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Abstract—Motivated by many applications, top-k query is a
fundamental operation in modern database systems. Techno-
logical advances have enabled the deployment of large-scale
sensor networks for environmental monitoring and surveillance
purposes, efficient processing of top-k query in such networks
poses great challenges due to the unique characteristics of sensors
and a vast amount of data generated by sensor networks. In this
paper, we first introduce the concept of time interval top-k query
that is to return k highest sensed values from the sensory data
generated within a specified time interval. We then propose a
filter-based algorithm for time interval top-k query evaluation,
which is capable to filter out nearly a half unlikely top-k data
from transmission in comparison with a well known existing
solution. We also develop a novel online algorithm for answering
time interval top-k queries with various ks and time intervals one
by one through maintaining a materialized view that consists
of historical top-k query results. We finally conduct extensive
experiments by simulations to evaluate the performance of the
proposed algorithms on real sensory datasets. The experimental
results show that the proposed algorithms outperform existing
algorithms significantly to prolong the network lifetime.
Keywords: online time interval top-k queries, wireless sensor net-
work, query optimization, energy conservation

I. INTRODUCTION

In many application domains, top-k query is a fundamental
query to search for the most important objects according to
object ranking. Being different from those studies of top-
k query in centralized databases, in this paper we focus
on top-k query optimization in resource-constrained wireless
sensor networks (WSNs). Technological advances have en-
abled the deployment of large-scale sensor networks consisting
of thousands of inexpensive sensors in an ad-hoc fashion
for a variety of environmental monitoring and surveillance
purposes. During this course, a large volume of sensed data
are needed to be aggregated within the network to respond to
user queries. The wireless sensor network thus is treated as
a virtual database by the database community [1]. However,
query processing in WSNs is essentially different from it in
traditional databases due to the unique characteristics imposed
on sensors, e.g., slow processing capability, limited storage,
and energy-limited batteries, etc. [7], which can be seen from
several aspects. Firstly, to prolong network lifetime, the energy
consumption is an optimization objective in WSNs, because
the battery-powered sensors will quickly become inoperative
due to the large quantity of energy consumption, and the
network lifetime is closely tied to the energy consumption
rate of the sensors. Secondly, a wireless sensor network that
senses the data periodically can be viewed as a distributed

stream system [2]. However, this special distributed stream
system is different from the general distributed stream system
because it is more expensive to obtain the sensed data from
the sensors far away from the base station than those nearby.
Finally, for query processing in WSNs, minimizing not only
the total energy consumption but also the maximum energy
consumption among the sensors is the optimization objective.
Hence, how to evaluate queries effectively and efficiently in
WSNs poses great challenges.

Previous studies of top-k query in distributed systems
mainly focused on the distributed top-k query, which is to find
the k objects with highest scores, assuming that each object
is distributed in multiple nodes. In each node, the object has
a local score. The score of the object is combined from all of
local scores of the object by a given function [2], [6]. In this
paper, we deal with a different top-k query which is identical
to the one proposed in [13], [3]. That is, each sensor senses
one or multiple numerical values from its vicinity, and each
value and its generator sensor as well as the generation time
is referred to as a point in the rest of this paper. A point p is
represented by a tuple (p.sid, p.tid, p.val), where p.sid is the
ID of generator sensor of point p, p.tid is the time unit when
point p is generated, and p.val is the sensed numerical value.
The top-k query in WSNs is to return the k points with the
highest sensed values. On the other hand, a WSN should be
able to support top-k query processing with different values of
k and time intervals. We refer to such a top-k query as a time
interval top-k query, denote by top-(k, [ts, te]) which aims to
identify k points with highest sensing values from a set of
points generated within time interval [ts, te], where ts ≤ te.

