
Dynamic Routing for Network Throughput
Maximization in Software-Defined Networks

Meitian Huang†, Weifa Liang†, Zichuan Xu†, Wenzheng Xu‡†, Song Guo¶, and Yinlong Xu∗

† Australian National University, Canberra, ACT 2601, Australia
‡ Sichuan University, Chengdu 610065, P. R. China

¶ Aizu University, Japan
∗ University of Science and Technology of China, Hefei 230026, P. R. China

Email: u4700480@anu.edu.au, wliang@cs.anu.edu.au, edward.xu@anu.edu.au, wenzheng.xu3@gmail.com, sguo@u-aizu.ac.jp, ylxu@ustc.edu.cn

Abstract—Software-Defined Networking (SDN) has emerged
as the paradigm of the next-generation networking through
separating the data control plane from the data plane. The
forwarding routing table at each of its switch nodes is usually
implemented by expensive and power-hungry Ternary Content
Addressable Memory (TCAM) that only has limited number
of entries, and the bandwidth at each of its links is bounded
too. Under this new network architecture, providing a quality
service to users by admitting user requests to meet their resource
demands is challenging, and very little attention has ever been
paid in this regard. In this paper, we will study online unicast and
multicast request admissions in SDNs with the aim to maximize
the network throughput under both critical network resources
and user bandwidth demand constraints, for which we first
propose a novel model to characterize the usage costs of node
and link resources. We then devise efficient online algorithms for
unicast and multicast requests. We also analyze the competitive
ratios of the proposed online algorithms, which are O(logn) and
O(Kϵ logn) for unicasting and multicasting, respectively, where
n is the network size, K is the maximum number of members in
a multicast request, and ϵ is a constant with 0 < ϵ ≤ 1. We finally
evaluate the proposed algorithms empirically through simulations.
The simulation results demonstrate that the proposed algorithms
are very promising.

I. INTRODUCTION
Despite of their widespread adoption, traditional networks

have been considered time-consuming and error-prone to
configure according to increasingly sophisticated high-level
policies and costly to reconfigure in response to faults, load,
and changes [16]. The vertical integration between the con-
trol and data planes exacerbates the problems even further.
Software-Defined Networking (SDN) is an emerging network-
ing paradigm that creates an opportunity for solving this
longstanding problems in traditional networks by moving the
network control logic from the underlying routers and switches
to a logically centralized controller and offering the pro-
grammability of the network. In addition to simplifying policy
enforcement and network (re)configuration and evolution, such
a separation between the control plane and the data plane also
paves the way for dynamic control and management of packet
forwarding and processing in switches, which is expected
to ease network management and improve network capacity
utilization as well as delay-and-loss performance [1], [5], [8],
[11]. SDN thus is becoming a key technology for the next-
generation network architecture, and has been applied to many
large scale networks, including Internet backbone networks
and data-center networks, such as Google’s B4 [9].

In a software-defined network, the centralized controller

makes global routing decisions and translates high-level poli-
cies into forwarding rules to be installed in the forwarding ta-
bles at switches. Because of their greater flexibility, forwarding
rules in SDN is more complex and requires more storage space
compared with the forwarding rules in traditional networks.
To match incoming packets and intricate forwarding rules as
fast as possible, the forwarding table at each switch is thus
normally implemented by the Ternary Content Addressable
Memory (TCAM) that supports fast, parallel lookups. TCAM
however is expensive [11] and power hungry [20], the capacity
of forwarding tables is typically limited to several thousand
entries [11]. Such highly restricted capacity of forwarding
tables has been recognized as a bottleneck to the scalability
of SDN [5], [10], [16], and efficient utilization of forwarding
tables to serve a scaling number of forwarding rules while
satisfying network policies and constraints is a challenging
and important research topic. In addition, network infrastruc-
ture providers have expanded at a fast pace in recent years,
constantly striving to meet increasingly higher and rapidly
changing user demands [17]. To operate a public service at
such a large scale, effective management of network bandwidth
resources becomes vital, since any service disruption may lead
to substantial monetary losses. Therefore, there is an urgent
need for a routing scheme that pays as much attention to the
forwarding table capacity constraint as it does to other capacity
constraints such as the bandwidth capacity of each link.

In this paper, we study novel and challenging online unicast
and multicast routing problems in SDNs, with the aim of
maximizing network throughput, by jointly considering the
forwarding table capacity at each switch and the bandwidth
capacity at each Internet link. Unlike most existing studies on
online unicast and multicast routing problems in traditional
networks that considered either the node capacity [12], [14],
[15] or the link bandwidth constraint [2], [18], we take
into account both the forwarding table capacity constraint on
switches and the bandwidth constraint on links in the network.
This is much more challenging due to the need of innovative
cost models that can accurately capture the usage costs of two
different types of resources and new techniques to analyze the
performance of proposed online algorithms. Meanwhile, there
are only a few attentions paid to online unicast and multicast
routing in SDNs. For example, several studies for unicast
routing in SDN explored the capacitated forwarding table [1],
[5], [8]. Most of these studies first reduce the node capacity
constraint into the node-degree constraint of the network, and
then find a node-degree-constrained maximum flow for unicast

IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications

978-1-4673-9953-1/16/$31.00 ©2016 IEEE

requests [1], [5]. Such reductions however are limited and
may not be applicable in practice, since the node capacity
constraint is usually far greater than the maximum degree of
nodes. In addition, the only study on a single session online
multicast in SDNs that we are aware of is in [8], where the
authors considered how to construct a node-degree constrained
multicast tree for one multicast request, not a sequence of
online multicast requests as we deal with in this paper. In
contrast to [1], [5], [8], we consider much more generic online
unicast and multicast routing problems in SDNs, assuming
that requests arrive one by one without the knowledge of
future arrivals. To the best of our knowledge, this is the
very first study of online unicast and multicast routing in
SDNs, providing guaranteed competitive ratios. The algorithm
design and analysis techniques are of independent interest, and
they may be applied to other online optimization problems in
networks.

The main contributions of this paper are summarized as
follows. We are the first to study the admissions of dynamic
unicast and multicast requests in SDNs with the aim to maxi-
mize the network throughput, by taking both switch node and
link capacities and user bandwidth demands into consideration.
Specifically, we first propose a novel cost model to capture
the usage costs of node and link resources in admissions
of a sequence of unicast or multicast requests without the
knowledge of future request arrivals. We then devise efficient
algorithms for unicast and multicast capacity maximization
problems, and analyze their competitive ratios. We finally
evaluate the performance of the proposed algorithms through
experimental simulations. The simulation results demonstrate
that the proposed algorithms are very promising.

The remainder of this paper is organized as follows. Sec-
tion II reviews the related work. Section III introduces the
system model, notions and notations, and problem definitions.
Sections IV introduces a cost model for resource usages.
Sections V and VI propose online algorithms and analyze
their competitive ratios for unicast and multicast routing in
software-defined networks, respectively. Section VII evaluates
the performance of the proposed algorithms by experimental
simulation, and Section VIII concludes the paper.

