · λP + Ψ
(
P+k

)
. (9)

We can then calculate the stage three time t3(rk , zk ) for all play-
ers belonging to the region rk as the sum of the computing delay
at location zk and the stage two time for players in region rk given
in Eq. (4):

t3(rk , zk ) = τk (zk ) + t2(rk ) (10)

The stage three time for each region represents the time taken for
a player in the region to receive feedback from his/her actions. This
can give an advantage to players from regions that reach the end
of stage three earlier than other regions. In the interest of fairness,

we assume that the duration of the game frame T (X ,Y ,Z ) is the
maximum time taken among all regions to reach the end of stage
three. Thus we define the objective function T (X ,Y ,Z ):

T (X ,Y ,Z ) = max
1≤k≤M

t3(rk , zk ). (11)

3.3 Problem Definition
Given an MEC network consisting of K cloudlets and N players
with each player belonging to a specified region, the Decentralized
Multiplayer Coordination (DMC) Problem is to minimize the objec-
tive in Eq. (11) (i.e., minX ,Y ,Z T (X ,Y ,Z )), by deciding the three
vector variables X , Y , and Z while meeting the network bandwidth
constraint in Eq. (6), where the vector variableX = {x1,x2, ..., xN }
decides which cloudlet to connect to each player i , the vector vari-
able Y = {y1,y2, ..., yN } decides whether the action data of player
i is extracted on its local device or on its connected cloudlet, and
the vector variable Z = {z1, z2, ..., zM } decides a cloudlet or the
remote cloud to be appointed as the region coordinator of region
rk .

4 ALGORITHM
In this section, we present an iterative algorithm for the DMC
problem. We first assign each user to the cloudlet with which it
has the strongest wireless connection. Each player has a number of
nearby cloudlets it can connect to, and recall thatwi j is the wireless
transmission rate between player i and a given cloudlet c j . We thus
connect player i to cloudlet c j with the largest data rate, i.e., we
set xi = argmax1≤j≤K wi j for each player i . We then set the initial
location of each region coordinator to be the remote cloud due to
the abundance of computing resources, i.e., zk = 0, 1 ≤ k ≤ M .
Once we have initial values for vector variables X and Z , we can
assign values to the vector variable Y according to the following
procedure.

Since most players connected to the same cloudlet will have their
action data sent to the same region coordinator, the player with
the longest stage one time may be the bottleneck for the entire
region. Recall that vector variable Y decides the offloading of raw
data for each player to their connected cloudlet, and Uj is the set
of players connected to cloudlet c j according to vector variable X .
To ensure that region coordinators receive player action data from
the players within their scopes as soon as possible, we determine
vector variable Y to optimize the following objective:

min
{yi |i ∈Uj }

max
i ∈Uj

t1(i), (12)

where yi = {0, 1}, ∀i ∈ Uj . However, not all players may benefit
from offloading their raw data to the cloudlet. If the volume of raw
data oi for player i is particularly large and the player has sufficient
computing resources on its local device, offloading the player’s raw
data may result in a longer stage one time than if the player’s raw
data was processed locally. Recall that dO (i) and dL(i) denote the
duration of stage one if the raw data of player i is offloaded, and
if the raw data is processed locally, respectively. For each player
connected to cloudlet c j , we first compare dL(i) with dO (i), where
player i is the only player offloading to the cloudlet. If the local
processing time dL(i, j) is lower than dO (i, j), even when player i
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is the sole player offloading to its connected cloudlet, then player i
has a preference for local processing, and we set yi = 0.
Procedure 1 decideOffloading(X ,Z )

Decide offloading of player raw data given player-cloudlet connections and
region coordinator locations

Require: X , Z
Ensure: Y .

1: /* For each cloudlet with connected players */
2: for j ← 1 to K do
3: /* Initially set players to process raw data locally */
4: for i ∈ Uj do
5: yi ← 0
6: U ← Uj
7: /* Remove players that prefer local processing from U */
8: for i ∈ Uj do
9: yi ← 1
10: if dO (i, j) > dL (i, j) then
11: U ← U − {i };
12: yi ← 0;
13: Add remaining players U to priority queue Q according to

maxdL (i, j);
14: while Q , ∅ do
15: i′ ← Q .removeHead();
16: t1 ← maxh∈Uj t1(h)
17: yi′ ← 1
18: if t1 < maxh∈Uj t1(h) then
19: yi′ ← 0
20: exitLoop();
21: Return Y ;

To decide the offloading decision for the remaining players, we
form a priority queue from the remaining players according to
their local processing time dL(i, j), such that the head of the queue
is the player with maxi ∈Uj dL(i, j). We take player i at the head
of the queue and set yi = 1 to offload its raw data to connected
cloudlet c j . Since player i is the first player to offload raw data to
the cloudlet, the offloading time dO (i, j)will be smaller than dL(i, j),
decreasing the maximum stage one time for players inUj according
to our objective in (Eq. (12)). However, this may not be the case
when offloading the raw data of subsequent players in the queue,
since the queuing time at the cloudlet will increase as more players
offload their raw data. Thus for each subsequent player i ′we remove
from the queue, we first compare the objectivemaxh∈Uj t1(h)when
player i ′ processes its raw data locally, and when the raw data of
player i ′ is offloaded (i.e., we setyi′ = 1). Ifmaxh∈Uj t1(h) is greater
when the current player i ′ offloads raw data compared to when the
raw data is locally processed, this indicates that further offloading
player raw data will not improve our objective, and we let player
i ′ and the remaining players in the queue process their raw data
locally. Otherwise, we let player i ′ offload its raw data, and remove
the next player from the queue. The details of this procedure are
given in Procedure 1.

