
Throughput Maximization in Software-Defined
Networks with Consolidated Middleboxes

Meitian Huang†, Weifa Liang†, Zichuan Xu‡†, Mike Jia†, and Song Guo¶

† The Australian National University, Canberra, ACT 2601, Australia

‡ University College London, London WC1E 7JE, UK

¶ The Hong Kong Polytechnic University, Hong Kong

Email: u4700480@anu.edu.au, wliang@cs.anu.edu.au, z.xu@ucl.ac.uk, u5515287@anu.edu.au, cssongguo@comp.polyu.edu.hk

Abstract—Today’s computer networks rely on a wide spectrum
of specialized middleboxes to improve their security and perfor-
mance. Traditional middleboxes that are implemented by dedi-
cated hardware are expensive and hard to manage. A promising
technique of consolidated middleboxes – implementing traditional
middleboxes in Virtual Machines (VMs) – offers economical yet
simplified management of middleboxes in Software-Defined Net-
works (SDNs). However there are still challenges to realizing user
routing requests with network function enforcement (a sequence
of middleboxes) while maximizing the network throughput, due
to various resource constraints on SDNs, such as forwarding table
capacity at each switch, bandwidth resource capacity at each
link, and computing resource capacity at each server (Physical
Machine). In this paper, we study the problem of maximizing
the network throughput of an SDN by admitting as many user
requests as possible, where each user request has both bandwidth
and computing resource demands to implement its network
functions (consolidated middleboxes). We first formulate the
problem as a novel network throughput maximization problem.
We then provide an Integer Linear Program (ILP) solution
for it if the problem size is small, otherwise, we devise two
heuristics that strive for the fine tradeoff between the accuracy
of solutions and the running times of achieving the solutions.
We finally evaluate the performance of the proposed algorithms
by simulations, based on real and synthetic network topologies.
Experimental results demonstrate that the proposed algorithms
are very promising.

Keywords—software-defined networking, network func-
tion virtualization, consolidated middleboxes, routing al-
gorithms, network resource allocation.

I. INTRODUCTION

Computer networks nowadays rely on various middleboxes,

including firewall, Intrusion Detection Systems (IDSs), WAN

optimizers, and Deep Packet Inspection (DPI), to enhance the

performance and security of different network services [7],

[11], [20]. Unfortunately, the management and deployment

of hardware middleboxes are highly complex and costly [20].

With the advancement of the Network Function Virtualization

(NFV), middleboxes can be implemented in Virtual Machines

(VMs) that run in Physical Machines (PMs) [6], [18], [20].

We refer to the software implementations of middleboxes as

the consolidated middleboxes. Along with the technique of
Software-Defined Networking (SDN), consolidated middle-

boxes offer a promising alternative method to provide cheap

and simplified management of middleboxes [9], [19].

In this paper we deal with realizing user requests with each

specifying a sequence of middleboxes in an SDN with the aim

to maximize the throughput of the network. This problem poses

great challenges: one is that there are many different types

of resources in an SDN with limited capacities. For instance,

the forwarding table of an SDN-enabled switch usually is

made by Ternary Content-Addressable Memory (TCAM) to

facilitate fast, parallel lookups of forwarding rules. However,

TCAM is expensive and energy hungry, its capacity thus is

restricted to a few thousands [13]. Meanwhile, the computing

resource of the PM attached to an SDN-enabled switch is

limited too. Another challenge is that the resources in an

SDN are allocated dynamically, causing significant fluctuations

in their consumptions and availabilities. Such time-varying

nature of resource demands and consumptions complicates

the cost modeling of resource usages. In addition, each user

request requires its traffic to traverse a specified sequence

of middleboxes that is referred to the service chain of the

request. To tackle the challenges, in this paper we innovatively

propose a cost model to accurately capture dynamic resource

consumptions in an SDN. We then propose efficient algorithms

that jointly meet the service chains and resource demands

on traffic routing of various user requests. Despite that

there are several studies of consolidated middleboxes [3],

[9], [18], none of them has taken the forwarding table size

into consideration, and they provided suboptimal solutions

to the problem by decomposing routing from service chain

execution [9]. To the best of our knowledge, we are the first to

formulate a novel routing optimization problem in SDNs with

consolidated middleboxes that incorporates various resource

capacity constraints and different user QoSs, by providing

efficient heuristic solutions.

The main contributions of this paper are summarized as

follows. We consider the network throughput maximization

problem in SDNs, subject to various capacity constraints of

network resources and user resource demand constraints. We

first formulate an Integer Linear Program solution to the

problem when the problem size is small. We then devise a

heuristic for the problem through introducing a novel cost

modeling of resource consumptions and problem reduction.

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Meitian Huang. Under license to IEEE. 298

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Meitian Huang. Under license to IEEE.

DOI 10.1109/LCN.2016.58

298

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Meitian Huang. Under license to IEEE.

DOI 10.1109/LCN.2016.58

298

To respond to user requests quickly, we also propose a faster

heuristic by exploring the finest tradeoff between the accuracy

of the solution obtained and the running time of finding such a

solution. We finally evaluate the performance of the proposed

algorithms by simulations, based on real and synthetic network

topologies and using synthetic traffic traces. Experimental

results demonstrate that the proposed algorithms are very

promising.

The rest of the paper is organized as follows. Section II will

review related work. Section III will introduce the system model

and notations, and define the problem. Section IV will formulate

an ILP solution to the problem. Sections V and VI will present a

heuristic algorithm and a faster heuristic algorithm, respectively.

Section VII will evaluate the performance of the proposed

algorithms with simulations.