II. RELATED WORK
SDN has been envisioned as the next generation network

architecture in easing the management of a network and
improving network performance. While some studies focused
on addressing the challenges in traffic engineering and steering
for incremental deployment of SDN-enable devices in existing
networks [1], [3], [19], tackling the limited flow table sizes has
become the theme of many studies [5], [8], [10]. Specifically,
Kanizo et al. [10] studied a unicast routing problem for a
group of requests in SDN. To overcome the limitation of
the forwarding table size, they proposed two approaches to
decompose large SDN forwarding tables into several small
ones and then distribute these small tables across the network,
while maintaining the overall SDN policy semantics. On the
other hand, Huang et al. [7] tackled the limitation of TACM
by selectively caching forwarding rules in local switches and
forwarding packets to the centralized controller if necessary.
Cohen et al. [5] studied the bounded path-degree max flow
problem in SDNs subject to the capacity constraint on switch
devices. They proposed an approximate solution with high
probability. Meanwhile, Huang et al. [8] studied the multicast

problem in SDNs by devising an approximation algorithm
for finding a degree-constrained Steiner tree for one multicast
request. However, these mentioned works only considered the
switch node capacity for a single group of unicast requests or
a single multicast request, which is substantially different from
our work in this paper, where we consider online routing of
unicast or multicast requests without the knowledge of future
request arrivals by taking into account both the capacity at
each switch node and the bandwidth capacity at each link.

Since network resources in SDNs are allocated dynami-
cally, the availability of resources exhibits significant elasticity.
Given a sequence of unicast or multicast requests that arrive
one by one without the knowledge of future request arrivals,
determining which requests to be admitted while others should
be rejected is nontrivial, as the admitted requests will acquire
the resources and heavily impede the later request admissions.
Thus, there is a desperate need of a cost metric to measure the
network resource consumptions and their utilization, guiding
the resource allocations for incoming requests. The key of
such a cost metric is to accurately model the availability
and utilization of the resources. An exponential function of
a specific resource and its utilization ratio is an excellent
candidate of the cost metric. This function has been used as a
cost metric of online request routing for many different types
of networks with different resources, including link bandwidth
for online unicast and multicast routing in ATM and virtual
circuit networks [2], [18], and node energy for online data
gathering [15], unicasting [12], and multicasting [14] in ad hoc
and wireless sensor networks. On the other hand, performing
online routing in SDNs involves taking into account both
the forwarding table at each switch node and the bandwidth
at each link simultaneously, making the cost modeling of
resource usages in SDNs more difficult. Furthermore, the joint
consideration of resources at both nodes and links complicates
the analysis of propose solution, since the analyses of the
performance (i.e., the competitive ratios) of existing online
algorithms for unicast and multicast requests in ATM net-
works, virtual circuit networks [2], [18], and wireless sensor
networks [14] are only based on the cost modeling of a single
type of resource at either nodes or links. Thus, in this paper,
we develop new techniques to analyze the competitive ratios
of online algorithms for unicast and multicast requests.

III. PRELIMINARIES
In this section we first introduce the system model, we then

introduce the notions and notations, and we finally define the
problem precisely.

A. System model
We consider a software-defined network G = (V,E),

where V is the set of SDN-enabled switch nodes, and E is
the set of Internet links that connect the switches. Assume
that there is an SDN controller for network G to route
unicast or multicast requests by installing forwarding rules
into the routing tables in switches and allocating bandwidth
on links along the routing paths or trees in G. Each switch
v ∈ V is equipped with a TCAM forwarding table for packet
forwarding, and the table capacity is Lv rule entries. Each link
e ∈ E has a bandwidth capacity Be. Denote by dv the degree
of a switch node v in G, i.e., dv = |{u | (u, v) ∈ E}|, and
let dmax (= max{dv | v ∈ V }) be the maximum degree of
switch nodes in G.

B. User routing requests
We consider unicast and multicast requests that arrive into

the system one by one. Denote by (sk, dk; bk) the k-th unicast
request, where sk is its source switch, dk is its destination
switch, and bk is the number of bandwidth units it needs.
Similarly, denote by (sk, Dk; bk) the k-th multicast request,
where sk is its source switch, Dk is the set of its destination
switches, and bk is the number of bandwidth units it needs.
We assume that the bandwidth demanded by each request rk
is at least one unit, i.e., bk ≥ 1 for any k.

An incoming request will be admitted by the system only
if there is a routing path (for the unicast request) or a multicast
tree (for the multicast request) to meet its resource demands.
Otherwise, the request will be rejected.

C. Problem definitions
Given a software-defined network G = (V,E), where

V is the set of SDN-enabled switches and E is the set of
Internet links between the switches. Under the assumption
that a sequence of unicast requests (sk, dk; bk) arrives into the
system one by one without the knowledge of future arrivals the
network capacity maximization problem for online unicasting
in G is to maximize the accumulated bandwidth of unicast
requests that have successfully been admitted.

The network capacity maximization problem for online
multicasting can be defined similarly. For a sequence of
multicast requests (sk, Dk; bk) that arrives into the system
one by one without the knowledge of future multicast request
arrivals, the network capacity maximization problem for online
multicasting is to maximize the accumulated bandwidth of
multicast requests that have successfully been admitted.

IV. THE USAGE COSTS OF RESOURCES OF LINKS AND
NODES

Given a software-defined network G = (V,E), a metric
is needed to model the usage costs of its switch nodes and
links. One important characteristic of the resource usage on
both switch nodes and links in G is that the marginal costs of
resource usage inflate with the increase on the workloads of
the resources. A heavily-loaded switch node will spend time
and energy on matching a forwarding rule for an incoming
network packet compared with a lightly-loaded one, because
more rules need to be considered in such a heavily-loaded
switch. Thus, when admitting a request, we should make use of
cheaper nodes and links to admit the request in terms of usage
costs of node and link resources. Let Lv(k) and Be(k) be the
number of available entries in the routing table at switch node
v ∈ V and the residual bandwidth on link e ∈ E, respectively,
when the k-th requests arrives. We use an exponential function
to model the cost cv(k) of using the resource at each switch
node v by request k, which is defined as follows.

cv(k) = Lv(α
1−Lv(k)

Lv − 1),

where α > 1 is a tuning parameter to be determined later, and
1 − Lv(k)

Lv
is the utilization ratio of the forwarding table of v

when request k arrives. Similarly, the cost ce(k) of using the
bandwidth of link e ∈ E by request k is defined as

ce(k) = Be(β
1−Be(k)

Be − 1),

where β > 1 is another tuning parameter similar to α, and
1 − Be(k)

Be
is the utilization ratio of the bandwidth of link e

when request k arrives.

V. ONLINE ALGORITHM FOR UNICAST ROUTING
In this section, we first describe an online algorithm for

the online unicast capacity maximization problem. We then
analyze the competitive ratio of the proposed algorithm.

A. Online algorithm
In the following we propose an online algorithm for the

network capacity maximization problem for online unicasting,
based on the proposed usage cost model. Given a sequence of
unicast requests arriving one by one without the knowledge of
future arrivals, we first decide which requests to be admitted,
and then find a routing path for each admitted request.

