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ABSTRACT
Technological advances have enabled the deployment of large-

scale sensor networks for environmental monitoring and surveil-

lance purposes. The large volume of data generated by sen-

sors needs to be processed to respond to the users queries.

However, efficient processing of queries in sensor networks

poses great challenges due to the unique characteristics im-

posed on sensor networks including slow processing capabil-

ity, limited storage, and energy-limited batteries, etc. Among

various queries, top-k query is one of the fundamental op-

erators in many applications of wireless sensor networks for

phenomenon monitoring. In this paper we focus on evalu-

ating top-k queries in an energy-efficient manner such that

the network lifetime is maximized. To achieve that, we de-

vise a scalable, filter-based localized evaluation algorithm

for top-k query evaluation, which is able to filter out as

many unlikely top-k results as possible within the network

from transmission. We also conduct extensive experiments

by simulations to evaluate the performance of the proposed

algorithm on real datasets. The experimental results show

that the proposed algorithm outperforms existing algorithms

significantly in network lifetime prolongation.

Categories and Subject Descriptors
H.2.4 [Database Management]: Query Processing; C.2.4

[Computer-Communication Networks]: Distributed Ap-

plication

General Terms
Algorithms, Experimentation, Performance
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Top-k query, Wireless sensor network, Energy optimization
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1. INTRODUCTION
Technological advances in recent years have enabled the

deployment of large-scale sensor networks consisting of hun-

dreds or thousands of inexpensive sensors in an ad-hoc fash-

ion. Such networks now are used for a variety of environ-

mental monitoring and surveillance purposes including mea-

surements of meteorological data (e.g. temperature, pres-

sure, humidity), noise levels, chemicals, etc [5, 22]. During

this course, a large volume of sensing data generated by

sensors is needed to be processed within the network to re-

spond to queries from users. The wireless sensor network is

thus treated as a virtual database by the database commu-

nity [2]. Top-k query is a fundamental operation to search

for the most important objects according to object ranking

obtained by various ranking techniques. Efficient processing

of top-k query is crucial in many applications [7]. Unlike

those studies on top-k query in traditional databases, in

this paper we focus on optimizing top-k query evaluation

in resource-constrained wireless sensor networks (WSNs).

Wireless sensor networks that support top-k queries can be

used to not only monitor the data generated by sensors in

no time but also perform further data analysis for decision

making. For example, meteorologists make use of a wire-

less sensor network to sense meteorological attributes such

as temperature, humidity and rainfall in a region of inter-

est. A top-k query in such a WSN can easily identify the k

places suffering the high temperatures for statistic and anal-

ysis purpose. Another scenario is that ornithologists who

study various bird species in a given forest are interested to

know where the birds are most likely to gather [24]. To do

so, they place the bird feeders at various locations in the for-

est and install a sensor at each feeder to count the number

of birds on that feeder periodically. The result of this query

can assist the ornithologists to determine where the birds

are likely to be attracted. For example, a top-k query can

inquire which feeders attract the maximum number of birds.

Thus, the ornithologists can observe bird behaviors at a few

places where the most attractive feeders are located.

Generally speaking, query processing in WSNs is essen-

tially different from that in traditional databases due to the
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unique characteristics imposed on sensors [16], which can be

seen from the following aspects. Firstly, to prolong network

lifetime, the energy consumption rather than the query re-

sponse time or the space used is the optimization objective

for query evaluation, since the battery-powered sensors will

quickly become inoperative if the large quantity of sensing

data is transmitted to the base station through multi-hop

relays, and the lifetime of a sensor network is closely tied to

the energy consumption rate of its sensors. Secondly, a wire-

less sensor network containing N sensors can be viewed as a

distributed system of N nodes, while this special distributed

system is different from the general distributed system, in

which there is no any single powerful node serving as the col-

lection center to collect data from all the sensors. Each sen-

sor transmits its data to the base station through multi-hop

relays, which consumes energy for each data transmission.

This implies that it is more expensive to obtain the sensed

data from the sensors far away from the base station than

those near to it. Finally, as the major optimization objective

for query processing in sensor networks, the network lifetime

is determined not only by the total energy consumption of

all sensors but also by the maximum energy consumption

among the sensors. The sensors near to the base station

consume more energy than the others, because they relay

the data for the others and they will exhaust their batteries

first. Once they run out of energy, the rest of sensors will

be disconnected from the base station, no matter how much

residual energy left the rest of the sensors. Consequently, the

network is no longer functioning even if the total energy con-

sumption per query is reasonably small. This implies that

in terms of query optimization in WSNs, only minimizing

the total energy consumption is insufficient. Minimizing the

maximum energy consumption among sensors is also critical

to prolong network lifetime. Hence, how to evaluate queries

effectively and efficiently in WSNs poses great challenges.

The previous studies of top-k query in distributed systems

mainly focused on the distributed top-k query, which is to

find k objects with the highest scores, assuming that each

object is distributed in multiple nodes. In each node, the

object has a local score. The score of the object is combined

from all of local scores by a given function [6, 14, 15]. In this

paper, we deal with a different top-k query which is identical

to the one proposed in [9, 24]. That is, each sensor senses

one or multiple numerical values from its vicinity, and each

value and its generator sensor is referred to as a point in

the rest of this paper. A point p is represented by a tuple

< p.sid, p.value >, where p.sid is the ID of sensor generating

point p, and p.val is the sensed numerical value. The top-k

query in WSNs is to return the k points with the highest

sensed values. Due to the difference of distributed top-k

query and top-k query in WSNs, the existing algorithms for

distributed top-k query are inapplicable to the top-k query

evaluation in sensor networks.