Top-k query has been extensively studied in traditionally
relational databases [4]. In recent years, the studies of top-
k query in other databases like distributed databases [2] and
data stream [5] have been exploited. However, due to essential
difference of top-k query processing between these databases
and wireless sensor networks, the proposed algorithms for
these models cannot be applicable to WSNs. Previous studies
investigated in-network aggregation in wireless sensor net-
works for energy optimization, e.g., the algorithms in [1],
[11] are exploited for simple aggregation, and other algorithms
are proposed to deal with the more complicated queries
including skyline query [12] and distributed top-k query [6].
Several algorithms are proposed to solve the top-k query
in WSNs that returns the k points with the highest sensed
values [13], [3]. Silberstein et al [13] considered the top-k
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query evaluation problem by providing approximate solutions
with high probability, based on a prediction model that is built
on the samples of previous top-k query results. Wu et al [3]
exploited the semantics of top-k query and proposed a filter-
based maintenance algorithm (FILA) to maintain the current
top-k points by assigning a dedicated filter for each sensor.
The proposed algorithms by both Silberstein et al [13] and
Wu et al [3] are centralized algorithms, which may not be
suitable for the real distributed WSNs.

In this paper, we focus on the time interval top-k query
optimization to maximize the network lifetime through striking
the right balance between the total energy consumption and the
maximum energy consumption. The main contributions of this
paper are as follows. We first introduce new concepts of time
interval top-k query and online time interval top-k queries with
various ks and time intervals under sliding window environ-
ments in WSNs, where the points are dynamically generated
and expired. We then propose an energy-efficient optimization
framework for time interval top-k queries. We devise a filter-
based localized evaluation algorithm for answering the top-
k query on a snapshot dataset. We also deal with online
time interval top-k queries by proposing a novel incremental
algorithm for answering various time interval top-k queries
in a streaming dataset on-the-fly. We finally conduct extensive
experiments by simulations on real sensory datasets to evaluate
the performance of the proposed algorithms. The experimental
results show that the proposed optimal framework is very
efficient and effective, in terms of various metrics.

The remainder of the paper is organized as follows. Section
2 introduces the cost model of WSNs and problem definitions,
followed by introducing an existing top-k query evaluation
algorithm for the benchmark purpose. Section 3 proposes an
energy-efficient algorithm for time interval top-k query evalu-
ation, and Section 4 devises a novel algorithm for online time
interval top-k queries. Extensive experiments are conducted
in Section 5 to evaluate the performance of the proposed
algorithms, and the conclusions are given in Section 6.

II. PRELIMINARIES

A. System Model

We consider a sensor network consisting of n stationary
sensors randomly deployed in a region of interest, and a base
station r with unlimited energy supply located at the center
of the region. For the sake of simplicity, we assume that the
topology of the sensor network is a spanning tree T rooted
at the base station; otherwise, such a tree can be obtained
by applying any spanning tree algorithm in the network like
the one by TAG [1]. All sensors have identical transmission
ranges, and they can communicate with the base station via
one or multi-hop relays. We assume that the time dimension is
infinite and the basic time unit is time step. At each time step,
some rather than all sensors generate one or multiple new
points. Assume that for a point p, each of p.sid, p.tid and
p.val is represented by 4 bytes. Thus, point p is represented
by 12 bytes in total. Each point has a fixed lifespan w, i.e.,
point p will expire at the time step p.tid + w. To transmit a
message containing l bytes of data from a sensor to one of its
neighbors, the amounts of transmission energy consumption at

the sender are ρt + R ∗ l and the amounts of reception energy
consumption at the receiver are ρr +re∗ l, where ρt and ρr are
the sum of energy overhead on handshaking and transmitting
and receiving the message header, R and re are the amounts of
transmission and reception energy per byte, respectively. We
assume that the computation energy consumption on sensors
can be ignored, because it is several orders of magnitude less
than that of the communication energy consumption [7].