The basic idea behind the proposed online algorithm is to
find a shortest routing path for each admitted request, where
the length of a routing path is the weighted sum of nodes and
links in the path. To model the usage costs of the resources
at nodes and links in the network, an edge-weighted, directed
graph G′ = (V ′, E′;ω) will be constructed from G. For each
unicast request k with (sk, dk, bk), a corresponding shortest
path in G′ from node s′k to node d′k will be found. Note
that the length of an edge is the normalized usage cost of its
corresponding switch node or link, which is an exponential
function of the available amount and the workload of the
resource at the node or the link.

To maximize the accumulated bandwidth capacity of all
admitted requests, an admission control policy will be adopted.
That is, when the length of a routing path is above a given
threshold, the request will be rejected. In the following we
detail the construction of G′ and the online algorithm for the
network capacity maximization problem for online unicasting.

The edge-weighted, directed graph G′ = (V ′, E′;ω)
is constructed from G as follows. For each switch node
v ∈ V , two nodes v′ and v′′ are added to V ′, i.e., V ′ =
{v′, v′′ | v ∈ V }, and a directed edge ⟨v′, v′′⟩ is added to
E′. For each link (u, v) ∈ E, two directed edges ⟨u′′, v′⟩
and ⟨v′′, u′⟩ are added to E′, i.e., E′ = {⟨v′, v′′⟩ | v ∈
V } ∪ {⟨v′′, u′⟩, ⟨u′′, v′⟩ | (u, v) ∈ E}. For brevity, we refer
to the edges in G′ that are derived from switch nodes of G as
the node-derived edges and the edges in G′ that are derived
from the links of G as the link-derived edges, and denote by
E′

v and E′
e the sets of node-derived edges and link-derived

edges, respectively. Clearly, E′ = E′
e ∪ E′

v and E′
e ∩ E′

v = ∅.
Depending on its type (node-derived or link-derived edge) and
the usage cost of the resource it represents, each edge e ∈ E′

is then assigned a weight as follows.

ωe(k) =

α1−Lv(k)
Lv − 1 if e = ⟨v′, v′′⟩ ∈ E′

v ,

β
1−

B(u,v)(k)

B⟨u,v⟩ − 1 if e = ⟨u′′, v′⟩ ∈ E′
e,

where the weight of each node-derived edge reflects the for-
warding table size constraint on its corresponding switch node,
while the weight of each link-derived reflects the bandwidth
capacity constraint on its corresponding link.

a b

c

a' a'' b' b''

c' c''
G = (V,E)G = (V,E) G′ = (V ′, E′)G′ = (V ′, E′)

Fig. 1. The construction of G′(V ′, E′) for an SDN G(V,E).

The edge e′ ∈ E′
e derived from an Internet link e ∈ E is

omitted if the residual bandwidth of e is strictly less than bk,

because e cannot meet the bandwidth demand of request k, and
thus plays no role in admitted the k-th request. For simplicity,
the resulting graph after pruning some edges from it is still
denoted as G′. Let P (k) be a shortest path in G′ from s′k to
d′k. Following the construction of G′, the edges in P (k) are
the node-derived and link-derived edges alternatively. To avoid
admitting some requests that may undermine the performance
of the SDN, the following admission control policy will be
adopted: a unicast request k will be rejected, if (i) the length
of weighted node-derived edges in P (k) is greater than σv,
or (ii) the length of the weighted link-derived edges in P (k)
is greater than σe, where σv (= |V | − 1 = n− 1) and σe (=
|V |−1 = n−1) are pre-determined thresholds. In other words,
an incoming request k is admitted if there exists a shortest
path P (k) between s′k and d′k in G′ such that P (k) meets the
following requirements:

(i)
∑

e=⟨v′,v′′⟩∈P (k)∩E′
v
ωe(k) ≤ σv ,

(ii)
∑

e=⟨v′′,u′⟩∈P (k)∩E′
e
ωe(k) ≤ σe.

The detailed algorithm for online unicasting is given in
Algorithm 1.

Algorithm 1 Online routing algorithm for unicast requests
Input: a software define network G = (V,E) and the k-th

unicast request (sk, dk; bk);
Output: Admit or reject the request, if admitted, a routing

path for the request will be delivered.
1: Construct an edge-weighted, directed graph G′ =

(V ′, E′;ω) from a subgraph of G by removing links with
residual bandwidth less than bk;

2: Find a shortest path P (k) in G′ from s′k to d′k;
3: if P (k) does not exist then
4: Reject unicast request k;
5: else
6: If (

∑
e∈P (k)∩E′

v
ωe(k) ≤ σv) and

(
∑

e∈P (k)∩E′
e
ωe(k) ≤ σe), then admit request k

using P (k) as the routing path; otherwise, reject the
request.

7: end if.

B. Competitive ratio analysis of the online algorithm
We now analyze the performance of the proposed algorithm.

We make use of the following notations. Lmin is the minimum
table size in the network, i.e., Lmin = min{Lv | v ∈ V },
Bmin is the minimum bandwidth capacity among links, i.e.,
Bmin = min{Be | e ∈ E}, and bmax is the maximum
bandwidth demand by any unicast request. We start by showing
the upper bound on the cost of nodes and links of G of all
admitted unicast requests by Algorithm 1 as of the arrival of
request k.

Lemma 1. Given an SDN G(V,E) with node capacity Lv for
each switch node v ∈ V and link bandwidth capacity Be for
each link e ∈ E, denote by S(k) the set of unicast requests
admitted by the online algorithm, Algorithm 1, until the arrival
of request k. Let α and β be two given values with 2|V | ≤
α ≤ 2Lmin and 2|V | ≤ β ≤ 2Bmin/bmax . Then, the cost sums
of nodes and links are∑

v∈V

cv(k) ≤ |S(k)|(σv + n− 1) logα, (1)

and ∑
e∈E

ce(k) ≤ B(k)(σe + n− 1) log β, (2)

respectively, when request k arrives.

Proof: Consider a unicast request k′ ∈ S(k) admitted by
the online algorithm. Then, for any switch v ∈ V , we have

cv(k
′ + 1)− cv(k

′) = Lv

(
α1−Lv(k′+1)

Lv − α1−Lv(k′)
Lv

)
= Lvα

1−Lv(k′)
Lv (α

Lv(k′)−Lv(k′+1)
Lv − 1)

≤ Lvα
1−Lv(k′)

Lv (α
1

Lv − 1) (3)

= Lvα
1−Lv(k′)

Lv (2
1

Lv
logα − 1) ≤ Lvα

1−Lv(k′)
Lv (logα/Lv)

(4)

= α1−Lv(k′)
Lv logα. (5)

where Inequality (3) holds because at most one routing entry is
added to the routing table of node v, and Inequality (4) holds
because 2x − 1 ≤ x with 0 ≤ x ≤ 1, and (1/Lv) logα ≤
(1/Lv)Lmin ≤ (1/Lv)Lv = 1.

For any edge e ∈ E, we have

ce(k
′ + 1)− ce(k

′) = Beβ
1−Be(k′)

Be (β
Be(k′)−Be(k′+1)

Be − 1)

≤ Beβ
1−Be(k′)

Be (β
b
k′

Be − 1), (6)

= Beβ
1−Be(k′)

Be (2
b
k′

Be
log β − 1) ≤ β1−Be(k′)

Be · bk′ · log β, (7)

where Inequality (6) follows since at most bk′ bandwidth units
of link e for request k′ are reserved, and Inequality (7) follows
because bk′

Be
log β ≤ bk′

Be
· Bmin

bmax
≤ bk′

Be
· Be

bk′
= 1.