1.1 Related Work
Top-k query has been extensively studied in centralized

and distributed databases [6, 10, 11, 13, 14, 15]. As men-

tioned, the proposed techniques and algorithms are inappli-

cable to WSNs due to the unique characteristics imposed

on sensors. Several studies investigated in-network process-

ing in WSNs for query optimization, e.g., the algorithms

in [1, 2, 20, 21] exploited for simple aggregation, while the

others dealt with more complicated queries including order-

statistics [3, 4], skyline query [23] and top-k query [8, 9, 24].

To evaluate a top-k query in WSNs, Silberstein et al [24] pro-

vided several approximate solutions with high probability,

based on a prediction model built on the samples of previous

top-k query results. They demonstrated how to improve the

accuracy of the top-k results under given energy constraints,

by formulating the problem as a linear programming, and

developed a series of top-k query planning algorithms. Wu et

al [8, 9] exploited the semantics of top-k query and proposed

a Filter-based maintenance algorithm (FILA) to maintain

the top-k points by assigning a dedicated filter for each sen-

sor. Given the current top-k points, each sensor is assigned

an interval of values serving as its filter to suppress unnec-

essary data from transmission. Meanwhile, the base station

also maintains a copy of the filter at each sensor. However,

the energy saving by their solution is based on an assump-

tion that the probing messages broadcast by the base station

can be heard by all sensors directly and the energy consump-

tion of each sensor by receiving the probing messages is not

taken into account, which is too restrictive and may not be

realistic in the real world. Note that the work by Wu et

al [8, 9] is the top-k results maintenance and they did not

cope with top-k query evaluation efficiently and effectively.

In addition, the proposed algorithms by both Silberstein et

al [24] and Wu et al [8, 9] are centralized algorithms, which

may not be suitable for the real distributed sensor networks.

1.2 Contributions
In this paper we consider top-k query evaluation in WSNs

to maximize the network lifetime through devising a capa-

ble filter mechanism and striking the right balance between

the total energy consumption and the maximum energy con-

sumption among the sensors per query. The main contribu-

tions are as follows.

• We first address the challenges of query processing in

WSNs, followed by introducing a realistic cost model

for top-k query evaluation which takes into account

not only the number of messages transmitted within

the network but also the number of points contained

in the messages.

• We then devise a novel, filter-based, localized algo-

rithm for top-k query evaluation, in which a powerful

filter is developed to eliminate as many unlikely top-k

points as possible within the network from transmis-

sion.

• We finally conduct extensive experiments by simula-

tions on real sensing datasets to evaluate the perfor-

mance of the proposed algorithm. The experimental

results show that the proposed top-k evaluation algo-

rithm outperforms the existing one in terms of the total
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energy consumption, the maximum energy consump-

tion among the sensors and the network lifetime. In

addition, the proposed algorithm is distributive, which

is preferable to WSNs.

The remainder of the paper is organized as follows. Sec-

tion 2 introduces the cost model and problem definitions,

followed by briefly introducing an existing top-k query eval-

uation algorithm. Section 3 proposes an energy-efficient al-

gorithm for top-k query evaluation and conducts theoretical

analysis on the filtering capability of the devised filter. To

evaluate the performance of the proposed algorithm, exten-

sive experiments on real sensing datasets are conducted in

Section 4, and the conclusions are given in Section 5.

2. PRELIMINARIES

2.1 System Model
We consider a sensor network consisting of N stationary

sensors v1, v2, . . . , vN , randomly deployed in a region of in-

terest, and a base station r with unlimited energy supply

located at the center of the region. For the sake of simplic-

ity, we assume that the topology of the sensor network is a

spanning tree T rooted at the base station [2]. Otherwise,

such a tree can be obtained by applying any spanning tree

algorithm in the network like the one by TAG [1]. We fur-

ther assume that the transmission ranges of all sensors are

identical, and each sensor can communicate with the base

station via one or multi-hop relays. In this paper, each sen-

sor has a point p and p.sid as well as p.val is represented by 4

bytes. Thus, a point p is represented by 8 bytes in total. To

transmit a message containing l bytes of data from a sensor

to one of its neighboring sensors, the amount of transmission

energy consumed at the sender is ρt +R ∗ l and the amount

of reception energy consumption at the receiver is ρr +re ∗ l,
where ρt and ρr are the sum of energy overhead on hand-

shaking between the two sensors and transmitting and re-

ceiving the message header, R and re are the amounts of

transmission and reception energy per byte. We assume that

the sensing and computation energy consumptions on sen-

sors are not taken into account, because in practice they are

several orders of magnitude less than that of wireless com-

munication energy consumption. For example, the authors

in [2, 16] claimed that the transmission of 1-bit data con-

sumes as much energy as executing 1,000 CPU instructions.

Therefore, unless otherwise specified, we only compare the

communication energy consumption of different algorithms

in the later performance evaluation.

2.2 Problem Definition
Given a wireless sensor network, assume that P (vi) is the

set of points generated at sensor vi, then P =
SN

i=1 P (vi) is

the point set in the whole sensor network. A top-k query is

to find the k points in P with the highest values, 1 ≤ k ≤ N .

If there are more than k points with the highest values, k

of them are selected as the result, which is determined by

the rank of the other attributes of the points like the IDs

of their generator. The top-k query problem is defined as

follows. Given a sequence of top-k queries with various ks

issued at the base station, the problem is to propose an eval-

uation plan for each incoming top-k query such that the en-

ergy consumption in terms of the total energy consumption

and the maximum energy consumption among the sensors

for answering the query is minimized with the ultimate aim

to maximize the network lifetime. The network lifetime is

referred to as the time when the first sensor in the network

exhausts its energy [12].