II. RELATED WORK

While middleboxes are widely used to guarantee security

and performance of routing traffic in contemporary computer

networks, the deployment of traditional hardware middleboxes

incurs high capital investment [19] and high operational

costs [20]. To tackle these issues, recent efforts on new frame-

works and architectures of consolidated middleboxes [6], [8],

[16], [19], have resulted in promising alternatives to traditional

hardware middleboxes. For example, Sekar et al. devised an
architecture CoMb [19] that focused on consolidating software-

based implementations of middlebox functions on a shared

hardware platform. Qazi et al. developed SIMPLE [18] that

enforces high-level routing policies for middlebox-specific traf-

fic steering based on SDN. One fundamental problem that has

not been addressed by existing studies is network throughput

maximization while meeting various resource constraints and

user QoSs. A few recent studies investigated this issue [3], [9],

however they neither considered resource constraints such as

the forwarding table size constraint on switches nor took global

optimization approaches, thereby the solutions delivered are

suboptimal, e.g., Charikar et al. [3] assumed that every switch
in a network can perform middlebox functions without taking

forwarding table sizes into consideration. Gushchin et al. [9]
assumed that the routing traffic of a request can be split into

multiple paths, and proposed a two-stage local optimization.

In [14], the authors studied a problem of VM placement and

path selection, striking for a tradeoff between link and server

usage. This work, however, is different from ours because they

assumed that multiple requests of the network function can

be satisfied using a single VM that implements the network

function. On the other hand, Li et al. presented the design
and implementation of a system that dynamically provisions

resources to provide timing guarantees with the objective of

the number of request admitted to the cloud, while meeting

the deadline requirements of admitted requests [15].

III. PRELIMINARIES

A. System Model

We consider a software-defined network represented by a

directed graph G = (V,E), where V is the node set and E

is the edge set. Each node v ∈ V represents an SDN-enabled

switch, while each directed edge 〈u, v〉 ∈ E represents an

Internet link from switch u to switch v. Each switch v ∈
V is equipped with a Ternary Content-Addressable Memory

(TCAM) forwarding table that can accommodate at most Lv

forwarding rules. A subset of switches in V are connected to

physical machines (PMs) to implement middleboxes as virtual

machines. As each such switch and its attached PM are usually

connected by a high-speed optical link, the latency between

them is negligible and the switches and their attached PMs

will be used interchangeably. Denote by Vpm (⊆ V) the set
of switches that have attached PMs. We assume that each PM

attached to a switch v ∈ Vpm has limited capacity resource,

and denote by Cv its computing resource capacity. If switch

v ∈ V \ Vpm, then Cv = 0. Similarly, each link e ∈ E has a

bandwidth capacity Be. We assume that there is a centralized

SDN controller for network G that collects and processes user

requests by installing forwarding rules into the forwarding

tables in switches, assigning the middleboxes for the requests

to PMs, and allocating bandwidth on links.

B. User Requests

We assume that time is slotted into equal time slots. User
requests are scheduled by the centralized SDN controller in

the beginning of each time slot. Let S(t) be the set of arrived
user requests in time slot t. Each user request has a certain
amount of bandwidth demand to route its traffic in G from

a source switch to a destination switch that passes through

a sequence of middleboxes, and the request also has an end-

to-end delay requirement. Let ri ∈ S(t) be a user request,
represented by a quintuple ri = 〈si, ti, bi, SCi, di〉, where
si, ti ∈ V are, respectively, its source and destination switches,

bi is its bandwidth demand, SCi is its service chain, and

di ∈ R
+ is its end-to-end delay constraint. Admission of

user request ri therefore involves routing the traffic from the

source switch si to the destination switch ti via a routing
path Pi = 〈si, . . . , ti〉 subjects to constraints bi, SCi, and di.
Service chain SCi is a sequence of services that are chained

together and has to be traversed in the specified order by the

traffic of ri.
Following the same assumption as in [9], [16], [18], [19],

we assume that services in SCi are run in a single VM and

different VMs serving different requests can be consolidated to

a single Physical Machine (PM). Specifically, when the traffic

of request ri arrives at the PM hosting the VM for its service

chain SCi, it will be directed to the VM and the services in

SCi are applied in the specified order. Performing the services

in SCi for ri thus will consume the computing resource of
a PM. Denote by C(i, j) the amount of computing resource
needed by SCi in a PM attached to the switch vj ∈ Vpm.

Notice that some services in SCi may alter the volume of

the traffic of request ri. For instance, the volume of traffic
increases if encryption is applied, while the volume of traffic

decreases if compression is applied. We here define λi ∈ R
+ as

the ratio between the volumes of the traffic of request ri after
and before processing. Since request ri requires an amount

299299299

bi of bandwidth to route its traffic before processing, it thus
needs an amount λi · bi of bandwidth to route the processed
traffic. The value of λi for each request ri is given and can
be derived from historical traffic [4]. In addition, each request

ri has a tolerant end-to-end delay requirement di. Suppose ri
is admitted with a routing path Pi from its source si to its
destination ti, and its service chain SCi is implemented on a

PM-attached switch v ∈ Vpm on Pi. Let Dn(Pi) and Dp(i, v)
be the network delay experienced by ri via path Pi and the

processing delay of ri at PM v, respectively. The network
delay Dn(Pi) is proportional to the number of switches on
Pi, and the average processing delay Dp(i, v) depends on the
complexity of the service chain SCi which usually is given as

a priori. Then, the end-to-end delay Di of ri via path Pi is

the sum of the network delay of Pi and the processing delay

of SCi, i.e., Di = Dn(Pi) +Dp(i, v). It has to be guaranteed
that Di ≤ di for every admitted request ri.

C. Problem Definition

Given an SDN G = (V,E), a subset of switches Vpm

(⊆ V) with each attaching a PM of computing capacity Cv,

the forwarding table capacity Lv for each switch v ∈ V ,
the bandwidth capacity Be for each link e ∈ E, and a set

of user requests S(t) at time slot t, the network throughput
maximization problem in the SDN G is to admit as many

user requests as possible such that the throughput of numbers

of admitted requests to the total number of requests in S(t)
is maximized, while the end-to-end delay di, the bandwidth
demand bi, and the computing demand C(i, j) for service chain
SCi of each admitted request ri and resource constraints of
G are met.