We now calculate the cost sum of all nodes or links of
G when admitting request k′. Notice that if an edge in G′ is
not on P (k′), its cost does not change after the admission of
request k′. The difference in the cost sum of nodes before and
after admitting request k′ thus is∑
v∈V

(cv(k
′ + 1)− cv(k

′))

=
∑

⟨v′,v′′⟩∈P (k′)∩E′
v

(cv(k
′ + 1)− cv(k

′))

≤
∑

⟨v′,v′′⟩∈P (k′)∩E′
v

(α1−Lv(k′)
Lv · logα), by Inequality (5)

= logα
∑

⟨v′,v′′⟩∈P (k′)∩E′
v

(
w⟨v′,v′′⟩(k

′) + 1
)

= logα
(∑

⟨v′,v′′⟩∈P (k′)∩E′
v

ω⟨v′,v′′⟩(k
′) +

∑
⟨v′,v′′⟩∈P (k′)∩E′

v

1
)

≤ (σv + (n− 1)) logα, (8)

where Inequality (8) holds because request k′ is admitted only
if it meets the admission control policy (i), and any routing
path in G′ contains no more than n− 1 node-derived edges.

Similarly, the cost sum of edges by routing request k′ is∑
e∈E

(ce(k
′ + 1)− ce(k

′)) ≤ bk′ · (σe + n− 1) log β. (9)

Notice that cv(1) = ce(1) = 0 for all v ∈ V and e ∈ E.
Thus, the cost sum of all nodes when request k arrives is∑
v∈V

cv(k) =
k−1∑
k′=1

∑
v∈V

(cv(k
′ + 1)− cv(k

′))

=
∑

k′∈S(k)

∑
v∈V

(cv(k
′ + 1)− cv(k

′))

≤
∑

k′∈S(k)

((σv + (n− 1)) logα), by Inequality (8)

= |S(k)|(σv + (n− 1)) logα.

Likewise, the cost sum of all edges for routing |S(k)|
unicast requests by the online algorithm is∑

e∈E

ce(k) ≤ B(k)(σe + (n− 1)) log β.

We then provide a lower bound on the length of the routing
path to which an optimal offline algorithm routes any request
that is rejected by the online algorithm in the following lemma.

Lemma 2. Let R(k) be the set of unicast requests that are
admitted by an optimal offline algorithm yet rejected by the
online algorithm, Algorithm 1, prior to the arrival of unicast
request k, and let Popt(k

′) be the routing path in G′ found by
the optimal offline algorithm for request k′ ∈ R(k). Assume
that α with 2|V | = 2n ≤ α ≤ 2Lmin and β with 2|V | =
2n ≤ β ≤ 2Bmin/bmax are given values, then, for any request
k′ ∈ R(k), we have∑

e∈Popt(k′)
ωe(k

′) ≥ min{σv, σe} = |V | − 1 = n− 1.

Proof: Given a unicast request k′, if it is admitted by the
optimal offline algorithm but rejected by the online algorithm,
then either (i) the length of the routing path for request k′

delivered by the online algorithm is no less than the given
threshold; or (ii) there is lack of node and/or link resources
for its admission.

Case (i) although the online algorithm is able to find a
routing path P (k′), request k′ is rejected due to the fact that
the length of P (k′) is beyond the given threshold. Let Popt(k

′)
be the routing path delivered by an optimal offline algorithm.
The length of Popt(k

′) cannot be less than that of the shortest
path P (k′). Therefore, the length of Popt(k

′) path is no less
than the given threshold by the admission control policy, i.e.,
its length is no less than min{σv, σe} = n− 1.

Case (ii) this case can be further divided into two subcases:
(a) if there is a node with no available table entry to route the
message for the unicast request, then there is a node-derived
edge e′ = ⟨v′, v′′⟩ ∈ Popt(k

′) in G′ such that Lv(k
′) < 1.

Consequently, the length of Popt(k
′) is greater than σv:∑

e∈Popt(k′)
ωe(k

′) ≥ ω⟨v′,v′′⟩(k
′) = α1−Lv(k′)

Lv − 1

> α1− 1
Lv − 1, since Lv(k

′) < 1

≥ α1− 1
log α − 1, since 2n ≤ α ≤ 2Lmin ≤ 2Lv

=
α

2
− 1 ≥ σv, by the assumption of that α ≥ 2n.

(b) If there is an edge in any routing path found by the
online algorithm without sufficient bandwidth to route request

k′, then there exists an edge e′ = ⟨v′′, u′⟩ ∈ Popt(k
′) in G′

such that B(v,u)(k
′) < bk′ . Based on the fact that 2n ≤ β ≤

2Bmin/bmax ≤ 2B(u,v)/bk′ , we can apply the same logic as above
to show the length of Popt(k

′) is greater than σe.

Having Lemmas 1 and 2, we have the following theorem.

Theorem 1. Given an SDN G = (V,E) with both node
and link capacities Lv(·) and Be(·) for all v ∈ V and
e ∈ E, assume that there is a sequence of unicast re-
quests (s1, d1; b1),. . ., (sk, dk; bk) arriving one by one without
the knowledge of future arrivals. There is an online algo-
rithm, Algorithm 1, for the network capacity maximization
problem for online unicasting with the competitive ratio of
2(γ logα+ log β) + 1, if both α and β are given values with
2|V | = 2n ≤ α ≤ 2Lmin and 2|V | = 2n ≤ β ≤ 2Bmin/bmax ,
where γ = Bmin

log β is a value with 1 < γ ≤ Bmin

log(2n) .

Proof: Let Bopt(k) be the total bandwidth of requests
admitted by an optimal offline algorithm, we then have

(n− 1)(Bopt(k)− B(k)) ≤ (n− 1)
∑

k′∈R(k)

bk′

=
∑

k′∈R(k)

bk′(n− 1) ≤
∑

k′∈R(k)

bk′
(∑
e∈Popt(k′)

ωe(k
′)
)

≤
∑

k′∈R(k)

bk
(∑
e∈Popt(k)

ωe(k)
)

(10)

=
∑

k′∈R(k)

bk′

(∑
⟨v′,v′′⟩∈Popt(k′)∩E′

v

ω⟨v′,v′′⟩(k)

+
∑

⟨u′′,v′⟩∈Popt(k′)∩E′
e

ω⟨u′′,v′⟩(k)
)

=
∑

k′∈R(k)

bk′

(∑
⟨v′,v′′⟩∈Popt(k′)∩E′

v

cv(k)

Lv

+
∑

⟨u′′,v′⟩∈Popt(k′)∩E′
e

c(u,v)(k)

B(u,v)

)
=

∑
k′∈R(k)

∑
⟨v′,v′′⟩∈Popt(k′)∩E′

v

bk′
cv(k)

Lv

+
∑

k′∈R(k)