2.3 The Naive-k Algorithm
Before we proceed, we briefly review a popular algorithm

Naive-k for top-k query evaluation by Silberstein et al [24],

which will be served as the benchmark. Algorithm Naive-k

computes the answer bottom-up in one pass over the net-

work. In algorithm Naive-k, the leaf sensors forward their

points to their parent. If a internal sensor contains k′ (< k)

points (including its own), then it forwards all the points

to its parent. Otherwise, it forwards its top-k points to its

parent. In the end, the base station obtains the top-k points

from the collected points from its children and its own, which

is the result of top-k query.

3. TOP-K QUERY ALGORITHM
In this section we propose a novel filter-based algorithm

for top-k query evaluation in WSNs. For a given set S of

points, assume that the points in S are sorted in decreasing

order of their values. The α-quantile of S is the point whose

rank is ⌈α|S|⌉ and the value of the α-quantile is referred to

as α-quantile value, where α is constant with 0 < α < 1.

For example, given a set S = {p1, . . . , p|S|} with pi.val ≥
pi+1.val, α-quantile of S is point p⌈α|S|⌉ and p⌈α|S|⌉.val is

the α-quantile value of S.

The basic idea of the proposed algorithm is as follows.

Firstly, every sensor sorts its points in decreasing order of

sensed values, and sends its α-quantile value to its parent.

Secondly, the parent chooses one of the received α-quantile

values as the filter and broadcasts the filter to all children.

Finally the children send those points whose values are no

less than the received filter to their parent. The chosen filter

is called the quantile filter.

In the following we first provide the details of identifying

the quantile filter, followed by analyzing the filtering capabil-

ity of the quantile filter. We then analyze the energy saving

by the quantile filter as well as the extra energy overhead

on installing it. We finally present a quantile filter-based

algorithm for top-k query evaluation and give the analysis

of the proposed algorithm.

3.1 The Optimal Quantile Filter
Consider a sensor v in the routing tree T with dv children

ui, 1 ≤ i ≤ dv. L(ui) = {p(i)1, . . . , p(i)l(i)} is the set of

points at ui with p(i)j1 .val ≥ p(i)j2 .val if j1 < j2, 1 ≤ j1 ≤
j2 ≤ l(i). l(i) is the number of the points at ui if l(i) < k.

Otherwise, l(i) = k. In other words, there are at most k

points in L(ui). S(v) =
Sdv

i=1 L(ui) is the set of potential
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top-k points from the children of v, and |S(v)| ≤ k ∗dv. The

α-quantile of L(ui) is point p(i)⌈αl(i)⌉ and p(i)⌈αl(i)⌉.val is

the α-quantile value of L(ui), which is also referred to the

α-quantile value of sensor ui. The process of identifying a

quantile filter that can filter out as many points in S(v) as

possible from transmission is described as follows.

Each child ui sends a pair of values, p(i)⌈α∗l(i)⌉.val, and

l(i) to its parent v, 1 ≤ i ≤ dv. The dv received α-quantile

values at sensor v are sorted in decreasing order. Let qi1 , qi2

. . . , qidv
be the sorted sequence, where qij (= p(ij)⌈α∗l(ij)⌉.val)

is the value sent by child uij . The mth largest α-quantile

value qim in the sequence is chosen as the quantile filter by

sensor v, if an integer m is found such that
Pm−1

t=1 ⌈α ∗ l(it)⌉ <

k and
Pm

t=1 ⌈α ∗ l(it)⌉ ≥ k , which guarantees that there

are at least k points in S(v) whose values are no less than

the quantile filter qim = p(im)⌈α∗l(im)⌉.val. Sensor v then

broadcasts the found quantile filter to each child ui, and ui

sends those points in L(ui) whose values are no less than the

quantile filter to parent v, 1 ≤ i ≤ dv. Denote by Send(ui)

the set of points sent by ui. Having received Send(ui)

from each child ui, sensor v obtains the top-k points by

identifying the k points with the highest sensed values in
Sdv

i=1 Send(ui) ∪ P (v) .
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Figure 1: The examples of the quantile filter for top-

5 query.

In the following, we use two examples to illustrate the

procedure of finding the quantile filter. Assume that sen-

sor v has 6 children u1, . . . , u6, and the values of points at

each sensor are sorted as shown in Fig. 1. Assume that

a top-5 query is issued at the base station and broadcast

to v and its children. Fig. 1(a) and (b) show different

quantile filters identified when α = 0.4 and α = 0.5 re-

spectively. In Fig. 1(a), the 0.4-quantile values of all chil-

dren are qi1=1 = 22, qi2=2 = 12, qi3=3 = 11, qi4=4 = 10,

qi5=5 = 9, and qi6=6 = 8, while their 0.5-quantile val-

ues are qi1=1 = 22, qi2=2 = 10, qi3=3 = 9, qi4=6 = 8,

qi5=4 = 6, and qi6=5 = 4, which are shown in Fig. 1(b).

Because ⌈0.4 ∗ l(1)⌉ + ⌈0.4 ∗ l(2)⌉ + ⌈0.4 ∗ l(3)⌉ = 6 ≥ k

and ⌈0.5 ∗ l(1)⌉ + ⌈0.5 ∗ l(2)⌉ = 5 ≥ k, qi3=3 = 11 and

qi2=2 = 10 are chosen as the quantile filters in Fig. 1(a)

and Fig. 1(b), respectively. From the figures, we can see

that the values of the points in the most left top corner

regions (circled by the lines) are no less than the quantile

filter. Because there are at least k points whose values are

no less than the quantile filter, the points with the values

smaller than the quantile filter will be impossible to be part

of the final top-k results and therefore are safely filtered out.