B. Problem Definition

Given a point p, we say point p is valid at time step t if
t − p.tid ≤ w; otherwise, p is invalid. Denote by Pt(vi) the
set of valid points at a sensor vi and Pt =

⋃n
i=1 Pt(vi) the

set of valid points in the sensor network at time step t. Let
Pt(vi)[t1, t2] and Pt[t1, t2] be the subsets of Pt(vi) and Pt in
which the points are generated between time steps t1 and t2.
Denote by Updatet(vi) and Expiredt(vi) the sets of points
at sensor vi generated and expired at time step t, respectively.
At each time step t, each sensor updates the set of points,
i.e., Pt(vi) = Pt−1(vi)∪Updatet(vi)−Expiredt(vi). There-
fore, Pt = Pt−1 ∪

⋃n
i=1 Updatet(vi) −

⋃n
i=1 Expiredt(vi).

Because each point can only survive w time steps and all
points generated before time step t − w + 1 must expire at
time step t, Pt =

⋃n
i=1

⋃t
x=t−w+1 Updatex(vi). The sensor

network is thus regarded as a distributed stream system with
a boundless streaming data. It is usually impossible to store
all of the generated points at sensors due to their limited
storage. Consequently, we here consider the time interval top-
k query within sliding windows. A sliding window consists of
w consecutive time steps and slides along the time dimension.
At time step t, the sliding window contains all the points
generated from t − w + 1 to t, and therefore the set of those
points is Pt. A time interval top-k query under a sliding
window, represented by top-(kt, [ts, te]), thus is to inquire the
kt points with the highest sensed values in set Pt[ts, te], where
t − w + 1 ≤ ts ≤ te ≤ t. Online time interval top-k query
is to return the result of each time interval top-k query with
different values of k and time intervals issued at different time
steps one by one.

Before we proceed, we briefly review an algorithm
Naive-k for top-k query evaluation, in which each leaf
sensor forwards its points to its parent. If a sensor contains
k′ (≤ k) points , then it forwards all the points to its parent;
otherwise, it forwards its top-k points to its parent. In the end,
the root identifies the top-k points from the collected points,
which is the result of the top-k query.

III. TIME INTERVAL TOP-k QUERY EVALUATION

ALGORITHM

In this section we propose a novel, filter-based localized
algorithm for time interval top-k query evaluation on snapshot
datasets. The basic idea of the proposed algorithm is that every
sensor sorts its points in decreasing order of sensed values, and
sends one of the values to its parent if the parent exists. The
parent finds a filter by choosing one of the received values and
broadcasts the filter to all its children. Each child sends those
points whose values are no less than the filter to the parent. In
the following we first provide the details of finding the filter,
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followed by addressing whether a filter requires to be installed
at a sensor. We finally present the proposed algorithm for time
interval top-k query evaluation.

A. Filter Generation

Suppose that a time interval top-k query top-(kt, [ts, te])
is issued at time step t. For convenience, the points referred
to in this section are the valid points generated from time
step ts to time step te unless otherwise specified. Consider a
sensor v in the routing tree T with dv children u1, . . . , udv .
L(i) = {p(i)1.val, . . . , p(i)l(i).val} is the value set of points
at ui with p(i)j1 .val ≥ p(i)j2 .val if 1 ≤ j1 ≤ j2 ≤ l(i), where
l(i) is the number of the points at ui if l(i) < k. Otherwise,
l(i) = k. In other words, there are at most k values in L(i).
S(v) =

⋃dv

i=1{p | p.val ∈ L(i)} is the set of potential top-
k points at v from its children, and |S(v)| ≤ k ∗ dv. In the
following, the detail of finding the filter is described.

Each child ui sends the median value of L(i),
p(i)�l(i)/2�.val and l(i) to its parent v, 1 ≤ i ≤ dv . The dv

received median values by sensor v are sorted in decreasing
order and let mi1 , mi2 , . . . , midv

be the sorted sequence,
where mij is the median value from child uij . The yth
largest value miy is chosen as the filter by sensor v, where
y = min{e |

∑e
j=1 �l(ij)/2� ≥ k}, which guarantees that

there are at least k points in S(v) whose values are no
less than the filter miy . Obviously the points in S′(v) =
{p(ia)b | a ≥ y, b ≥ l(ia)/2} are smaller than miy because
p(ia)b < mia < miy when a ≥ y and b ≥ l(ia)/2.