∑
⟨u′′,v′⟩∈Popt(k′)∩E′

e

bk′
c(u,v)(k)

B(u,v)

≤
∑
v∈V

cv(k)
∑

k′∈R(k)

∑
⟨v′,v′′⟩∈Popt(k′)∩E′

v

bk′

Lv

+
∑

(u,v)∈E

c(u,v)(k)
∑

k′∈R(k)

∑
⟨u′′,v′⟩∈Popt(k′)∩E′

e

bk′

B(u,v)

=
∑
v∈V

cv(k)

∑
k′∈R(k)

∑
⟨v′,v′′⟩∈Popt(k′)∩E′

v
bk′

Lv

+
∑

(u,v)∈E

c(u,v)(k)

∑
k′∈R(k)

∑
⟨u′′,v′⟩∈Popt(k′)∩E′

e
bk′

B(u,v)

≤
∑
v∈V

cv(k)γ +
∑
e∈E

c(u,v)(k) = γ
∑
v∈V

cv(k) +
∑
e∈E

c(u,v)(k)

(11)
≤ γ|S(k)|(σv + (n− 1)) logα

+ B(k)(σe + (n− 1)) log β, by Lemma 1

= 2(n− 1)(γ|S(k)| logα+ B(k) log β). (12)

Notice that Inequality (10) holds because the utilization of
each resource does not decrease and consequently the weight
of any edge in G′ does not decrease with more request
admissions, i.e., ωe(k

′) ≤ ωe(k) for any edge e ∈ E′ and
any k′ with 1 ≤ k′ ≤ k. The proof of Inequality (11)
proceeds as follows. For any switch node v ∈ V , each routing
table entry can be used to admit a request with bandwidth
at most bmax(≤ Bmin/ log β = γ), and the routing table at
each node v has Lv entries. Thus, the accumulated bandwidth
of all unicast requests using switch node v as their relay
node is no more than Lv · bmax. Hence, the accumulated
bandwidth of all admitted requests through node v by an
optimal offline algorithm, is no more than Lv · bmax, i.e.,∑

k′∈R(k)

∑
⟨v′,v′′⟩∈Popt(k′)∩E′

v
bk′ ≤ Lv · bmax ≤ γ · Lv .

Hence, (
∑

k′∈R(k)

∑
⟨v′,v′′⟩∈Popt(k′)∩E′

v
bk′)/Lv ≤ γ. Mean-

while, all algorithms, including optimal offline algorithms for
the problem of concern, the total amount of bandwidth used
in any link is no more than its bandwidth capacity, thus, for
every link e ∈ E, the accumulated bandwidth of all admitted
requests on it by an optimal offline algorithm is no more than
its capacity, i.e.,

∑
k′∈R(k)

∑
⟨u′′,v′⟩∈Popt(k′)∩E′

e
bk′ ≤ Be.

Therefore, (
∑

k′∈R(k)

∑
⟨u′′,v′⟩∈Popt(k′)∩E′

e
bk′)/Be ≤ 1.

By Inequality (12), we have

Bopt(k)− B(k)
B(k)

≤ 2(γ
|S(k)|
B(k)

logα+ log β)

≤ 2(γ logα+ log β), (13)

where the last step follows because B(k) =
∑

k′∈S(k) bk′ and
bk′ ≥ 1. From Inequality (13), we have

Bopt(k)

B(k)
≤ 2(γ logα+ log β) + 1. (14)

Notice that the competitive ratio of Algorithm 1 is de-
termined by parameters α and β. When α = β = 2n, the
competitive ratio of Algorithm 1 is 2(Bmin + log(2n)) + 1 =
O(log n).

VI. ONLINE ALGORITHM FOR MULTICAST ROUTING
In this section we deal with the network capacity maxi-

mization problem for online multicasting. We first propose an
efficient online algorithm for the problem. We then analyze
the competitive ratio of the proposed algorithm.

A. Online algorithm
The basic idea of the proposed algorithm is to respond to

each incoming multicast request k with (sk, Dk; bk) by either
admitting or rejecting it, according to an admission control
policy. To model the node and link resource consumptions
of the admission of multicast request k, an auxiliary edge-
weighted, directed graph G′ = (V ′, E′;ω) will be constructed,
where the weight of each node-derived or link-derived edge in
G′ will reflect the availability and the utilization of a resource.
A multicast tree in G′ rooted at the source s′k and spanning
all terminal nodes in Dk will be found if it exists. If the
weighted sums of all its node-derived edges and all its link-
derived edges are also less than their corresponding thresholds,
then the request will be admitted; otherwise, it will be rejected.

Given an SDN G(V,E) with node and link capacities Lv(·)
and Be(·), respectively, the auxiliary edge-weighted, directed

graph G′ = (V ′, E′;w) is constructed as follows. For each
switch node v ∈ V , two nodes v′ and v′′ are added to V ′, and
there is a directed edge ⟨v′, v′′⟩ added to E′. For each edge
(u, v) ∈ E, there are two new nodes wuv and wvu, and four
directed edges ⟨v′′, wvu⟩, ⟨wvu, u

′⟩, ⟨u′′, wuv⟩, and ⟨wuv, v
′⟩

added to V ′ and E′, respectively, i.e., V ′ = {v′, v′′ | v ∈
V } ∪ {wuv, wvu | (u, v) ∈ E} and E′ = {⟨v′, v′′⟩ | v ∈
V }∪ {⟨v′′, wvu⟩, ⟨wvu, u

′⟩, ⟨u′′, wuv⟩, ⟨wuv, v
′⟩ | (u, v) ∈ E}.

Fig. 2 illustrates the construction of G′ from G.

a b

c

a' a'' b' b''

c' c''

wac wcb

wba

wab

wbcwca

G = (V,E)G = (V,E) G′ = (V ′, E′)G′ = (V ′, E′)

Fig. 2. The construction of G′(V ′, E′;ω) from an SDN G(V,E).

Denote by E′
v = {⟨v′′, wvu⟩ | (v, u) ∈ E} and E′

e =
{⟨wvu, u

′⟩ | (v, u) ∈ E} the sets of node-derived edges and
link-derived edges in G′, respectively. The weight assigned to
each edge e ∈ E′ is defined as follows.

ωe(k) =

0, if e ∈ {⟨v′, v′′⟩ | v ∈ V }
α1−Lv(k)

Lv − 1, if e = ⟨v′′, wvu⟩ ∈ E′
v

β
1−

B(v,u)(k)

B(u,v) − 1, if e = ⟨wvu, u
′⟩ ∈ E′

e,

where the weight of each node-derived edge reflects the
node resource consumption on one of its branches on its
corresponding switch node while the weight of each link-
derived edge reflects the bandwidth resource consumption on
its corresponding link in the multicast tree.

Now, given a multicast request k with (sk, Dk; bk), the
problem is to find a multicast tree T (k) in G′ rooted at s′k
and spanning all nodes in D′

k = {u′ | u ∈ Dk} such that
the weighted sum of all edges in T (k) is minimized, which is
a classic directed Steiner tree problem that is NP-hard. As it
is very unlikely to find an exact solution for it in polynomial
time, an approximate solution instead suffices, by applying
the approximation algorithm in [4]. The approximation ratio
of the approximate solution is |Dk|ϵ, and its running time is a
polynomial function of n and 1

ϵ , where ϵ is a fixed value with
0 < ϵ ≤ 1.