Compared with algorithm Naive-k in which the number

of received points by v is |S(v)|, the quantile filter can filter

out many points in S(v), and thus reduces the energy con-

sumption by transmitting fewer points within the network.

As have been shown, the use of quantile filter can prune

some points in S(v) from transmission, but the number of

points filtered out depends on the choice of different αs. We

now aim to prune as many points from S(v) as possible by

identifying the optimal value of α. Consequently, we can

reduce the transmission and reception energy consumptions

of sensors significantly. What followed is to find such an

optimal quantile filter.
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Figure 2: The partition of S(v) by the quantile filter.

Recall that sensor v has dv children u1, . . . , udv . Define the

shedding ratio of the quantile filter as the number of points

filtered out by the quantile filter to the number of points in

S(v). Assume that the points at the dv children of sensor

v are arranged into dv columns, where L(uij ) occupies col-

umn ij if its α-quantile value is ranked at the ij position,

as shown in Fig. 2. We sort the α-quantile values of the

children of v in decreasing order and let qi1 , . . . , qidv
be the

sorted sequence, i.e., qix = p(ix)⌈αl(ix)⌉.val and qix ≥ qix+1 .

For convenience, the elements in Fig. 2 represent the values

of the corresponding points. Denote by cx,y the element lo-

cated at the xth column and yth row. All the elements in the

xth column are from child uix , which are sorted in decreasing

order, i.e., cx,y = p(ix)y.val and cx,y ≥ cx,y+1, 1 ≤ x ≤ dv,

1 ≤ y ≤ l(ix). Suppose that qim = cm,⌈αl(im)⌉ is chosen

as the quantile filter, where m = min{w | Pw

t=1⌈αl(it)⌉ ≥
k, 1 ≤ w ≤ dv}. From Fig. 2, we can observe that the set

of all elements S(v) is divided into 4 subsets by element

qim and the α-quantile values, i.e., S1(v), S2(v), S3(v) and

S4(v). The values of points in S1(v) are no less than qim ,

while the values of points in S4(v) are smaller than qim .

Because |S1(v)| ≥ k, all the points in S4(v) are impossible

to be top-k points. It cannot make sure that the values of

the points in S2(v) and S3(v) are smaller than the quan-

tile filter, and whether the points in S2(v) and S3(v) can be

filtered out depends on the data distribution of the sensor

network. In comparison with algorithm Naive-k, at least
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|S4(v)| points are filtered out from S(v) if sensor v broad-

casts the quantile filter to all its children. |S4(v)|
|S(v)| is thus

regarded as the shedding ratio of the proposed quantile fil-

ter, where |S4(v)| = |S(v)| − |S1(v)| − |S2(v)| − |S3(v)|. In

the following we derive the optimal value of α to maximize

|S4(v)|. We thus have the following lemma.

Lemma 1. |S4(v)| ≥ (1− α)|S(v)| − dv − 1−α
α

(k − 1)

Proof. It is obvious that the sizes of S1(v) and S2(v)

are |S1(v)| = Pm

t=1⌈αl(it)⌉ and |S2(v)| = Pdv

t=m+1⌈αl(it)⌉,
respectively. Therefore, |S1(v)|+ |S2(v)| = Pdv

t=1⌈αl(it)⌉.
Since

Pdv

t=1⌈αl(it)⌉ ≤
Pdv

t=1(αl(it)+1) = α|S(v)|+dv, we

have

|S1(v)|+ |S2(v)| ≤ α|S(v)|+ dv. (1)

Denote by |S1(v)′| =
Pm−1

t=1 ⌈αl(it)⌉. If |S1(v)′| ≥ k,

qim−1 = p(im−1)⌈αl(im−1)⌉.val instead of qim = p(im)⌈αl(im)⌉.val

will be chosen as the quantile filter. Thus, |S1(v)′| ≤ k − 1.

The size of S3(v) is estimated as follows:

|S3(v)| =

m−1
X

t=1

⌊(1− α)l(it)⌋ ≤
m−1
X

t=1

1− α

α
⌈αl(it)⌉

=
1− α

α
|S1(v)′| ≤ 1− α

α
(k − 1), (2)

while |S1(v)′| ≤ k − 1.

|S4(v)| = |S(v)| − |S1(v)| − |S2(v)| − |S3(v)|. From in-

equalities (1) and (2), we have

|S4(v)| ≥ (1− α)|S(v)| − dv −
1− α

α
(k − 1). (3)

2

Therefore, the shedding ratio of the quantile filter is

|S4(v)|
|S(v)| ≥ 1− α− dv

|S(v)| −
(1− α)(k − 1)

α|S(v)| . (4)

From inequality (4), it is clear that the shedding ratio of

the quantile filter is determined by the value of α. When

α =
q

k−1
|S(v)| , the value of (1 − α − dv

|S(v)| −
(1−α)(k−1)

α|S(v)| ) in

inequality (4) is maximized, and the filter thus is referred

to as the optimal quantile filter. The shedding ratio of the

optimal quantile filter is

η(v) = 1−
s

k − 1

|S(v)| −
dv

|S(v)| − (

r

|S(v)|
k − 1

− 1)(
k − 1

|S(v)| ), (5)

where η(v) is referred to as the shedding ratio of the optimal

quantile filter. The optimal quantile filter can suppress at

least |S4(v)| points from transmission in case the values of

the points in S2(v) and S3(v) are larger than the quantile fil-

ter. In many cases the values of the points in S2(v) or S3(v)

may be smaller than the quantile filter and those points will

be filtered out. Therefore, the actual shedding ratio of the

quantile filter is much better than the conservative one based

on the theoretical analysis.