D. NP-Hardness

We show that this problem is NP-hard by the following

lemma.

Lemma 1. The network throughput maximization problem in
the software-defined network G = (V,E) is NP-hard.

The sketch of the proof: We show that the network throughput

maximization problem in an SDN G = (V,E) is NP-hard by a
polynomial reduction from a version of generalized assignment
problem (GAP) that is known to be NP-hard [5]. Given an

instance of the GAP in the form of a set of bin B, a set of items
I, bin capacities cap : B �→ R

+ and size : B × I �→ R, we

first construct an SDN G = (V,E), where V = I ∪ B ∪ {t},
E = {〈n,m〉 | n ∈ I,m ∈ B} ∪ {〈m, t〉 | n ∈ B}, and t
is a virtual sink serving as the common destination for all

requests. The forwarding table size of each node in V and

the bandwidth resource capacity of each link in E are set

to positive infinity. Moreover, Vpm = B and the computing

capacity of each node m in Vpm is set to cap(m), the capacity
of bin m. We then generate a set of requests S(t): For each
item n ∈ I , we add to S(t) a request ri = 〈si, ti, bi, SCi, di〉,
where si is set to the switch n ∈ V , ti is set to the virtual sink
t, bi = 0, the computing resource demand C(n,m) to process
its service chain at m ∈ Vpm is size(n,m), and di = ∞.

Therefore, routing the set of requests S(t) into the network G
is an instance of the network throughput maximization problem.

We finish by noting that the network throughput maximization

problem has a solution of admitting K requests if and only if

the GAP with identical profits has a solution of profit K.

IV. INTEGER LINEAR PROGRAMMING

In this section, we formulate the network throughput max-

imization problem as an Integer Linear Program (ILP). The

detailed description is given in Figure 1, where xi is a binary

variable with value 1 if request ri is admitted and 0 otherwise.
zvi is a binary variable with value 1 if and only if the traffic
of ri is processed by the PM attached to switch v ∈ Vpm. For

brevity, denote by δ+(v) and δ−(v) the sets of leaving and
entering edges of a switch v ∈ V , respectively. In addition, to
distinguish between traffic before and after being processed, we

introduce two binary variables wpre
i (e) and wpost

i (e) with value
1 if and only if link e carries the unprocessed and processed
traffic, respectively.

Constraint (2) ensures that if and only if a request ri ∈ S(t)
is admitted, it is processed in exactly one PM. Constraints (3)

and (4) capture traffic changing at PM-attached switches that

process traffic of user requests and traffic conservation at non-

terminal switches. Specifically, if request ri is processed at
v ∈ Vpm, then (i) exactly one incoming edge of v carries

the unprocessed traffic and none of the outgoing edges of

v carries the unprocessed traffic; and (ii) exactly one of the
outgoing edges of v carries the processed traffic, and none of
the incoming edges of v carries the processed traffic. Otherwise,
if the traffic of ri is not processed by the PM attached

to switch v ∈ Vpm but goes through v, either (i) exactly
one incoming edge and one outgoing edge of v carry the

unprocessed traffic, or (ii) exactly one incoming edge and one

outgoing edge of v carry the processed traffic. Constraints (6)
and (7) handle the cases where the traffic of a request vi
is processed at the source switch si or the terminal switch
ti. Constraints (5) and (8) ensure that no unprocessed traffic
enters any source switch si and no processed traffic leaves the
terminal switch ti. Constraint (9) enforces the end-to-end delay
requirement. Constraint (10) enforces the bandwidth capacity

constraint for each link e ∈ E, Constraint (11) imposes the
forwarding table capacity constraint for each switch v ∈ V ,
and Constraint (12) models the computing capacity constraint

of PMs. Constraints (14) to (16) restrict the range of decision

variables. Constraint (17) indicates that if there is no PM at a

switch v ∈ V \ Vpm, then it cannot process any request.

V. A HEURISTIC ALGORITHM

As the ILP solution is only applicable if the problem size

is small, we here devise an efficient heuristic for the problem.

We first propose a cost model to capture the dynamic resource

usages of an SDN G, and then devise an algorithm for the

problem by transforming it to a series of shortest paths finding

in an auxiliary graph based on the proposed cost model.

300300300

maximize

|S(t)|∑
i=1

xi, (1)

subject to∑
v∈V zvi = xi, i = 1, . . . , |S(t)| (2)

∑
e∈δ−(v)

wpre
i (e)−

∑
e∈δ+(v)

wpre
i (e) = zvi , ∀v ∈ V \ {si}, i = 1, . . . , |S(t)| (3)

∑
e∈δ+(v)

wpost
i (e)−

∑
e∈δ−(v)

wpost
i (e) = zvi , ∀v ∈ V \ {ti}, i = 1, . . . , |S(t)| (4)

∑
e∈δ−(si)

wpre
i (e) = 0, i = 1, . . . , |S(t)| (5)

∑
e∈δ+(si)

wpre
i (e) = xi − ztii , i = 1, . . . , |S(t)| (6)

∑
e∈δ−(ti)

wpost
i (e) = xi − ztii , i = 1, . . . , |S(t)| (7)

∑
e∈δ+(ti)

wpost
i (e) = 0, i = 1, . . . , |S(t)| (8)

∑
e∈E

(
wpre

i (e) + wpost
i (e)) +

∑
v∈V zvi Dp(i, v) ≤ di, i = 1, . . . , |S(t)| (9)

∑|S(t)|
i=1

(
bi · wpre

i (e) + λi · bi · wpost
i (e)

) ≤ Be, ∀e ∈ E (10)