To prevent admitting some multicast requests that will
degrade the performance of the proposed online algorithm
significantly, an admission control policy will be adopted. That
is, a multicast request k is admitted only if

(i)
∑

e∈T (k)∩E′
v
ωe(k) ≤ σv, and

(ii)
∑

e∈T (k)∩E′
e
ωe(k) ≤ σe,

where σv = σe = |V | − 1 = n − 1. The detailed online
algorithm for the network capacity maximization problem for
online multicasting is given in Algorithm 2.

B. Competitive ratio analysis
Let dmax be the maximum degree of nodes in G, i.e.,

dmax = max{dv | v ∈ V }, and it usually is a small constant,

Algorithm 2 Online routing algorithm for multicast requests
Input: An SDN G = (V,E) and an incoming multicast

request k with (sk, Dk; bk) and Dk ⊂ V ;
Output: Admit or reject multicast request k. If admitted, a

routing multicast tree for the request will be found.
1: for each node v ∈ V do
2: if the available table size at node v is less than dv, i.e.,

Lv(k) < dv, then
3: Remove v and its incident edges from G;
4: end if;
5: end for;
6: Construct an auxiliary edge-weighted, directed graph G′ =

(V ′, E′;ω) from the resulting graph G(V,E) /* ensure that
the switch table of each node v has at least dv available
entries */;

7: Find an approximate multicast tree T (k) in G′ rooted at s′k
and spanning all nodes in D′

k, by applying the algorithm
in [4];

8: if T (k) does not exist then
9: Reject multicast request k;

10: else
11: If (

∑
e∈T (k)∩E′

v
ωe(k) ≤ σv) and

(
∑

e∈T (k)∩E′
e
ωe(k) ≤ σe), then admit request k

with T (k); otherwise, reject k.
12: end if.

i.e., dmax ≪ Lmin. Recall that Lmin is the minimum table size
among switch nodes, i.e., Lmin = min{Lv | v ∈ V }, Bmin is
the minimum bandwidth capacity among links, i.e., Bmin =
min{Be | e ∈ E}, bmax is the maximum bandwidth demand by
any multicast request, K is the maximum number of terminal
nodes in any multicast request, i.e., K = max{|Dk′ | | 1 ≤
k′ ≤ k}, and ϵ is a fixed value with 0 < ϵ ≤ 1. We now
analyze the competitive ratio of Algorithm 2 for the network
capacity maximization problem for online multicasting. We
start with the following lemma.

Lemma 3. Given an SDN G = (V,E) with node capacity
Lv for each switch node v ∈ V and link bandwidth capacity
Be for each link e ∈ E, denote by S(k) the set of multicast
requests admitted by the online algorithm, Algorithm 2, until
the arrival of multicast request k. Let α and β be given values
with 2|V | ≤ α ≤ 2Lmin/dmax and 2|V | ≤ β ≤ 2Bmin/bmax .
Then, the cost sums of nodes and of links of G when multicast
request k arrives are∑

v∈V

cv(k) ≤ |S(k)|(σv + n− 1)dmax logα, (15)

and ∑
e∈E

ce(k) ≤ B(k)(σe + n− 1) log β, (16)

respectively.

Proof: Consider an admitted multicast request k′ ∈ S(k)
by the online algorithm. Let dT (k′)

v be the outgoing degree of a
node v′′ in the multicast tree T (k′) delivered by the algorithm.
Notice that d

T (k′)
v is a small constant, and d

T (k′)
v ≤ dv ≤

dmax ≪ Lv . If the edge derived from a switch node v ∈ V is
not in T (k′), then cv(k

′ + 1) − cv(k
′) = 0. The cost sum of

all nodes in G for admitting multicast request k′ is∑
v∈V

(cv(k
′ + 1)− cv(k

′))

=
∑

v∈T (k′)

(
Lvα

1−Lv(k′)
Lv

(
α

Lv(k′)−Lv(k′+1)
Lv − 1

))
≤

∑
v∈T (k′)

(
Lvα

1−Lv(k′)
Lv

(
α

dmax
Lv − 1

))
(17)

≤ (σv + (n− 1))dmax logα, (18)

where Inequality (17) follows since the degree of v in mul-
ticast tree T (k) cannot exceed the degree of v in G, and
Inequality (18) follows since request k′ is admitted only if
the admission control policy (i) is met, and a multicast tree
cannot have more than n− 1 node-derived edges.

Notice that cv(1) = 0 for all v ∈ V . The cost sum of nodes
by routing the requests in S(k) is∑

v∈V

cv(k) ≤ |S(k)|(σv + (n− 1))dmax logα.

The proof of Equation (16) is similar to the proof of
Equation (9) in the unicast case, and thus omitted.

We then show the lower bound of the cost sum of node-
derived and link-derived edges of the multicast tree for mul-
ticast request k′ admitted by an optimal offline algorithm but
rejected by the online algorithm, by the following lemma.

Lemma 4. Let R(k) be the set of multicast requests admitted
by an optimal offline algorithm yet rejected by the online
algorithm, Algorithm 2, prior to the arrival of multicast request
k, and let Topt(k

′) be the multicast tree in G′ found by the
optimal offline algorithm for request k′ ∈ R(k). Assume that
α and β are given values with 2|V | = 2n ≤ α ≤ 2Lmin/dmax

and 2|V | = 2n ≤ β ≤ 2Bmin/bmax . Then, for each multicast
request k′ ∈ R(k), we have∑

e∈Topt(k′)

ωe(k
′) ≥ min{σv, σe}

Kϵ
.

Due to the space limit, the full proof is omitted. The basic
idea is similar to that in Lemma 2.

Having Lemmas 3 and 4, we show the following theorem.

Theorem 2. Given an SDN G = (V,E) with both node and
link capacities Lv(·) and Be(·) for all v ∈ V and e ∈ E, as-
sume that there is a sequence of multicast requests (sk, Dk; bk)
arriving one by one without the knowledge of future arrivals
with Dk ⊆ V . There is an online algorithm, Algorithm 2, for
the network capacity maximization problem online multicast-
ing with the competitive ratio of 2Kϵ(dmaxγ logα+log β)+1,
if both α and β are given with 2|V | = 2n ≤ α ≤ 2Lmin/dmax

and 2|V | = 2n ≤ β ≤ 2Bmin/bmax , where γ = Bmin/ log β.

Proof: Let Bopt(k) be the total bandwidth of the multicast
requests admitted by an optimal offline algorithm. Combining
Lemma 3 and Lemma 4, we have

(n− 1)

Kϵ
(Bopt(k)− B(k)) ≤ γ

∑
v∈V

cv(k) +
∑
e∈E

ce(k)

≤ γ|S(k)|(σv + (n− 1))dmax logα+ B(k)(σe + (n− 1)) log β

= 2(n− 1)(γ|S(k)|dmax logα+ B(k) log β) (19)

From Inequality (19), we have

Bopt(k)

B(k)
≤ 2Kϵ(

|S(k)|
B(k)

dmaxγ logα+ log β) + 1.