Having found the filter, sensor v broadcasts the filter to
each child ui, and each child ui then sends the points whose
values are no less than the filter to parent v, 1 ≤ i ≤ dv.
We now analyze the filtering capability of the proposed filter.
Compared to algorithm Naive-k in which all |S(v)| points
are transmitted to sensor v, at least |S′(v)| points can be
filtered out from transmission. The shedding ratio of data
derived from the proposed filter is analyzed as follows.

The size of S′(v) is |S′(v)| =
∑dv

j=y+1�l(ij)/2� +
�l(iy)/2� − 1 ≥ 1

2 (|S(v)| −
∑y−1

j=1 l(ij)) − 1, then

|S′(v)|
|S(v)| ≥

1
2 (|S(v)| −

∑y
j=1 l(ij)) − 1

|S(v)|

≥
1
2 (|S(v)| − 2(k − 1)) − 1

|S(v)| =
1
2
− k

|S(v)| .(1)

B. The Optimal Filter

As use of the filter at the children of sensor v can prune
some unlikely top-k points in S(v) from transmission, we now
aim to prune as many points from S(v) as possible, using an
optimal filter. Consequently, we can significantly reduce the
transmission and reception energy consumptions of sensor v
through the reduction of data transmission. The rest is to find
such an optimal filter.

Recall that sensor v is the parent of sensors u1, u2, . . . , udv .
We further assume that each child knows how many siblings
dv it has; otherwise, this can be done through a broadcast from
sensor v. To find the optimal filter, instead of transmitting the
median value of L(i), each sensor ui transmits p(i)x.val that

is the xth largest values in L(i) to parent v, where x will be
determined later, 1 ≤ x ≤ k. Sensor v then sorts the received
dv values in decreasing order. Let mi1 , mi2 , . . . , midv

be the
sorted sequence and mij ≥ mij+1 . Imagine that the points in
S(v) are arranged into a matrix {ca,b}k×dv column by column,
according to the ranks of their xth largest values of the points
in the sorted sequence, i.e., ca,b = p(ib)a and cx,b.val = mib

,
1 ≤ a ≤ k, 1 ≤ b ≤ dv . Specifically, matrix {ca,b}k×dv is
constructed as follows (as shown in Fig. (1).
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Fig. 1. The elements in S(v) are partitioned by the element cx,y

A point cx,y is identified such that |S1(v)| = x ∗ y ≥ k,
where S1(v) is the set of points in the top left corner of
the matrix. Meanwhile, |S′(v)| is required to be as large as
possible where S′(v) consists of the points in the bottom right
corner of the matrix, because all the points in S′(v) will be
pruned from transmission. Thus, we aim to find such x and y
that |S′(v)| is maximized, where
|S′(v)| = kdv + k + dv + xy − 1 − (dvx + ky + x + y)

≥ kdv + dv + 2k − 1 − (dvx + ky + x + y), (2)

subject to xy ≥ k, 1 ≤ x ≤ k, 1 ≤ y ≤ dv . In other words, we
aim to minimize the value f(x, y) = (dvx+ky+x+y) under
the constraints. Since |S4(v)| ≥ kdv +k+dv +k−1−f(x, y)
and parameters k and dv are given, f(x, y) is minimized, when

x =
√

k(k+1)
dv+1 and y =

√
k(dv+1)

k+1 . In fact, both x and y are

required to be positive integers. To do so, let x1 = �
√

k(k+1)
dv+1 �

and y1 = �
√

k(dv+1)
k+1 �, let F (x, y) = kdv +k+dv +xy−1−

(dvx + ky + x + y) be the number of points in S′(v) when
cx,y.val is chosen as the filter. Then, sensor v computes x and
y (x ∗ y ≥ k) such that

F (x, y) = max{F (x1, y1), F (x1 − 1, y1),
F (x1, y1 − 1), F (x1 − 1, y1 − 1)}, (3)