∑|S(t)|
i=1

∑
e∈δ+(v)

(wpre
i (e) + wpost

i (e)) ≤ Lv, ∀v ∈ V (11)

∑|S(t)|
i=1

zvi ≤ Cv, ∀v ∈ V (12)

wpre
i (e) + wpost

i (e) ≤ 2, ∀e ∈ E, i = 1, . . . , |S(t)| (13)

wpre
i (e), wpost

i (e) ∈ {0, 1}, ∀e ∈ E, i = 1, . . . , |S(t)| (14)

xi ∈ {0, 1}, i = 1, . . . , |S(t)| (15)

zvi ∈ {0, 1}, ∀v ∈ Vpm, i = 1, . . . , |S(t)| (16)

zvi = 0, ∀v ∈ V \ Vpm, i = 1, . . . , |S(t)|. (17)

Fig. 1: An ILP formulation of the network throughput maximization problem

A. Cost Modeling and Auxiliary Graph Construction

Given an SDN G = (V,E), the auxiliary graph G′ =
(V ′, E′;ω) is constructed, where V ′ = {v′, v′′ | v ∈ V } and
E′ = {〈v′, v′′〉 | v ∈ V } ∪ {〈u′′, v′〉 | 〈u, v〉 ∈ E}. Intuitively,
an edge 〈v′, v′′〉 represents the switch v and an edge 〈u′′, v′〉
represents link 〈u, v〉 in the network G. An example of the
auxiliary graph construction is shown in Figure 2. Clearly, each

a b

c

(a) G = (V,E)

a′ a′′

c′ c′′

b′ b′′

(b) G′ = (V ′, E ′)

Fig. 2: The auxiliary graph construction of G from G.

edge in G′ represents either switch or link resources in G. A
cost model of resource usages in network G is proposed as

follows. For a given type of resource, the marginal cost of its

usage dramatically inflates with the increase of its utilization

ratio, since the larger the proportion of the resource is occupied,

the higher the risk the resource capacity will be violated. We

therefore use an exponential function to model the cost of

resource usage. Denote by RLv the residual capacity of the

forwarding table at v ∈ V and RBe the residual bandwidth of

link e ∈ E. Then, the weights of the corresponding edges in
E′ of switch node v ∈ V and link e ∈ E are:

ω(e) =

⎧⎨
⎩
α1−RLv

Lv if e = 〈v′, v′′〉 ∈ E′,

β
1−RB〈v,u〉

B〈v,u〉 if e = 〈v′′, u′〉 ∈ E′,

where α and β are constants with α, β > 1. The larger the
values of α and β, the more the resources with high utilizations
will be discouraged from use, since its marginal cost will

dramatically increase with further utilization.

B. Algorithm

The basic idea behind the proposed algorithm is to map

different resource usages in the SDN G to the edge weights

in the auxiliary graph G′. Then the problem in G is reduced

to finding a series of shortest paths in G′. To admit a given

301301301

single user request ri = 〈si, ti, bi, SCi, di〉 in S(t), we first
find a shortest path in G′ = (V ′, E′) from si to ti such that its
corresponding routing path in G meets both bandwidth demand

bi and its end-to-end delay requirement di. Furthermore, a
switch v ∈ Vpm attached a PM in the path has sufficient

computing resource to process the service chain SCi of ri.
Specifically, we first remove the edges from G that do not

have adequate resources. We then construct auxiliary graph

G′i = (V ′i , E
′
i) based on G. We now incorporate computing

resources in PMs through augmenting G′i for each PM-attached
switch v ∈ Vpm, denoted by G′i,v = (V ′i,v, E

′
i,v). The only

difference between G′i,v and G′i is that the directed edge

〈v′, v′′〉 (∈ E′i) is removed, and a new node v′′′ and edges
〈v′, v′′′〉 and 〈v′′′, v′′〉 are added to V ′i,v and E′i,v , respectively,
as demonstrated in Figure 3 (b). Moreover, the weight of edge

〈v′′′, v′′〉 retains the weight of 〈v′, v′′〉 in G′i while the weight
of 〈v′, v′′′〉 is γ1−RCv

Cv , where γ > 1 is a tuning parameter, RCv

is the residual computing capacity, and Cv is the capacity of v.
Therefore, if v ∈ Vpm is considered to process service chain

SCi of request ri, routing the traffic of ri is to find a path Pi(v)
in G′i,v that is the concatenation of a shortest path in G′i,v from
si to v and a shortest path in G′i,v from v to ti. Let l(Pi(v))
be the length of Pi(v), i.e., l(Pi(v)) =

∑
e∈Pi(v)

ω(e).

v′ v′′

a′′

b′′

c′′

d′

e′

f ′

(a) Part of auxiliary graph G′ =
(V ′, E ′)

v′

v′′′

v′′

a′′

b′′

c′′

d′

e′

f ′

(b) Part of augmented auxiliary
graph G′

v = (V ′
v , E

′
v)

Fig. 3: Augmenting auxiliary graph G′ on the left to G′v on
the right for switch v ∈ Vpm

The problem of admitting a user request ri in G is reduced

to the problem of finding a shortest path Pi(v) from all

augmented auxiliary graphs G′i,v with the minimum length

min{l(Pi(v)) | ∀v ∈ Vpm} and meets the end-to-end delay

di. The detailed description of the algorithm is given in

Procedure 1.
Having admitted a single request, we now consider the

admission of a set of user requests S(t) at time slot t. The
idea is to admit the requests in S(t) iteratively until no more
requests can be admitted, where one request that incurs the

minimum cost among the remaining requests will be admitted

in each iteration. Specifically, in each iteration, Procedure 1

is employed to find a routing path for each remaining request

ri. Requests for which Procedure 1 fails to find routing paths
will be rejected, and a request of which the found routing path

has the minimum sum of edge weights will be admitted. This

procedure repeats until every request in S(t) is either rejected
or admitted. The detailed description is given by Algorithm 1.