Once we have initial values for variables X , Y , and Z , we itera-
tively refine the solution by focusing on regions and players that
are the bottlenecks in the system. We start by identifying the region
rk with the longest stage three time t3(rk , zk ) (defined in Eq. (10)),
as it dominates the duration of the game frame. Since the location of
each region coordinator has a great impact on the stage three time

Algorithm 1 IterativeAlgorithm

Require: oi , o′i , µ
u
i , i ∈ {1...N }, µcj , j ∈ {1...K }, P+k , k ∈

{1...M }, MAX.
Ensure: X , Y , Z

1: /* Connect each player i to cloudlet with strongest connection */
2: X ← {xi ← argmax1≤j≤K wi j |1 ≤ i ≤ N };
3: /* Set remote cloud to be region coordinator for all regions */
4: Z ← {zk ← 0 |1 ≤ k ≤ M };
5: /* Obtain Y by invoking Procedure 1 */
6: Y ← decideOffloading(X , Z );
7: tmax ←∞;
8: iter← 0;
9: while tmax > T (X , Y , Z ) (defined in Eq. (11)) and iter < MAX do
10: iter← iter + 1;
11: tmax ← T (X , Y , Z );
12: rk ← argmax1≤k≤M t3(rk );
13: /* Find alternative location for region coordinator of rk */
14: z⋆k ← argmin0≤j≤K t3(rk , j) and bandwidth constraint Eq. (6)

holds;
15: Z ← Z − {zk } + {z⋆k }
16: if z⋆k = zk then
17: /* Identify the bottleneck player in region rk */
18: Let i ← argmaxh∈P+k

{t1(h) + l (xh, zk )};
19: /* Find alternative cloudlet for player i to connect to */
20: for j ← 1 to K and wi j > 0 do
21: x ′i ← j ;
22: X ′ ← X − {xi } + {x ′i };
23: /* Obtain Y ′ by invoking Procedure 1 */
24: Y ′ ← decideOffloading(X ′, Z );
25: if T (X ′, Y ′, Z ) < tmax and bandwidth constraint Eq. (6)

holds then
26: tmax ← T (X ′, Y ′, Z );
27: X⋆ ← X ′ and Y⋆ ← Y ′;
28: X ← X⋆ and Y ← Y⋆;
29: Return X , Y , Z ;

of the region, we begin by finding an alternative location z⋆k for the
region coordinator of rk , where z⋆k is the location that minimizes
the stage three time of region rk :

z⋆k = arg min
0≤j≤K

t3(rk , j),

while observing the bandwidth constraint in Eq. (6). If z⋆k = zk , this
means that the stage three time of region rk cannot be improved
by changing the location of the region coordinator. In this case, it
is still possible to reduce t3(rk , zk ) by reducing the stage two time
of region rk .

In stage two, the region coordinator of rk must wait to receive
the action data of all players within its scope, and a single player
could bottleneck the entire region. We thus identify the bottleneck
player i for region rk as the player whose action data arrives the
latest at the region coordinator:

i = arg max
h∈P+k

{t1(h) + l(xh , zk )} , (13)

where we recall that P+k is the set of all players within the scope
of rk , and l(xh , zk ) is the latency between the connected cloudlet
xh and region coordinator location zk . By finding an alternative
cloudlet for the bottleneck player i to connect to, we can reduce
the stage two time of region rk thus reducing the duration of the
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Figure 3: The performance of the proposed algorithm and the benchmark.

(a) Number of Players (b) Number of Regions (c) Number of Cloudlets

Figure 4: The running time of the proposed algorithm.

game frame. For each potential alternative cloudlet c j , we set xi = j
and we re-optimize Y using Procedure 1. We then connect player
i to the cloudlet that yields the greatest reduction in game frame
duration and does not violate the bandwidth constraint in Eq. (6).
If no changes can be made to improve the duration of the game
frame, then the final assignment to variables X , Y , and Z returns a
solution to the problem. Algorithm 1 gives the details.

5 PERFORMANCE EVALUATION
In this section we evaluate the performance of Algorithm 1.We start
with the environment setting and then conduct the performance
evaluation.