Fig. 1 shows the partition of points in S(v) by the point cx,y.
The ratio of shedding data to the total data in S(v) thus is

|S′(v)|
|S(v)| =

(k − x + 1)(dv − y + 1) − 2
kdv

≥
(k − �

√
k(k+1)
dv+1 � + 1)(dv − �

√
k(dv+1)

k+1 � + 1) − 2

kdv

≥ 1 +
2
dv

+
1
k
− 2

√
(dv + 1)k(k + 1)

kdv
− 1

kdv
, (4)

when dv ≥ 2.

C. The Filter-based Algorithm

Although installing a filter at a sensor may reduce unlikely
top-k points from transmission, it also incurs extra energy
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overhead on the filter finding and broadcasting. We now
analyze this extra energy overhead as well as the energy
saving brought by the filter. We only install the filter at those
sensors that the energy saving exceeds the overhead on the
filter installation.

For a given sensor v, if no filter is installed at each child ui

of v, ui sends its top-l(i) points to sensor v as Naive-k does,
1 ≤ i ≤ dv. As a result, the number of points transmitted to
v is |S(v)| and the total energy consumption by transmitting
and receiving all |S(v)| points is

Enaive(S(v)) = ρtdv + 12|S(v)|R + ρrdv + 12|S(v)|re. (5)

If the filters are installed at the children of v, there are at
least |S(v)|∗(1

2 −
k

|S(v)| ) points filtered out from transmission,
thus, the total energy consumption is

Efilter(S(v)) = dv(ρt + ρr + 8(R + re)) + ρt + 4R

+dvρr + dv4re + dv(ρt + ρr) + ( |S(v)|+2k
2 )(R + re), (6)

where dv(ρt +8R+ρr +8re) is the total energy consumption
of the children sending the values and l(i)s to sensor v and
sensor v receiving the values from its children, ρt + 4R +
dv(ρr + 4re) is the energy consumption of broadcasting the
filter, and dv(ρt + ρr) + ( |S(v)|+2k

2 )(R + re) is the sum of
energy consumption that each child sends the points passing
through the filter to sensor v.

what follows is to investigate the extra energy overhead on
filter finding and the energy saving of a child of v. If there is
no filter installed at a child ui of v, ui transmits its top-l(i)
points to sensor v and the energy consumption of ui is

Enaive(L(i)) = ρt + l(i) ∗ 12R; (7)

otherwise, the energy consumption of ui is

Efilter(L(i)) = 2ρt + 8R + ρr + 4re + l(i)/2 ∗ 12R; (8)

In Eq. (8), we assume that the expected number of points
filtered out at sensor ui by the filter is l(i)/2. Notice that
in Eqs. (5) and (6) |S(v)| =

∑dv

i=1 l(i). In practice the
value of l(i) is not known by v beforehand. To this end, an
approximate value |S(v)app| of |S(v)| is proposed. Suppose
that desc(v) is the set of descendants of v and the number
of descendants |desc(v)| of v is given, then |S(v)app| =∑dv

i=1 min{k, |desc(ui)|}. In other words, if a child contains
more than k descendants, it transmits its top-k points to v;
otherwise, the child transmits all points from its descendants
to v. Obviously |S(v)app| can be obtained when the routing
tree is built.

To guarantee that the installation of the filter at the children
of sensor v will be beneficial, we thus have Efilter(S(v)) <
Enaive(S(v)) and Efilter(L(i)) < Enaive(L(i)). Meanwhile,
the shedding ratio of data will be no less than 0 only when
|S(v)| ≥ 2k from Eq. (1). Combined with Eqs. (5), (6), (7)
and (8) and replacing |S(v)| by |S(v)app|, we have

|S(v)app| > max{ρt(dv + 1) + 2ρr ∗ dv + (8dv + 4)R
12(R + re)

+
12dv ∗ re

12(R + re)
+ k, 2k}; (9)

and

l(i) >
ρt + ρr + 8R + 4re

6R
. (10)

Having addressed the conditions of filter installation, we are
ready to describe the proposed algorithm.