C. Algorithm Analysis
Theorem 1. Given an SDN G = (V,E) with a set V of
switches and a set E of links, a subset Vpm ⊆ V of switches

Procedure 1 Admitting a single request ri ∈ S(t)

Input: an SDN G = (V,E) and a request ri = 〈si, ti, bi, SCi, di〉
Output: a routing path Pi = 〈si, . . . , v ∈ Vpm, . . . , ti〉 that satisfies

bi, SCi, and di
1: Construct an auxiliary graphG′

i = (V ′
i , E

′
i;ω) forG after pruning

resources without enough residual capacities;
2: P sel

i ←∞ /* a path in an augmented auxiliary graph with the
minimum sum of edge weights */;

3: lmin ←∞ /* the minimum length of routing paths */;
4: for each PM-attached switch v ∈ Vpm do
5: Augment G′

i to G′
i,v;

6: Let Pi(v) be the concatenation of a shortest path in G′
i,v from

s′i to v′′′ and a shortest path in G′
i,v from v′′′ to t′i;

7: if (Pi(v) exists) and (its end-to-end delay is no more than di)
and (its length is less than lmin) then

8: Set P sel
i to Pi(v) and lmin to the length of Pi(v);

9: end if
10: end for
11: If P sel

i is found, find the corresponding routing path Pi in G;

Algorithm 1 A heuristic for routing a set of requests

Input: an SDN G = (V,E) and a set of requests S(t)
Output: Routing decisions for requests in S(t)
1: S′ ← S(t) /* the set of requests to be admitted */;
2: while S′ �= ∅ do
3: for each request ri ∈ S′ do
4: Use Procedure 1 to find a path P sel

i for ri. If such a path
does not exist, reject ri and remove it from S′;

5: end for
6: Let rmin be a request of which the routing path found in Step

4 has the minimum weight among all requests;
7: Admit request rmin using the routing path found in Step 4,

and update the resource availabilities of G;
8: S′ ← S′ \ {rmin};
9: end while

each of which is attached with a PM, a set of user requests
S(t) at time slot t, there is an algorithm, Algorithm 1, for the
network throughput maximization problem, which delivers a
feasible solution in O(|S(t)|2|V |4) time.

Proof: The solution delivered by Algorithm 1 is feasible

because the auxiliary graphs are constructed from a subgraph

of G that only includes resources with sufficient residual

capacities. Consequently, the routing path in G converted from

the path found in an augmented auxiliary graph G′ is feasible.
We then analyze the time complexity of Algorithm 1. In Pro-

cedure 1, the construction and augmentation of the auxiliary

graph take O(|V |+ |E|) time, while finding a shortest path in
each of the |Vpm| augmented auxiliary graphs takes O(|V |3)
time. Procedure 1 thus takes O(|V |3 + |V |+ |E|) = O(|V |3)
time. For each request ri ∈ S(t), Procedure 1 is invoked at
most |Vpm| times. The number of requests for which we need
to find a shortest path is O(|S(t)|2). The time complexity of
Algorithm 1 thus is O(|S(t)|2|Vpm||V |3) = O(|S(t)|2|V |4).
The theorem holds.

VI. A FASTER HEURISTIC ALGORITHM

Although Algorithm 1 delivers a near optimal solution, its

running time may still be high and may fail to respond to user

302302302

requests on time. We instead devise a faster heuristic to deal

with dynamic user requests.

A. Overview of the Algorithm

A key ingredient of the proposed algorithm is that a candidate

solution to admit a set S(t) of requests is found, based on
the residual capacities of SDN G in the beginning of time

slot t, and no update of residual capacities is applied until all
requests in S(t) are considered. It then admits requests in S(t)
based on an auxiliary graph constructed from G and adjusts

the admissions if the resource capacities of G are violated.

B. Algorithm

We first find a set of candidate routing paths Pi in G for

each request ri = 〈si, ti, bi, SCi, di〉 ∈ S(t), where a shortest
path from si to ti is considered as a candidate path of ri as
long as it has one PM-attached switch in Vpm, and satisfies

bi, SCi, and di. Notice that we find candidate routing paths
for requests in S(t) on the augmented auxiliary graphs built
based on the resource availability of network G as of the

beginning of time slot t, through finding a shortest path from
s′i to v′′′ and a shortest path from v′′′ to t′i in the auxiliary
graph G′i,v for each request ri ∈ S(t) and v ∈ Vpm. Let

Pi(vj) = 〈si, . . . , vj , . . . , ti〉 be a found path in Gi,vj for

request ri, whereas vj (∈ Vpm) is a switch that fulfills the

service chain SCi and Pi(vj) meets the resource and end-to-
end delay constraints of ri. Denote by Pi the set of candidate

paths for request ri, then, Pi = {Pi(vj) | vj ∈ Vpm}.
Having the set of candidate paths Pi for every request ri in

S(t), we then pick only one candidate path Pi(vj) from Pi for

each request ri such that the cost (length) sum of the selected

paths is minimized, while ensuring that the computing capacity

of each PM is not violated. We reduce this problem to the

Generalized Assignment Problem (GAP), defined as follows.

Given a set of items I and a set of bins B, where each bin
m ∈ B has a capacity cap(b), each item n ∈ I has a size

size(n,m), and a profit profit(n,m) if the item n is placed

in bin m, the problem is to place a subset of items U (⊆ I)
in bins B such that the sum of the profits of items in U is

maximized and the sum of sizes of items placed in every bin

is no more than the capacity of the bin. Namely, we treat each

PM-attached switch vj ∈ Vpm as a bin and each request ri
in S(t) as an item, whereas the capacity of each bin vj is its
residual computing capacity, i.e., cap(vj) = LCvj

, the size of

an item ri in a bin vj is the computing demand of the service
chain SCi in the PM attached to vj , i.e., size(ri, vj) = C(i, j),
and the profit of placing an item ri in a bin vj is the reciprocal
of the length of the candidate path that fulfills ri on vj , i.e.,
profit(i, j) = 1

l(Pi(vj))
.