When α = β = 2n, the approximation ratio of Algorithm 2
is 2Kϵ(dmaxBmin + log(2n)) + 1 = O(Kϵ log n).

VII. PERFORMANCE EVALUATION
In this section we evaluate the performance of the proposed

algorithms through experimental simulation. We also investi-
gate the impact of important parameters.

A. Environment settings
We consider networks with 50, 100, 150, 200, and 250

nodes, respectively. For each network size, 30 network in-
stances are generated, using the tool GT-ITM [6]. The size of
the forwarding table Lv of each switch node v ∈ V is from 500
to 5, 000, and the bandwidth capacity Be of each link e ∈ E
varies from 1, 000 Mbps to 10, 000 Mbps [10], [13], [16]. The
bandwidth demand bk of each unicast or multicast request
k is randomly assigned between 1 Mbps and 50 Mbps. The
number of terminals in a multicast request is chosen between
1% and 15% of the network size. The value in each figure is
the mean of the results out of 30 network instances with 30
different sequences of 50, 000 unicast requests or 30, 000 mul-
ticast requests. Notice that the bandwidth requirement of each
request is consistent with the range given by Theorem 2, i.e.,
bk ≤ Bmin

log(2n) , where Bmin = min{Bk′ | 1 ≤ k′ ≤ k} = 1, 000.
To evaluate the performance of the proposed algorithms

against benchmarks, we here propose two heuristic algo-
rithms SHORTEST-UC and SHORTEST-MC for online uni-
cast and multicasting, respectively. Specifically, for an incom-
ing request k, the heuristic algorithms first remove the links
and nodes from the network that do not have enough capacities
to support the admission of request k, and then assign each link
the same weight. Algorithm SHORTEST-UC finds a shortest
path with the minimal number of links from the source to
the destination of request k, while algorithm SHORTEST-MC
finds a single-source shortest path tree spanning all terminals.

50 100 150 200 250
Network Size n

5e+05

1e+06

1.5e+06

A
cc

u
m

u
la

te
d
 B

an
d
w

id
th

Algorithm 1
SHORTEST-UC

(a) Accumulated bandwidth by Algo-
rithms 1 and SHORTEST-UC

50 100 150 200 250
Network Size n

1.1e+05

1.2e+05

1.3e+05

1.4e+05

1.5e+05

A
cc

u
m

u
la

te
d
 B

an
d
w

id
th

Algorithm 2
SHORTEST-MC

(b) Accumulated bandwidth by Algo-
rithms 2 and SHORTEST-MC

Fig. 3. The accumulated bandwidth delivered by different algorithms through
varying n, while keeping other parameters fixed, i.e., α = β = 2n and
σv = σe = n − 1, assuming that there are 50,000 unicast requests and
30,000 multicast requests.

B. Performance evaluation of different algorithms
We first evaluate the proposed online algorithms against

algorithms SHORTEST-UC and SHORTEST-MC by varying
network size n from 50 to 250, while keeping other parameters
fixed, i.e., α = β = 2n and σe = σv = n − 1. Fig. 3
plots the performance curves of different algorithms, from
which it can be seen that the proposed algorithms, Algo-
rithm 1 and Algorithm 2, outperform SHORTEST-UC and
SHORTEST-MC in all cases. Specifically, in online unicast-
ing, Algorithm 1 outperforms algorithm SHORTEST-UC, as
Fig.3(a) and Fig. 3(b) clearly indicate that Algorithm 1 delivers

50 100 150 200 250
Network Size n

0

5e+05

1e+06

1.5e+06

A
c
c
u
m

u
la

te
d
 B

a
n
d
w

id
th

σ
v
 = σ

e
 = n - 1

σ
v
 = σ

e
 = ∞

(a) Accumulated bandwidth by Algo-
rithm 1 with and without thresholds

50 100 150 200 250
Network Size n

80,000

1e+05

1.2e+05

1.4e+05

1.6e+05

A
c
c
u
m

u
la

te
d
 B

a
n
d
w

id
th

σ
v
 = σ

e
 = n - 1

σ
v
 = σ

e
 = ∞

(b) Accumulated bandwidth by Algo-
rithm 2 with and without thresholds

Fig. 4. The accumulated bandwidth delivered by Algorithm 1 for online
unicasting and Algorithm 2 for online multicasting with thresholds σv = σe =
n−1 and without thresholds σv = σe = ∞ for a monitoring period consisting
of 50,000 unicast requests or 30,000 multicast requests when α = β = 2n.

10% more accumulated bandwidth and admits 9% more re-
quests than algorithm SHORTEST-UC does. In addition, with
the growth of network size n, the performance curves of both
algorithms in comparison go up. In online multicasting, Algo-
rithm 2 delivers more accumulated bandwidth and admits more
requests than algorithm SHORTEST-MC does. In particular,
the accumulated bandwidth delivered by Algorithm 2 is 20%
more than that by algorithm SHORTEST-MC when n = 50.
However, Algorithm 2 still delivers 8% more accumulated
bandwidth compared with algorithm SHORTEST-MC when
the network size is 250. The reason is that with the growth of
the network size n, the number of terminals in each multicast
request increases, requiring more node and link resources.
C. Impact of parameters on the performance of algorithms

We first evaluate the impact of the admission control thresh-
old parameters σv and σe on the performance of Algorithms 1
and 2. Admission control aims to prevent the admission of
requests with large costs relative to thresholds σv and σe.
When σv < ∞ and σe < ∞ are bounded, this implies that a
request is very likely to be rejected even if there are sufficient
available node and link resources for its admission.

Fig. 4 shows the performance curves of Algorithm 1 and
of Algorithm 2 with and without thresholds, respectively, from
which it can be seen that Algorithm 1 and Algorithm 2 with
admission control significantly outperform themselves without
admission control. Specifically, for the online unicasting, the
performance gap of Algorithm 1 with thresholds and without
thresholds becomes larger and larger, which can be seen in
Fig. 4(a) with the increase in network size n. For example, the
ratio of the accumulated bandwidth delivered by Algorithm 1
with and without the admission control thresholds grows from
1.25 when n = 25 to 2.5 when n = 250, see Fig. 4(a). For
the online multicasting, the performance gap of Algorithm 2
with and without the admission control thresholds is stable, as
shown in Fig. 4(b). The difference in the accumulated band-
width only drops from 500, 000 to 450, 000 for a monitoring
period when the network size increases from 100 to 250.