Suppose that an internal sensor v in the routing tree has dv

children u1,. . . ,udv , and each child ui knows dv and |S(v)app|,
which can be obtained by a broadcasting from sensor v when
the routing tree is built. For a child ui, if either condition
(9) or (10) is not satisfied, ui sends all of its top-l(i) points
to sensor v, and no filter is installed at ui; otherwise, the
proposed filter will be installed at sensor ui as follows. Each
child ui sends the value of the xth point to the parent sensor
when |S(v)app| = k ∗ dv , and the parent broadcasts the yth
largest value as the filter to each child, where x and y are
the values to maximize F (x, y) in (3). If |S(v)app| < k ∗ dv,
each child ui sends its median value and l(i) to the parent
sensor v. Parent v then broadcasts the yth largest one among
the dv received values as the filter to its children, where y =
min{e |

∑e
j=1 �l(ij)/2� ≥ k}. Only the child sensor ui with

l(i) > ρt+ρr+8R+4re

6R needs to receive the filter and then sends
its points whose values are no less than the filter to parent v.
The other children send all of their top-l(i) points to v already.

IV. ONLINE TIME INTERVAL TOP-k QUERY PROCESSING

So far the proposed algorithm has only been applied for
top-k query evaluation on a snapshot dataset. To answer online
queries, a naive approach is to evaluate the queries one by one,
by employing the proposed evaluation algorithm. However,
this approach will consume excessive energy because it is
likely that most top-k points in previous top-k queries are still
in the result of the current top-k query due to slow updates of
points in the network. In this paper we propose an algorithm
to evaluate the query incrementally by building a materialized
view based on the historical query results. Intuitively, given a
query top-(kt, [ts, te]), the base station sorts the points in the
materialized view, which are generated within the time interval
[ts, te] in decreasing order of their values. If there are at least
kt points in the view generated within the interval, the base
station broadcasts the value of the ktth point as the filter along
with the query to the sensor network, and each sensor filters
out the points with smaller values than the received filter. The
proposed evaluation algorithm in the previous section is then
applied to return the query results. Beyond this conceptually
simple idea, several non-trivial issues remain to be answered.
That is, how to maintain the materialized view such that the
view contains kt points generated in the unpredictable time
interval of next query with high probability, how to decide the
size of the materialized view, because it is prohibitive to store
all the historical points in the view. In the following, we show
how to maintain the materialized view based on a probability
model, and answer online time interval top-k query using the
materialized view.

A. The Probability Model

The materialized view at the base station consists of the
points of previous top-k queries. The key to maintain the view
is to calculate the expected number of points generated within
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the time interval of the next query, referred to as E(ts, te).
Having the result of the current query, the view will be updated
by inserting the new points of the results into and removing
the old ones from the view. The computation is based on a
probability model because the exact time interval of the next
query is not known beforehand. In the following, we describe
the computation of E(ts, te).

Let t be the current time step. Denote by V (t) =⋃t
ti=t−w+1 v(ti) the materialized view at time step t, where

v(ti) = {p | p.tid = ti} is the set of points generated at time
step ti, t − w + 1 ≤ ti ≤ t. Let Pr(c1|c2) be the conditional
probability of event c1. For a point p with p.tid = ti, the
probability of a point p generated in time interval [ts, te] is

Pr(p ∈ [ts, te]) = Pr(ts < ti, te > ti | te > ts)

=
ti
w

∗ w − ti + 1
w − ts + 1

≥ ti
w

∗ w − ti + 1
w

. (11)

Therefore, the expected number of points in the view
generated within the interval [ts, te] is

E(ts, te) =
t∑

ti=t−w+2

(|v(ti)| ∗ Pr(p ∈ [ts, te])

≥
t∑

ti=t−w+2

(|v(ti)| ∗
ti
w

∗ w − ti + 1
w

). (12)

We refer to Emin =
∑t

ti=t−w+2(|v(ti)| ∗ ti

w ∗ w−ti+1
w ) as

the minimum expected number of the points generated within
the time interval of the next query. We only consider the point
generated from time step t−w+2, since the points generated
at time step t − w + 1 will be expired at the next time step.