Having reduced the network throughput maximization prob-

lem to the GAP, we now solve the GAP and each solution to the

GAP yields a solution to the original problem. Specifically, we

use the algorithm proposed by Cohen et al. [5] that guarantees
a (2 − ε)-approximation ratio, where ε is a constant with

0 < ε ≤ 1, to solve the GAP. Denote by U a solution found

by this algorithm as a placement of a subset of items in bins.

U yields a potential admission of requests in S(t): for every
request ri treated as an item, if it is placed in a bin representing
vj ∈ Vpm, then it is admitted with the routing path Pi(vj);
otherwise, ri is rejected.
Due to the construction of the GAP, admitting requests in

S(t) based on the solution U to the GAP ensures that the sum

of computing demands of requests of which the service chains

are fulfilled in a same PM will not exceed the computing

capacity of the PM. However, the bandwidth and forwarding

table capacities may be violated, as routing paths may have

overlapping resources. We thus perform adjustments to elimi-

nate such potential resource violations by selectively rejecting

some requests. Let P sel
i = Pi(vj) = 〈si, . . . , vj , . . . , ti〉 be the

path to route the traffic of request ri according to U , where
vj ∈ Vpm. We build a bipartite graph Gb = (Ub, Vb, Eb) with
selected routing paths for all potentially admitted requests as

node set Ub, and auxiliary edges whose resource capacities

will be violated if admissions are indeed performed, as another

node set Vb. There is an edge between a node P
sel
i ∈ Ub and a

node e ∈ Vb if e is in path P sel
i . The weight of edge (P sel

i , e)
is the ratio of the demand of ri on that resource to the sum
of those of all requests on that resource, which represents the

contribution of ri to the resource capacity violation of e. To
eliminate the violations, we iteratively remove one node P sel

i

with the largest accumulative weight of incident edges in Gb

from U , and update Gb by removing nodes in Vb that their

resource overloadings are avoided due to the removal of node

P sel
i . This procedure repeats until no edge is left in Eb. The

detailed description is given in Algorithm 2.

Algorithm 2 A faster heuristic for routing a set of requests

S(t) into a software-defined network G

Input: an SDN G = (V,E) and a set of user requests S(t)
Output: Routing decisions for each request ri ∈ S(t)
1: Build an auxiliary graph G′ = (V ′, E′) for G;
2: Initialize P , the set of candidate routing paths in G for all requests
in S(t), to ∅;

3: for each user request ri ∈ S(t) do
4: Pi ← ∅; /* the set of candidate paths for request ri */
5: for each PM-attached switch vj ∈ Vpm do
6: Use Procedure 1 to find a path Pi(vj) that contains vj
7: If Pi(vj) exists, add it to P;
8: end for
9: If Pi is empty, reject the request. Otherwise, add Pi to P;
10: end for
11: Construct an instance of the GAP by representing each request

as an item and each node in Vpm as a bin;
12: Solve the GAP instance using the algorithm in [5]
13: Construct a bipartite graph Gb = (Ub, Vb, Eb) that reflects

potential capacity violations;
14: while there are edges in Eb do
15: Remove a node in Ub with the maximum weighted sum of

incident edges and its incident edges from Gb;
16: Update Gb;
17: end while

C. Algorithm Analysis
Theorem 2. Given an SDN G = (V,E) with a set V of
switches and a set E of links, a subset Vpm ⊆ V of switches

303303303

40 60 80 100 120 140 160
Number of Requests |S(t)|

0

40

80

120

160

N
um

be
r

of
 A

dm
itt

ed
 R

eq
ue

st
s

ALG-1
ALG-2
MH
ILP

(a) The numbers of requests admitted by different
algorithms

40 60 80 100 120 140 160
Number of Requests |S(t)|

100

10,000

1e+06

1e+08

R
un

ni
ng

 T
im

e
in

 M
ill

is
ec

on
ds

ALG-1
ALG-2
MH
ILP

(b) Running time of different algorithms in millisec-
onds on a logarithmic scale

Fig. 4: Performance of ALG-1, ALG-2, MH, and ILP in the GÉANT topology within a single time slot.

each of which is attached with a PM, a set of user requests S(t),
there is an algorithm for the network throughput maximization
problem, Algorithm 2, which takes O(|S(t)||V |3+ |V | · |S(t)|3

ε)
time, where ε is a given constant with 0 < ε ≤ 1.

Proof: Algorithm 2 consists of three phases: (i) find a

set of candidate routing paths for each request; (ii) select

only one routing path for each request to meet computing

capacities of nodes in Vpm; and (iii) eliminate the requests

that violate bandwidth or forwarding table capacities. The

feasibility of solutions delivered by Algorithm 2 follows from

the Phase (ii). Phase (i) takes O(|S(t)||V |3) time because

O(|Vpm|) = O(|V |) shortest paths are found for each request
ri ∈ S(t) in augmented auxiliary graphs and each shortest

path takes O(|V |2) time to find. The running time of Phase (ii)
is dominated by the time required to solve the GAP, which is

O(|V | · |S(t)|3
ε) [5]. Phase (iii) takes O(|S(t)|(|V |+ |E|)) time,

there are O(|S(t)|(|V |+ |E|)) edges in the bipartite graph, and
in the worst case, each request violates the resource capacities

of all switches and links. The theorem thus holds.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of proposed

algorithms using experimental simulations based on several

real network topologies.