3.2 Installation of the Quantile Filter
Although installing quantile filters at the children of v may

eliminate unlikely top-k points from transmission, it does

incur extra energy overhead on the quantile filter finding as

well as the filter broadcasting. We now analyze this extra

energy overhead and energy saving by the filter. In the end

we only install the filters at those sensors that the energy

saving exceeds the overhead on the filter installation.

For a given sensor v, if no filter is installed at any of its

children ui, ui sends its top-l(i) points to v as algorithm

Naive-k does, 1 ≤ i ≤ dv. As a result, the number of points

transmitted to v is |S(v)| and the total energy consumption

by transmitting and receiving all |S(v)| points is

Enaive(S(v)) = ρtdv + |S(v)|8R + ρrdv + |S(v)|8re. (6)

Recall that each point is represented by 8 bytes. Within

equation (6), ρtdv+|S(v)|8R is the total energy consumption

of the dv children transmitting the |S(v)| points to sensor

v, while ρrdv + |S(v)|8re is the total energy consumption of

sensor v by receiving the |S(v)| points.

If the quantile filters are installed at the children of v,

the shedding ratio induced by them is at least η(v), and the

total energy consumption is

Efilter(S(v)) = dv(ρt + 8R + ρr + 8re) + ρt + 4R

+dv(ρr + 4re) + dv(ρt + ρr)

+(1− η(v))|S(v)|8(R + re); (7)

where dv(ρt + 8R + ρr + 8re) is the total energy consump-

tion of the children sending the α-quantile values and l(i)s

to sensor v and sensor v receiving the values from its chil-

dren, while ρt + 4R + dv(ρr + 4re) is the energy consump-

tion of broadcasting the quantile filter. dv(ρt + ρr) + (1 −
η(v))|S(v)|8(R + re) is the sum of energy consumption that

each child sends the points passing through the quantile filter

to sensor v. Note that for any leaf sensor v, Enaive(S(v)) = 0

and Efilter(S(v)) = 0 because |S(v)| = 0.

In the following, we investigate the extra energy overhead

on the filter finding and the energy saving of a child of sensor

v. If there is no filter installed at a child ui of v, ui transmits

its top-l(i) points to sensor v and the energy consumption

of ui is

Enaive(L(ui)) = ρt + l(i) ∗ 8R; (8)

otherwise, the energy consumption of ui is

Efilter(L(ui)) = 2ρt + 8R + ρr + 4re

+(1− η(v))l(i)8R. (9)

We assume that η(v) ∗ l(i) within equation (9) is the

expected number of points filtered out by the quantile fil-

ter at sensor ui. To guarantee that the installation of the

quantile filter is beneficial, we must have Efilter(S(v)) <

Enaive(S(v)) and Efilter(L(ui)) < Enaive(L(ui)). Mean-

while, the shedding ratio of the optimal quantile filter will

be no less than 0 only when |S(v)| ≥ dv

1−α
+ k−1

α
from in-

equality (4). Combined with equations (6), (7), (8), and

(9), we have

|S(v)| > θ(v)

= max{ 2dv+k−1
1−α

+ (dv+1)ρt+2dvρr+4(R+dvre)
8(R+re)(1−α)

,

dv

1−α
+ k−1

α
}, (10)
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where α =
q

k−1
|S(v)| , 0 < α < 1, and

l(i) >
ρt + 8R + ρr + 4re

η(v)8R
. (11)

The values of θ(v) in inequality (10) and the shedding ra-

tio η(v) in inequality (11) are determined by |S(v)|. Note

that |S(v)| =
Pdv

i=1 l(i), where l(i) = min{k, |L(ui)|}. In

practice, the value of l(i) is not known by v beforehand.

A naive method for this is to employ an extra phase, in

which each child ui sends its l(i) to sensor v and receives

the optimal α from sensor v, this method however consumes

additional energy. To this end, an approximation |S(v)′| of

|S(v)| is proposed to find the optimal α′ =
q

k−1
|S(v)′| and

determine whether the quantile filters should be installed at

the children of sensor v. |S(v)′| is the number of points re-

ceived by sensor v if algorithm Naive-k is applied for top-k

query evaluation. Denote by desc(v) the set of descendants

of sensor v in the routing tree. As mentioned, each sen-

sor contains one point, and thus |desc(v)| is the number of

points contained by the descendants of v. For each sensor v,

|S(v)′| = Pdv

i=1 min{k, |desc(ui)|}, where ui is a child of v.

In other words, if a child contains more than k descendants,

it transmits its top-k points to v; otherwise, the child trans-

mits all points from its descendants to v. Obviously, |S(v)′|
for each sensor v can be obtained when the routing tree is

built. In the following, we prove that the |S(v)| = |S(v)′| by

the following theorem.

Theorem 1. Given a sensor network G(V, E), |S(v)| =
|S(v)′| for each sensor v ∈ V if the proposed optimal quantile

filter strategy is applied in the network.