B. Online Time Interval Top-k Query Algorithm

We describe how to maintain the materialized review and
online time interval top-k query algorithm as follows.

Assume that a query top-(kt, [ts, te]) is issued at time step
t. The materialized view at the base station is V (t). Assume
that the expired points are removed from V (t). Denote by
V p(ts, te) = {p | ts ≤ p.tid ≤ te, p ∈ V (t)} the set
of points in the view generated within the interval [ts, te]
and the points in V p(ts, te) are sorted in decreasing order
of their values. If |V p(ts, te| ≥ kt, the value of the ktth
point in V p(ts, te) is broadcast along with the query as the
filter to the sensor network. The proposed algorithm for top-
k evaluation is then applied on the set of remaining points
with values being not small than the filter in P (t)[ts, te],
to return the result of query top-(kt, [ts, te]), referred to as
Top(t). The set of points in Top(t) that are not included by
V (t) is referred to as New(t) =

⋃t
ti=t−w+2 new(ti), where

new(ti) = {p | p.tid = ti, p ∈ Top(t), p 	∈ V (t)}. We also
exclude the points generated at time step t−w+1 because they
will be expired at the next time step and will not contribute
to the next query. Let kmax be the maximum value of k in
all issued queries, which can be given beforehand. The base
station calculates Emin =

∑t
ti=t−w+2(|v(ti)| ∗ ti

w ∗ w−ti+1
w ).

If Emin ≥ kmax, we will execute replacement operations
until there is no point in New(t) that can increase the value
of Emin; otherwise, we will execute insertion operations
and update the value of Emin of the new view until the

updated Emin is not smaller than kmax, followed by executing
replacement operations. The two operations are described as
follows.

The replacement operation is to replace a point p ∈ V (t)
with a point q ∈ New(t) if existent. Point p with p.tid = t1
is chosen from V (t) such that

p.val = min{x.val | x ∈ v(t1)}, (13)
t1
w ∗ w−t1+1

w = min{ ti

w ∗ w−ti+1
w | |v(ti)| > 0}. (14)

Having chosen a point p, another point q with q.tid = t2 is
then chosen from New(t) such that

q.val = max{x.val | x ∈ new(t2)}, (15)
t2
w ∗ w−t2+1

w = max{ ti

w ∗ w−ti+1
w | |new(ti)| > 0}, (16)

t2
w ∗ w−t2+1

w ≥ t1
w ∗ w−t1+1

w . (17)

Note that t1, t2 and ti in Eqs. (13)-(16) and Ineq. (17) are
within [t − w + 2, t]. Having replaced point p by point q, the
value of Emin will increase due to t2

w ∗ w−t2+1
w ≥ t1

w ∗ w−t1+1
w .

The replacement operations will terminate if there are no such
a pair of points p and q meeting conditions (13)-(17).

The insertion operation is to insert a point q ∈ New(t)
being satisfied Eqs. (15) and (16) into V (t) when Emin <
kmax. After the insertion, Emin will be recalculated for the
new materialized view. If the updated Emin is not smaller than
kmax, the mentioned replacement operations will be executed;
otherwise, another point in New(t) meeting Eqs. (15) and (16)
will be inserted into the view.

Having updated the materialized view based on the result
of the current query, the filter for next query top-(kt′, [ts′ , te′ ])
will be drawn from the updated view if there are at least kt′

points generated within the time interval [ts′ , te′ ].
V. PERFORMANCE STUDY

In this section, we evaluate the performance of the proposed
algorithms in terms of the total energy consumption and the
maximum energy consumption among sensors. The proposed
algorithm for top-k query evaluation is referred to as Filter,
while the one for online time interval top-k query processing is
referred to as View-Filter. The performance of algorithm
Naive-k is used for the benchmark purpose.