A. Experimental Environment

We adopt commonly used, real network topologies including

GÉANT [16] and several ISP networks from [21] in the

simulations, where GÉANT [16] is a European network

consisting of 40 nodes and 122 links. The size of the forwarding

table of each switch is from 1,000 to 8,000 [13]. The bandwidth

of each Internet link varies from 1,000 Mbps to 10,000

Mbps [12]. There are nine PMs for the GÉANT topology as

set in [9] and the number of PMs in ISP networks are provided

by [18]. The computing capacity of each PM is from 4,000

to 8,000 MHz [10]. The delay of an Internet link is between

2 milliseconds (ms) and 5 ms [12], [13]. We consider five
types of middleboxes: Firewall, Proxy, NAT, IDS, and Load

Balancing, and their computing demands are adopted from [9],

[16]. The running time is obtained based on a machine with

a 3.40GHz Intel i7 Quad-core CPU and 16 GiB RAM. The

default accuracy parameter ε in solving GAP is set to 0.1.

Unless otherwise specified, these parameters will be adopted in

the default setting. Each request ri = 〈si, ti, bi, SCi, di〉 ∈ S(t)
is generated as follows, given a network G = (V,E), two nodes
from V are randomly drawn as the source switch si and the
destination switch ti of request ri. The bandwidth demand bi
is randomly drawn from 10 to 120 Mbps [1] and the delay

varies from 40 ms to 400 ms [17].
We evaluate Algorithms 1 and 2 against a baseline heuristic

which is described as follows. Sort all requests in S(t) in
non-decreasing order by their computing resource demands,

and then, for each request ri = 〈si, ti, bi, SCi, di〉 in S(t), find
a shortest path from si to a PM-attached switch v (∈ Vpm)
with the minimum number of hops from si and a shortest path
from v to di. We refer to the minimum-hop-based baseline,
Algorithm 1, and Algorithm 2 as MH, ALG-1, and ALG-2,
respectively. Each value in figures is the mean of the results

of 30 trials.

B. Algorithm Performance within a Single Time Slot

We first investigate the performance of the proposed algo-

rithms in the GÉANT topology within a single time slot.

Fig. 4 (a) shows the numbers of requests admitted by

different algorithms, when the number of requests in a time slot

is a constant in the range from 40 to 160. It can be seen that

both ALG-1 and MH can admit as many requests as ILP does

if there are less than 100 requests. Otherwise, only ALG-1
can achieve a comparable throughput as ILP. This means
that the network throughput of ALG-2 is inferior to ALG-1
and the difference between them enlarges from nearly zero at

|S(t)| = 40 to 21 at |S(t)| = 160. The reason is that ALG-2
will reject more requests with the increase in the number of

requests, as the likelihood of routing paths that ALG-2 finds

for different requests being overlapping and resource being

violated soars. Meanwhile, we notice that MH outperforms

ALG-2 if the number of requests is small. Otherwise, ALG-2
outperforms MH. Specifically, when there are 160 requests, the
number of requests admitted by MH is only 60% of the one by

ALG-2 and runs much faster than the latter. The reason behind

304304304

100 200 300 400 500 600
Network Size |V|

30
40
50
60
70
80
90

100
110
120

N
um

be
r

of
 A

dm
itt

ed
 R

eq
ue

st
s

ALG-1
ALG-2
MH

(a) The numbers of requests admitted by different
algorithms

100 200 300 400 500 600
Network Size |V|

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

R
un

ni
ng

 T
im

e
in

 M
ill

is
ec

on
ds

ALG-1
ALG-2
MH

(b) Running time of different algorithms in millisec-
onds

Fig. 5: Performance of ALG-1, ALG-2, and MH in the GÉANT network when the number of switches varies from 100 to 600

while the number of requests is fixed at 160 per time slot.

0 40 80 120 160 200
Time slot

0

500

1,000

1,500

2,000

2,500

3,000

A
cc

um
ul

at
iv

e
N

um
be

r
of

 A

dm
itt

ed
 R

eq
ue

st
s ALG-1

ALG-2
MH

(a) Total number of requests admitted by different
algorithms

0 40 80 120 160 200
Time slot

0

2000

4000

6,000

8,000

10,000

12,000

A
cc

um
ul

at
iv

e
R

un
ni

ng
 T

im
e

in

 M
ill

is
ec

on
ds

ALG-1
ALG-2
MH

(b) Accumulative running time of algorithms

Fig. 6: Performance of ALG-1, ALG-2, and MH on a GÉANT network for a time horizon with 200 time slots where the

number of requests in each time slot follows a Poisson distribution with a mean of 30.

this is that MH does not guarantee that the overall path from its

source si of a request ri to its destination ti has the minimum
weight, since it finds shortest paths from si to a PM-attached
switch and from the PM-attached switch to ti in two separate
stages. Fig. 4 (b) illustrates the amount of time spent by these

algorithms, from which we can see that the running time of

the ILP is orders of magnitude slower than those of the other

algorithms, while ALG-2 is significantly faster than ALG-1
and MH is the fastest.

We then evaluate the performance of different algorithms

by varying the network size. As topologies such as [12], [21]

have limited sizes, we adopt the widely used Barabási-Albert

model [2] to generate networks of different sizes. Namely, we

vary the number of switches in an SDN from 100 to 600, while

fixing the number of requests at 160. The results are depicted

in Fig. 5. We can see from Fig. 5 (a) that ALG-1 and ALG-2
achieve the similar throughput, while MH admits no more than

a half as requests as two heuristics. Fig. 5 (b) also reveals that

ALG-2 runs much faster than ALG-1.

C. Algorithm Performance within a Finite Time Horizon

We now consider a time horizon consisting of 200 time slots,

under which we evaluate different algorithms, assuming that

the number of requests at each time slot follows a Poisson

distribution with a mean of 30, and each admitted request spans

1 to 10 time slots randomly.