Proof. If v is a leaf sensor, |S(v)| = |S(v)′| = 0; other-

wise, assume that u1, u2, . . . , udv are the children of v. We

partition the children of v into three subsets, referred to as

U1, U2 and U3, respectively. U1∪U2 is the set of the children

of v whose descendants are not installed the filters, where

|desc(ui)| < k if ui ∈ U1, and |desc(ui)| ≥ k if ui ∈ U2. For

each sensor ui ∈ U1 ∪U2, |S(ui)| = |S(ui)
′| because there is

no filter installed at any descendant of ui and thus algorithm

Naive-k is applied on the subtree rooted at ui. If ui in U1,

|S(ui)| = |S(ui)
′| = desc(ui); otherwise, ui receives at least

k points, and |L(ui)| = k. U3 is the set of the sensors that

at least one descendant is installed a filter. Assume that

u′ ∈ desc(ui) is installed a quantile filter where ui ∈ U3. It

is clear that |desc(ui)| > |desc(u′)| > |S(u′)| > θ(u′) > k.

Thus, ui receives at least k points from its descendants,

and consequently |L(ui)| = k. For each sensor v ∈ V

we have |S(v)′| = Σu∈U1(desc(u)) + |U2| ∗ k + |U3| ∗ k,

and |S(v)| = Σu∈U1desc(u) + Σu∈U2 |L(u)|+ Σu∈U3 |L(u)| =
Σu∈U1(desc(u)) + |U2| ∗ k + |U3| ∗ k = |S(v)′|. 2

3.3 Algorithm
Having described the quantile filter, we now present the

Quantile Filter-based algorithm (algorithm QF for short) as

follows.

Suppose that sensor v has dv children u1, u2, . . . , udv .

Each child ui sends the number of descendants |desc(ui)| to

parent v and v broadcasts dv and the set {|desc(ui)|, |desc(u2)|,
. . . , |desc(udv )|} to its children once. Having received a

top-k query, each child ui can obtain |S(v)′|(= |S(v)|) and

α = k−1
|S(v)| . For a child ui, if either 0 < α < 1 or inequality

(10) or (11) is not satisfied, ui sends its top-l(i) points to

sensor v directly, and no filter is installed at ui; otherwise, a

quantile filter will be installed at sensor ui. ui first sends the

α-quantile value of L(ui) and l(i) to parent sensor v. Sen-

sor v then sorts the received dv values and broadcasts the

mth largest value as the quantile filter to its children, where

m = min{w | Pw

t=1 ⌈αl(it)⌉ ≥ k}, 1 ≤ w ≤ dv. Only child

ui with l(i) > ρt+8R+ρr+4re

η(v)8R
needs to receive the quantile fil-

ter and then sends the points whose values are no less than

the filter to parent v. The other children of sensor v have

sent their top-l(i) points to v already. The pseudo-code of

algorithm QF at each sensor is shown below. Note that each

non-leaf sensor serves as both a parent and a child, while a

leaf sensor only serves as a child.

Algorithm 1 Child_Sensor (ui, k, v, L(ui))

begin

compute |S(v)′| and α =
q

k−1
|S(v)′| ;

θ(v)← 2dv+k−1
1−α

+ (dv+1)ρt+2dvρr+4(R+dvre)
8(R+re)(1−α)

;

if |S(v)′| < max{θ(v), dv

1−α
+ k−1

α
}

or l(i) ≤ ρt+8R+ρr+4re

η(v)8R
or α ≥ 1 or α ≤ 0 then

transmits top-l(i) points to v;

else

sends a pair of values (p(i)⌈αl(i)⌉.val, l(i)) to v, where

p(i)⌈αl(i)⌉ ∈ L(ui) and l(i) = |L(ui)|;
if receive the quantile filter from v then

transmits the points whose values are no less than

the quantile filter to v;
end

Algorithm 2 Parent_Sensor (v, k, P (v))

begin

compute |S(v)′| and α =
q

k−1
|S(v)′| ;

θ(v)← 2dv+k−1
1−α

+ (dv+1)ρt+2dvρr+4(R+dvre)
8(R+re)(1−α)

;

receive the values from its children;

if |S(v)′| > max{θ(v), dv

1−α
+ k−1

α
} and 0 < α < 1 then

the quantile filter qim is chosen,

m← min{t |Pt

i=1 ⌈αl(it)⌉ ≥ k};
broadcast the quantile filter to children;

if receive all the points from children then
compute top-k points from the received points and

v’s own point;
end

An illustrative example for the execution of algorithm QF

is given in Fig. (3). Sensor v has 6 children, u1,. . . ,u6, and

each sensor contains several points as shown in Fig.3(a). A

top-10 query is issued at the base station and broadcast to

sensor v and its children. k = 10 and |S(v)| = 40, thus α =
q

k−1
|S(v)| =

q

9
40

= 0.47. Suppose that ρt+ρr+8R+4re

6R
= 3,

and consequently sensor u4 with l(4) = 3 will send all of its
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points to sensor v. The other sensors send their α-quantile

values to sensor v with α = 0.47. The circled points in

Fig.3(b) are sent to sensor v in the first phase. The six

received quantile values by sensor v are sorted in decreasing

order and the sorted sequence is qi1=4(= 25), qi2=3(= 21),

qi3=6(= 19), qi4=2(= 16), qi5=5(= 11), qi6=1(= 6). The

quantile filter qi3=6 = 19 is chosen, because ⌈0.47 ∗ l(4)⌉ +

⌈0.47 ∗ l(3)⌉ + ⌈0.47 ∗ l(6)⌉ = 10 ≥ k. Sensor v broadcasts

qi3 to its children and all children except u4 send the points

with values no less than qi3 to v. In Fig.3(b), all the points

above the broken line are sent to v in the second phase.

v
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Figure 3: An example of algorithm Quantile-Filter.