A. Experiment Setting
We assume that the sensor network is used to monitor a

100m × 100m square region of interest. Within the region,
n sensors are randomly deployed by the NS-2 simulator [10]
and the base station is located at the square center. We assume
that all sensors have 5-meter transmission ranges and the
topology of the sensor network is the TAG routing tree [1].
In our experiments, two sensor network instances consisting
of 1,000 and 1,500 sensors are considered. In our experiments
we adopt the transmission and reception energy consumption
parameters of a real sensor MICA2 mote, where the energy
consumption on transmitting and receiving a header and hand-
shaking are ρt = 0.4608 mJ and ρr = 0.1152 mJ , and the
energy consumption of transmitting and receiving one byte
are R = 0.0144 mJ and re = 0.00576 mJ , respectively [8].
Each point p is represented by 12 bytes. The sensed points are
drawn from a real dataset of temperature traces, collected by
the Intel Berkeley Research Lab [9].
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Fig. 2. The performance of algorithm Filter for time interval top-k query
evaluation with 30 ≤ k ≤ 50

B. Performance of Time Interval Top-k Query Evaluation

We first evaluate the performance of algorithm Filter
for top-k query evaluation on a snapshot dataset with the
range of k from 30 to 150. We assume that l is the number
of points at each sensor, which is one of 1, 10, 20 and 50.
The l ∗ n points in all sensors compose the snapshot dataset
on which various algorithms are applied. Fig. 2(a)-(d) show
the curves of the ratio of the total energy consumption and
maximum energy consumption by algorithm Filter to those
by algorithm Naive-k with different values of l for network
sizes n = 1, 000 and n = 1, 500, respectively. It can be
seen that the total energy consumption and the maximum
energy consumption among the sensors by algorithm Filter
are substantially less than those by algorithm Naive-k with
various values of k and l. This shows that the proposed
algorithm reduces unlikely top-k points in the network from
transmission significantly. Moreover, algorithm Filter ex-
hibits much better performance with the increase of l, which
implies that it is highly scalable.

C. Performance of Online Time Interval Top-k Queries

We then study the performance of different algorithms for
online interval top-k queries on real sensory datasets [9]. We
assume that the duration of each time step is τ minutes in the
simulation and the lifespan of all the points is w time steps. In
our experiments, we evaluate the performance of the proposed
algorithm by setting τ as 2.5 and 5 minutes respectively, and w
ranges from 100 to 500 with an increment of 100. We generate
a list of queries which represents that a top-(kt, [ts, te]) query
is issued at time step t, where kt ranges from 30 to 100,
and t ranges from 1 to 3600. We evaluate the performance of
algorithm View-Filter against that of algorithm Filter
and algorithm Naive-k for each query with various values
of τ and w. Fig. 3(a)-(d) show the curves of the total
energy consumption and maximum energy consumption by
various algorithms at time step 3, 600. It can be seen that
algorithm View-Filter has the best performance among
the mentioned algorithms in terms both metrics. Furthermore,
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Fig. 3. The performance of various algorithms for online time interval top-k
queries for both network sizes n = 1, 000 and n = 1, 500 at time step 3, 600

the ratio of the total energy consumption and the maximum
energy consumption by algorithm View-Filter to those by
algorithm Naive-k becomes smaller with the increases of w
and τ , which implies that algorithm View-Filter is highly
scalable.

VI. CONCLUSIONS

In this paper we have tackled the top-k query processing in
wireless sensor networks. We first advocated the concept of
time interval top-k query. We then proposed an optimization
framework for time interval top-k query evaluation, consisting
of a filter-based algorithm on snapshot datasets, and algorithm
View-Filter for online time interval top-k queries with
various ks and time intervals under sliding window environ-
ments. The experimental results showed that the proposed
algorithms are very efficient, and can prolong the network
lifetime significantly.
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