To generate a simulation environment, we randomly position 100
cloudlets and 500 players on a 1,000 meter square grid. If a given
player i is very close to a cloudlet c j , the wireless data rate wi j
between them will be 1,000 Mbps, andwi j is inversely proportional
to the physical distance between player i and cloudlet c j . Players
are partitioned into 20 regions according to the algorithm adapted
from [9]. We determine the set of players P+k within the scope of the
region coordinator of rk , by including all players outside the region
rk that fall within an Area of Interest (AOI) radius of 50 meter of
players within rk . We assume that the latency between any two
cloudlets is on average 2 to 5 milliseconds, while bandwidth limit
between cloudlets is drawn randomly from the range 1,000 Mbps
to 10,000 Mbps [6, 8]. Finally we assume the total computation to
be processed by a region coordinator is quadratic with with the
number of players whose actions are being processed. The running
time of the proposed algorithm is obtained based on a machine

with a 4 GHz Intel i7 Quad-core CPU and 32 GiB RAM. The unit of
running time is shown in milliseconds. Unless otherwise specified
these parameters will be adopted in the default setting.

We compare the performance of the proposed algorithm iter
with a benchmark init where we take the initial solution in our
proposed algorithm before it is iteratively improved, i.e., we connect
player i to cloudlet c j with the maximum data rate, i.e., we set xi =
argmax1≤j≤K wi j for each player i . We set the initial location of
each region coordinator to be the remote cloud due to the abundance
of computing resources, i.e., zk = 0, 1 ≤ k ≤ M , and we solve Y
using Procedure 1.

Fig. 3 (a) shows the relationship between the game frame dura-
tion and the number of players in the system. When the number
of players increases from 100 to 200, the game frame duration de-
livered by the proposed algorithm iter slightly increases, as the
cloudlets have more than enough resources to support the low
number of players. However, when the number of players increases
from 200 to 600, the game frame duration dramatically increases.
Since the number of regions has not changed, the workload of each
region coordinator increases sharply, and more region coordina-
tors are assigned to the remote cloud, where computing resources
are abundant. The game frame duration eventually plateaus when
there are 1,000 players as most region coordinators have been as-
signed to the remote cloud. The game frame duration delivered by
the benchmark init similarly increases with an increase in the
number of players, as additional players are unable to offload their
raw data to their connected cloudlet for processing. However, the
game frame duration delivered by init quickly plateaus with a
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higher game frame duration compared to iter when the number
of players is only 400. While both algorithms eventually assign all
region coordinators to the remote cloud, iter delivers a smaller
game frame duration as a result of optimizing the stage two time
for some regions.

Fig. 3 (b) plots the game frame duration delivered by iter and
init by changing the number of regions. At first when there is
only one region, no cloudlet is able to handle the huge amount
of computation required to process every player’s action data and
so the region coordinator is assigned to the remote cloud. As a
result both iter and init deliver the same game frame duration.
As the number of regions increases, the workload of each region
coordinator dramatically decreases allowing iter to assign region
coordinators among the cloudlets. The game frame duration de-
livered by iter reaches a minimum when the number of regions
is 40. When the number of regions increases from 40 to 80, the
game frame duration increases slightly due to the increased net-
work traffic from connected cloudlets to the additional regions. As
bandwidth between cloudlets is limited, some region coordinators
are forced to be assigned to the remote cloud, increasing the game
frame duration.

Fig. 3 (c) displays the game frame duration delivered by the
proposed algorithm and the benchmark by increasing the number
of cloudlets. The game frame duration delivered by iter decreases
linearly as the number of cloudlets increase. As more cloudlets are
added to the system, players increasingly offload raw data to the
cloudlet as fewer players need to share a single connected cloudlet.
Furthermore as more cloudlets are added, the average distance
between a cloudlet and a player decreases, resulting in stronger
connections and increased wireless data rate between players and
connected cloudlets. The game frame duration delivered by the
init also decreases linearly with the number of cloudlets, but at a
lower gradient compared to that of the proposed algorithm.

Finally, Fig. 4 (a), (b) and (c) shows the running time of the
proposed algorithm against the number of players, the number of
regions and the number of cloudlets, respectively. As can be seen,
the running time of the proposed algorithm is roughly linear with
the number of cloudlets, while the running time of the proposed
algorithm increases dramatically with the number of players and
the number of regions.

6 CONCLUSION
In this paper, we envisioned a scenario in the near future where
players wearing AR heads-up display devices engage with other
players over a large area in an MEC network with densely deployed
cloudlets, and introduced a novel system model for supporting a
massive multiplayer game in AR. We then formulated the Decen-
tralized Multiplayer Coordination (DMC) Problem with the aim
of minimizing the game frame duration of all players, and also

devised an efficient algorithm for the problem. We finally evaluated
the performance of the proposed algorithm through experimental
simulations. Experimental results demonstrated that the proposed
algorithm is promising.

As AR technology and applications continue to improve and
gain consumers, the proposed system model and algorithm pro-
vided in this paper can serve as a baseline for future studies of
AR multiplayer systems. Several research issues still remain open,
such as gracefully handling stochastic traffic conditions in the MEC
network, which we leave to future works.
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