3.4 Analysis
In this section we analyze the filtering capability of algo-

rithm QF by comparing the number of transmitted points of

algorithms QF and Naive-k.

Recall that u1, . . . , udv are the children of sensor v. If

the quantile filters are installed at the children of v, the

points in S4(v) are filtered out, and the number of points

sent to v is (1− η(v))|S(v)|+ dv, where dv is the number of

pairs of values {p(i)αl(i), l(i)} sent by the children of v for

quantile filter finding, where 1 ≤ i ≤ dv; otherwise, |S(v)|
points are sent to v. We thus partition the set of sensors V

into two subsets Vnaive and Vfilter, where Vnaive is the set

of sensors whose children are not installed quantile filters,

and Vfilter is the set of sensors whose children are installed

quantile filters. Let ζ be the ratio of the number of points

transmitted within the network by algorithm QF to that by

algorithm Naive-k, which is

ζ =
Σv∈Vnaive |S(v)|+ Σv∈Vfilter

((1− η(v))|S(v)|+ dv)

Σv∈Vnaive |S(v)|+ Σv∈Vfilter
|S(v)| . (12)

As different topologies of routing trees have different sets

Vnaive and Vfilter, the analysis of the bound of ζ is generally

difficult. In the following we thus analyze the bound of ζ

on a special routing tree, a complete d-ary tree. Assume

that the complete d-ary tree has h layers and includes dh−d
d−1

sensors. The base station is the root of the routing tree,

which is located in the first layer, and the sensors located at

the smaller layers are closer to the base station. Each sensor

at the ith layer has dh−i+1−d
d−1

descendants. Assume that h1

is the maximum layer at which the sensors have more than

k descendants, i.e., dh−h1+1−d
d−1

> k and dh−h1−d
d−1

< k. Thus

h1 = ⌊h − logd(k(d− 1) + d)⌋ + 1. In the realistic sensor

network, the average number of neighbors of a sensor is a

constant. Thus the routing tree can be treated as a complete

d-ary tree on average. We have the following theorem.

Theorem 2. Given a sensor network G(V, E), assume

that the routing tree rooted at the base station is a d-ary

tree, which includes all sensors. Algorithms QF and Naive-k

are applied for top-k query evaluation. ζ(d, h, k) is defined as

the ratio of the number of points transmitted in this network

by algorithm QF to that by algorithm Naive-k. The bound of

ζ(d, h, k) is

(

ζ(d, h, k) = 1, if θ(v) ≥ d ∗ k or ρt+8R+ρr+4re

η8R
≥ k.

ζ(d, h, k) ≤ (dh−dh1 )(h−h1)+(k(1−η)+1)(dh1−d)

(dh−dh1 )(h−h1)+k(dh1−d)
, otherwise.

where θ(v) is the condition of installation of the quantile

filter from inequality (10), h is the number of layers of the

routing tree, h1 = ⌊h − logd(k(d− 1) + d)⌋ + 1, and η =
d+2

d
− (

√
k√

d(k−1)
+

√
k−1√
dk

+
√

k−1

d
√

dk
).

Proof. The definition of ζ(d, h, k) follows the previous

definition of ζ and it is used to represent a special ζ on

the d-ary routing tree of h layers. If algorithm Naive-k is

applied for top-k query evaluation, |S(v)| = d ∗ dh−i−1
d−1

for a

sensor v at the ith layer where i ≥ h1, because dh−i−d
d−1

< k,

while |S(v)| = d∗k for a sensor v at the layer smaller than h1.

And there are di−1 sensors at the ith layer of a d-ary tree.

Therefore, the number of transmitted points by algorithm

Naive-k is

Σv∈V |S(v)| = Σh−1
i=h1

(di−1 ∗ dh−i+1−d
d−1

) + Σh1−1
i=1 (di ∗ k)

= Σh−1
i=h1

dh−di

d−1
+ (dh1−d)k

d−1
. (13)

The threshold θ(v) is used to determine whether the chil-

dren of sensor v are installed quantile filters, which can be

further divided into two cases as follows.

Case 1 : If θ(v) ≥ d ∗ k or ρt+8R+ρr+4re

η8R
≥ k, no sensor

is installed the filter because each sensor v in a d-ary tree

has at most k points in L(v) and d ∗ k points in S(v). Thus,

ζ(d, h, k) = 1.

335



Case 2 : If θ(v) < d ∗ k, quantile filters are installed at

the children of each sensor v located at the layer smaller

than h1. For such a sensor, |S(v)| = dk, and consequently

η(v) = d+2
d
− (

√
k√

d(k−1)
+

√
k−1√
dk

+
√

k−1

d
√

dk
). The shedding ratio

of all sensors with the filters are the same, and η is used to

represent the value of this shedding ratio. Thus, the number

of transmitted points by algorithm QF is

Σv∈Vnaive |S(v)|+ Σv∈Vfilter
((1− η(v))|S(v)|+ d)

= Σh−1
i=h1

dh−di

d−1
+ Σh1−1

i=1 (di−1((1− η)dk + d))

= Σh−1
i=h1

dh−di

d−1
+ ((1−η)k+1)(dh1−d)

d−1
. (14)

Denote by

w1 =
Σv∈Vfilter

((1−η(v))|S(v)|+d)

Σv∈Vfilter
(|S(v)|) = ((1−η)k+1)(dh1−d)

(dh1−d)k

= 1− η + 1
k
,

and

w2 =
Σv∈Vfilter

|S(v)|
Σv∈Vnaive

|S(v)| = (dh1−d)k

Σh−1
i=h1

(dh−di)