We then investigate the impact of parameters α and β on
the performance of the proposed algorithms, by varying α and
β from 21n to 25n while setting σv = σe = n − 1. Fig. 5
and Fig. 6 plot the performance curves of Algorithms 1 and
Algorithm 2, by varying the value of either α or β while
fixing the value of the other. It can be seen from Fig. 5(a)
to Fig. 5(c) that when α is fixed, the larger the value of β, the
less the accumulated bandwidth delivered by Algorithm 1 for
different network sizes n, and vice versa. For instance, when
α = 21n and n = 50, Algorithm 1 with β = 21n delivers 15%
more the accumulated bandwidth than itself with β = 25n. It

50 100 150 200 250

Network Size n

4e+05

6e+05

8e+05

1e+06

1.2e+06
A

c
c
u

m
u

la
te

d
 B

a
n

d
w

id
th

l = 1

l = 2

l = 3

l = 4

l = 5

(a) The performance of Algorithm 1 by varying
β = 2ln with 1 ≤ l ≤ 5, when α = 21n

50 100 150 200 250

Network Size n

4e+05

6e+05

8e+05

1e+06

1.2e+06

A
c
c
u

m
u

la
te

d
 B

a
n

d
w

id
th

l = 1

l = 2

l = 3

l = 4

l = 5

(b) The performance of Algorithm 1 by vary-
ing β = 2ln with 1 ≤ l ≤ 5, when α = 23n

50 100 150 200 250

Network Size n

4e+05

6e+05

8e+05

1e+06

1.2e+06

A
c
c
u

m
u

la
te

d
 B

a
n

d
w

id
th

l = 1

l = 2

l = 3

l = 4

l = 5

(c) The performance of Algorithm 1 by varying
β = 2ln with 1 ≤ l ≤ 5, when α = 25n

Fig. 5. The performance of Algorithm 1 for online unicasting by varying α and β, when σv = σe = n− 1.

50 100 150 200 250

Network Size n

1e+05

1.1e+05

1.2e+05

1.3e+05

1.4e+05

1.5e+05

A
c
c
u

m
u

la
te

d
 B

a
n

d
w

id
th

l = 1

l = 2

l = 3

l = 4

l = 5

(a) The performance of Algorithm 2 by varying
β = 2ln with 1 ≤ l ≤ 5, when α = 21n

50 100 150 200 250

Network Size n

1e+05

1.1e+05

1.2e+05

1.3e+05

1.4e+05

1.5e+05

A
c
c
u

m
u

la
te

d
 B

a
n

d
w

id
th

l = 1

l = 2

l = 3

l = 4

l = 5

(b) The performance of Algorithm 2 by vary-
ing β = 2ln with 1 ≤ l ≤ 5, when α = 23n

50 100 150 200 250

Network Size n

1e+05

1.1e+05

1.2e+05

1.3e+05

1.4e+05

1.5e+05

A
c
c
u

m
u

la
te

d
 B

a
n

d
w

id
th

l = 1

l = 2

l = 3

l = 4

l = 5

(c) The performance of Algorithm 2 by varying
β = 2ln with 1 ≤ l ≤ 5, when α = 25n

Fig. 6. The performance of Algorithm 2 for online multicasting by varying α and β when σv = σe = n− 1.

also can been seen that the performance gap of Algorithm 1
under different values of α and β is stable with the increase
of network size n. Similarly, Fig. 6 draws the performance
curves of Algorithm 2 by varying the values of exactly one of
α and β each time, from which it can be seen when the value
of α is fixed, the larger β, the less the accumulated bandwidth
delivered by Algorithm 2, and vice versa. The performance
gap of Algorithm 2 with different β is also stable for different
network sizes.

VIII. CONCLUSION
In this paper we studied dynamic unicast and multicast

routing in Software-Defined Networks under both switch node
and link capacities and request bandwidth demands constraints.
We first proposed a novel cost model to model the usage
costs of node and link resources. We then devised efficient
online algorithms for online unicast and multicast capacity
maximization problems. We also performed analytical analysis
on the competitive ratios of the proposed algorithms. We finally
evaluated the performance of the proposed algorithms through
experimental simulation. The simulation results indicate that
the proposed algorithms are very promising.

REFERENCES
[1] S. Agarwal, M. Kodialam, and T. V. Lakshman. Traffic engineering in

software defined networks. Proc. INFOCOM, IEEE, 2013.
[2] J. Aspnes, Y. A. Yossi, A. Fiat, S. Plotkin, and O. Waarts. On-line

routing of virtual circuits with applications to load balancing and machine
scheduling. J. ACM, vol. 44, no. 3, pp. 486–504, May 1997.

[3] Z. Cao, M. Kodialam, and T. V. Lakshman. Traffic steering in software
defined networks: planning and online routing. Proc. ACM SIGCOMM
Workshop Distributed Cloud Computing (DCC), 2014.

[4] M. Charikar, C. Chekuri, T.-Y. Cheung, Z. Dai, A. Goel, S. Guha, and
M. Li. Approximation algorithms for directed Steiner problems. Proc.
9th ACM-SIAM Symp. Discrete Algorithms (SODA), 1998.

[5] R. Cohen, L. Eytan, J. Naor, and D. Raz. On the effect of forwarding
table size on SDN network utilization. Proc. IEEE INFOCOM, 2014.

[6] GT-ITM. http://www.cc.gatech.edu/projects/gtitm/.
[7] H. Huang, S. Guo, P. Li, and W. Liang. Cost minimization for rule

caching in software defined networking To appear in IEEE Trans.
Parallel and Distributed Systems.

[8] L. Huang, H. Hung, C. Lin, and D. Yang. Scalable steiner tree for
multicast communications in software-defined networking. Computing
Research Repository (CoRR), vol. abs/1404.3454, 2014.

[9] S. Jain et al. B4: experience with a globally-deployed software defined
WAN. Proc. ACM SIGCOMM, 2013.

[10] Y. Kanizo, D. Hay, and I. Keslassy. Palette: distributing tables in
software-defined networks. Proc. IEEE INFOCOM, 2013.

[11] N. Katta, J. Rexford, and D. Walker. Infinite cacheflow in software-
defined networks. Technical Report TR–966–13, Department of Com-
puter Science, Princeton University, 2013.

[12] K. Kar, M. Kodialam, T. V. Lakshman, and L. Tassiulas. Routing for
network capacity maximization in energy-constrained ad hoc networks.
Proc. INFOCOM, 2003.

[13] D. Kreutz, F. M. V. Ramos, P. Verissimo et al. Software-defined
networking: a comprehensive survey. Proc. IEEE, vol. 103, pp. 14–76,
2015.

[14] W. Liang and X. Guo. On-line multicasting for network capacity
maximization in energy-constrained ad hoc networks. IEEE Trans.
Mobile Computing, vol. 5, pp. 1215–1227, 2006.

[15] W. Liang and Y. Liu. On-line data gathering for maximizing network
lifetime in sensor networks. IEEE Trans. Mobile Computing, vol. 6, pp.
2–11, 2007.

[16] B. A. A. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and T. Turletti.
A survey of software-defined networking: past, present, and future of
programmable networks. Communications Surveys & Tutorials, vol. 16,
pp. 1617–1634, 2014.

[17] NTT Communications. NTT communications and jba’s sdn project
wins ibc 2013 innovation award. https://www.ntt.com/aboutus_e/news/
data/20130918.html, NTT, 2013.

[18] S. Plotkin. Competitive routing of virtual circuits in ATM networks. J.
Selected Areas in Communications, 1995.

[19] Z. Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. SIMPLE-
fying middlebox policy enforcement using SDN. Proc. ACM SIGCOMM,
2013.

[20] E. Spitznagel, D. Taylor, and J. Turner. Packet classification using
extended TCAMs. Proc. IEEE ICNP, 2003.