The results are summarized in Fig. 6. From Fig. 6 (a), we

can see that MH has the lowest network throughput among the

three algorithms. On the other hand, ALG-1 and ALG-2 utilize
resources more efficiently, and hence they can admit much

more requests than that of MH by 150% and 50%, respectively.

From Fig. 6 (b), it can be seen that the running time of MH
is negligible compared with those of ALG-1 and ALG-2. It
must be noticed that this running time comes at the cost of

admitting much fewer requests.

We finally evaluate ALG-1, ALG-2, and MH on three

Autonomous Systems (AS) from [21]: AS-4755 with 121

switches and 296 links, and AS-1755 with 172 switches and 762

links. We consider a time horizon consisting of 200 time slots

and the number of requests at each time slot follows a Poisson

distribution with a mean of 30. The results are illustrated in

Fig. 7, from which it can be seen that in all topologies, ALG-1
is the best, while MH is the worst. The performance gap between
ALG-1 and ALG-2 is small compared to that in the GÉANT

topology, since the size of these three topologies is larger than

that of the GÉANT topology, and routing paths delivered by

305305305

0 40 80 120 160 200
Time slot

0

1,000

2,000

3,000

4,000

5,000

A
cc

um
ul

at
iv

e
N

um
be

r
of

 A

dm
itt

ed
 R

eq
ue

st
s ALG-1

ALG-2
MH

(a) The accumulative numbers of requests admitted
by different algorithms for AS-4755

0 40 80 120 160 200
Time slot

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

A
cc

um
ul

at
iv

e
N

um
be

r
of

 A

dm
itt

ed
 R

eq
ue

st
s ALG-1

ALG-2
MH

(b) The accumulative numbers of requests admitted
by different algorithms for AS-1755

Fig. 7: The accumulative numbers of admitted requests of ALG-1, ALG-2, and MH for a time horizon consisting of 200 time

slots in ISP networks.

ALG-2 for different requests in a time slot are less likely to

overlap. In AS-4755, the difference on requests admitted by

ALG-1 and ALG-2 is less than 500, while MH admits no more

than 40% requests of the other two algorithms. On the other

hand, the performance of MH in AS-1755 improves due to the

larger network capacity.

VIII. CONCLUSIONS

In this paper, we studied the problem of realizing user

requests with each specifying a sequence of middleboxes in an

SDN, with the objective to maximize the network throughput,

subject to the constraints of forwarding table capacity, network

bandwidth capacity, computing resource capacity, and user

QoS requirements. We first formulated an ILP solution to the

problem when the problem size is small. We then devised

two heuristic algorithms that strive for fine tradeoffs between

the accuracy of the solutions and the running times of the

proposed algorithms. We finally evaluated the performance

of the proposed algorithms by simulations using real network

topologies and synthetic traffic traces. Experimental results

demonstrated that the proposed algorithms are very promising.

REFERENCES

[1] Amazon Web Services, Inc. Amazon ec2 instance configuration. https:
//docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-ec2-config.html.

[2] A.-L. Barabási and R. Albert. Emergence of scaling in random networks.
Science, Vol. 286, pp. 509–512, 1999.

[3] M. Charikar et al. Multi-commodity flow with in-network processing.
http://www.cs.princeton.edu/~jrex/papers/mopt14.pdf, 2014.

[4] C.-H. Chi, J. Deng, and Y.-H. Lim. Compression proxy server: design
and implementation. Proc. of USITS, 1999.

[5] R. Cohen, L. Katzir, and D. Raz. An efficient approximation for the
generalized assignment problem. Information Processing Letters, Vol. 100,
pp. 162–166, Elusive, 2006.

[6] A. Gember-Jacobson et al. Stratos: a network-aware orchestration layer
for middleboxes in the cloud. arXiv:1305.0209, 2013.

[7] A. Gember-Jacobson et al. OpenNF: enabling innovation in network
function control. Proc. of SIGCOMM, ACM, 2014.

[8] A. Gupta et al. SDX: a software defined internet exchange. Proc. of
SIGCOMM, ACM, 2014.

[9] A. Gushchin, A. Walid, and A. Tang. Scalable routing in sdn-enabled
networks with consolidated middleboxes. Proc. HotMiddlebox’15, ACM.

[10] Hewlett-Packard Development Company, L.P. Servers for enterprise –
bladeSystem, rack & tower and hyperscale. http://www8.hp.com/us/en/
products/servers/, 2015.

[11] M. Honda et al. Is it still possible to extend TCP? Proc. IMC’11, ACM.

[12] S. Knight et al. The internet topology zoo. J. Selected Areas in
Communications, Volume 29, pp. 1765–1775, IEEE, 2011.

[13] D. Kreutz et al. Software-Defined Networking: a comprehensive survey.
Proceedings of IEEE, Volume 103, pp. 14–76, IEEE, 2015.

[14] T.-W. Kuo et al. Deploying chains of virtual network functions: On the
relation between link and server usage. Proc. of INFOCOM’16, IEEE.

[15] Y. Li, L. T. X. Phan, and B. T. Loo. Network function virtualization
with soft real-time guarantees Proc of INFOCOM’16, IEEE.

[16] J. Martins et al. ClickOS and the art of network function virtualization.
Proc. of NSDI, 2014.

[17] Microsoft. Plan network requirements for Skype for business. https:
//technet.microsoft.com/en-us/library/gg425841.aspx, 2015.

[18] Z. A. Qazi et al. SIMPLE-fying middlebox policy enforcement using
SDN. Proc. of SIGCOMM, ACM, 2013.

[19] V. Sekar et al. Design and implementation of a consolidated middlebox
architecture. Proc. of NSDI, USENIX, 2012.

[20] J. Sherry et al. Making middleboxes someone else’s problem: network
processing as a cloud service. Proc. of SIGCOMM, ACM, 2012.

[21] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies
with rocketfuel. Proc. of SIGCOMM, ACM, 2002.

306306306