≥ (dh1−d)k

Σh−1
i=h1

(dh−dh1 )
= (dh1−d)k

(dh−dh1 )(h−h1)
, . (15)

It is obvious that 0 < w1 ≤ 1 and w2 > 0. Therefore,

ζ(d, h, k) =
Σv∈Vnaive

|S(v)|+Σv∈Vfilter
((1−η(v))|S(v)|+d)

Σv∈Vnaive
|S(v)|+Σv∈Vfilter|S(v)|

=
Σv∈Vnaive

|S(v)|+Σv∈Vnaive
|S(v)|w1w2

Σv∈Vnaive
|S(v)|+Σv∈Vnaive

|S(v)|w2

= 1+w1w2
1+w2

≤ (dh−dh1 )(h−h1)+(k(1−η)+1)(dh1−d)

(dh−dh1 )(h−h1)+k(dh1−d)
, (16)

because the value of 1+w1w2
1+w2

decreases, with the increase

of w2, where h1 = ⌊h − logd(k(d− 1) + d)⌋ + 1, and η =
d+2

d
− (

√
k√

d(k−1)
+

√
k−1√
dk

+
√

k−1

d
√

dk
). 2

4. PERFORMANCE STUDY
In this section we evaluate the performance of the pro-

posed algorithm QF in terms of the total energy consump-

tion, the maximum energy consumption among sensors, the

network lifetime, and the average energy consumption of

sensors at different layers of the routing tree. The network

lifetime is defined as the number of top-k queries answered

before the first sensor exhausts its energy. In other words,

the network having a longer lifetime can answer more top-

k queries. In the following, algorithm QF with the optimal

value of α and with fixed α = 0.3 and α = 0.5 are referred to

as algorithm Optimal-QF, algorithm 0.3-QF and algorithm

0.5-QF, respectively. The performance of algorithm Naive-

k in [24] will be used as benchmark for comparison purpose.

4.1 Experiment Setting
We assume that the sensor network is deployed to monitor

a 100m × 100m region of interest, in which N sensors are

randomly deployed by the NS-2 simulator [19] and the base

station is located at the square center. Assume that all the

sensors have the same transmission range (5 meters in this

paper). The initial energy at each sensor is 105 mJ. The

topology of the sensor network is the TAG routing tree [1]

(a Breadth F irst Search tree). As mentioned, the energy

consumption on wireless communication dominates all the

other energy consumptions at a sensor, and we thus only

take into account the radio energy consumption. In our ex-

periments we adopt the transmission and reception energy

consumption parameters of a real sensor MICA2 mote [17],

where the energy consumptions on transmitting and receiv-

ing a header and handshaking are ρt = 0.4608 mJ and

ρr = 0.1152 mJ , and the energy consumptions of trans-

mitting and receiving one byte are R = 0.0144 mJ and

re = 0.00576 mJ , respectively [17]. The sensed points are

drawn from a real dataset of temperature traces, collected by

the Intel Berkeley Research Lab from February 28 to April

5, 2004 [18].

4.2 Impact ofk on Performance of Algorithms
We first evaluate the performance of various algorithms

for top-k query evaluation with the range of k being from 80

to 150. In our experiments, two instances of sensor networks

consisting of 1,500 and 2,500 sensors are considered.

Fig. 4 shows the curves of various performance metrics. It

can be seen that the total energy consumption and the max-

imum energy consumption among the sensors by algorithms

Optimal-QF, 0.3-QF and 0.5-QF are substantially less than

those by algorithm Naive-k. Algorithm Optimal-QF out-

performs algorithms 0.3-QF and 0.5-QF in terms of various

performance metrics, which implies that the optimal quan-

tile filter can filter out more points from transmission. The

network lifetime by algorithm Optimal-QF is 1.25 times, 1.15

times or 1.4 times longer than that by algorithm 0.3-QF,

0.5-QF or Naive-k on average for both network instances.

Fig. 5 plots the curves of average energy consumption of

sensors at different layers of the routing tree by various algo-

rithms in the network instances consisting 1, 500 and 2, 500

sensors when k = 80, k = 100, and k = 120, respectively.

A sensor at the ith layer is i-hop away from the base sta-

tion and the sensors near to the base station play more im-

portant roles in network lifetime prolongation. As shown

in Fig. 5, the average energy consumption of sensors at the

first 10 layers by algorithms Optimal-QF, 0.3-QF and 0.5-QF

are less than that by algorithm Naive-k, while the average

energy consumption of sensors in the first 3 layers by algo-

rithm Optimal-QF is less than those by algorithms 0.3-QF

and 0.5-QF. The curves imply that algorithm Optimal-QF

efficiently balances the load among the sensors in the net-

work, thereby reduces the energy consumption of the sensors

near to the base station.

5. CONCLUSIONS
In this paper we have tackled the problem of processing

top-k query in wireless sensor networks with objective to

maximize the network lifetime. We proposed a filter-based

localized algorithm for top-k query evaluation through the

design of a novel filter which is capable to filter out as many
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Figure 4: Performance of various algorithms for top-k query evaluation with 80 ≤ k ≤ 150.

unlikely top-k points as possible within the network from

transmission, and we analyzed the filtering capability of the

proposed algorithm. We conducted extensive experiments

by simulations on real sensing datasets to evaluate the per-

formance of the proposed algorithm. The experimental re-

sults show that the proposed algorithm is efficient and can

prolong the network lifetime significantly.
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Figure 5: The average energy consumption of sensors in different layers.
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