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ABSTRACT
Skyline query has been received much attention due to its
wide application backgrounds for multi-preference and deci-
sion making. In this paper we consider skyline query evalua-
tion and maintenance in wireless sensor networks. We devise
an evaluation algorithm for finding skyline points progres-
sively and a maintenance algorithm for skyline maintenance
incrementally. We also conduct extensive experiments by
simulations to evaluate the performance of the proposed al-
gorithms on various datasets. The experimental results show
that the proposed algorithms significantly outperform exist-
ing algorithms in terms of network lifetime prolongation.

Categories and Subject Descriptors
H.2.4 [Database Management]: Query Processing

General Terms
Algorithm, Experimentation, Performance
Keywords: WSN, skyline query, query optimization

1. INTRODUCTION
To support data query processing in wireless sensor net-

works (WSNs), several DB systems like TinyDB [5] and
Cougar [11] have been developed. However, they only sup-
port some basic operators. With further development of
hardware techniques in sensors and wide applications of WSNs,
it is becoming urgent that WSNs can also support more com-
plicated queries like skyline queries. In this paper we focus
on skyline query evaluation and maintenance in WSNs.

Extensive studies on skyline query in centralized databases
[3, 4, 7] and distributed databases [1, 9] have been conducted
in recent years, existing algorithms however are not appli-
cable to WSNs due to the unique characteristics imposed
on sensor networks including limited storage, energy-limited
battery, slow processing capability, narrow communication
bandwidth, etc. Several studies of skyline query in WSNs
have been conducted in the past [2, 10], they mainly focused
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on optimizing the total energy consumption alone rather
than the tradeoff between the total energy consumption and
the maximum energy consumption among the sensors, while
the maximum energy consumption among the sensors usu-
ally is the bottleneck of the network lifetime [6]. Therefore,
energy-efficient skyline query evaluation and maintenance in
WSNs poses great challenges.

2. PRELIMINARIES
We consider a wireless sensor network consisting of n sta-

tionary sensors randomly deployed in a region of interest,
and each sensor is equipped with d sensing devices to mea-
sure d attribute values. Each data point consists of d at-
tribute values, referred to as a d-dimensional data point.
There is a base station with unlimited energy supply serv-
ing as the gateway between the sensor network and users.
Each sensor can communicate with the other sensors and
the base station via one or multi-hop relays. To transmit a
message containing k bytes of data from one sensor to an-
other, the amounts of transmission energy consumed at the
sender are ρt + R ∗ k, and the amounts of reception energy
consumed at the receiver are ρr +re ∗k, where ρt and ρr are
the sums of energy overhead on handshaking and transmit-
ting and receiving header part of the message, R and re are
the amounts of transmission and reception energy per byte,
respectively. Each data point is represented by 4 ∗ d bytes
in this paper. The energy-efficient skyline query evaluation
in sensor networks can be implemented through in-network
processing paradigm by building a routing tree T rooted at
the base station r and spanning all sensors.

Given a wireless sensor network G(V, E) with base sta-
tion r, where V is the set of sensors and E is the set of
links. Assume that each sensor v in V has a set of snap-
shot points P (v) generated during a given time interval, and
P = ∪v∈V P (v) forms the entire dataset. The skyline query
on P is to find a subset of P , referred to as SK(P ), in which
the points cannot be dominated by any other points in P .
Skyline maintenance is to maintain the skyline dynamically
within sliding window environments. The data generated by
sensors are treated as the boundless streaming data, it thus
is impossible to perform a skyline query on all generated
points so far due to the huge volume of data involved. In-
stead, a sliding window skyline will only consider the skyline
on the set of points generated within the current window.
Let W be the length of sliding window which is equal to the
lifespan of each point. The skyline maintenance at each time
step t is to evaluate the skyline on Pt = {p | t−p.time ≤ W},
where p.time is the generated time step of point p.
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For skyline evaluation, we introduce a simple algorithm,
the skyline merge algorithm. If sensor v is a leaf node, it
sends the skyline of local points to its parent; Otherwise, sen-
sor v computes the skyline on the set of points at v including
the points generated at v and forwarded by its children, and
transmits the new skyline to its parent. Finally, the base
station r obtains the skyline on the set of received points,
which is the skyline on the set P .

The following observation is the cornerstone of the rest of
the paper, which will be used later.

Definition 1. [3, 7] Suppose p = (p1, p2, ..., pd) is a d-
dimensional point, the radius of p R(p) is defined as the
Euclidean distance between p and the origin o = (0, 0, . . . , 0),

i.e., R(p) =
p

Σd
i=1p

2
i .

Observation 1. [7] Let R(p) and R(q) be the radii of
points p and q. If R(p) ≤ R(q), p cannot be dominated by q.

3. DYNAMIC RADIUS-PARTITION BASED
ALGORITHM

In this section an evaluation algorithm DRP

(Dynamic Radius Partition) is devised, which first parti-
tions the dataset P into disjoint subsets based on dynamic
partition radius, followed by evaluating the skyline on each
subset progressively through the use of found skyline points
as the global filter to filter out unlikely skyline points in the
rest of subsets from transmission within the network.

3.1 Dynamical Dataset Partition
Intuitively, algorithm DRP proceeds in a number of itera-

tions k, and k is dynamically determined by the data dis-
tribution in the dataset. The dataset P is partitioned into
several disjoint subsets and the partition radius in each it-
eration is determined as follows.

Denote by LSK(v)i the skyline of the points at sensor
v and the received points from the children of v in the ith
iteration, 1 ≤ i ≤ k. Let LF (v)i be the Local Filter at
sensor v and UR(v)i the upper bound of the transmission
radius of sensor v in the ith iteration. If sensor v is a leaf
node, UR(v)i is the maximum radius of all points forwarded
by v. Otherwise, UR(v)i is calculated as follows. Assume
that sensor v has dv children, u1,. . . ,udv . In the ith iter-
ation, sensor v receives the points from each child uj and
calculates LSK(v)i, 1 ≤ j ≤ dv. Then, UR(v)i is the min-
imum among the dv maximum radii of the points sent by
the children of v and the maximum radii of the points in
LSK(v)i. Obviously, UR(v)i ≤ UR(u)i when u is a descen-
dant of v. Thus, UR(r)i ≤ UR(v)i for any sensor v ∈ V ,
UR(r)i is the partition radius of the ith partitioned subset
Pi, i.e., the radii of all the points in Pi are no greater than
UR(r)i. Therefore, the dataset is dynamically partitioned
by UR(r)i, 1 < i ≤ k.

Assuming that algorithm DRP has performed the first (i−
1)th iterations already, and now proceeds the ith iteration
as follows.

Each sensor v filters out the local points dominated by
any point in LF (v)i. If sensor v is a leaf node, it trans-
mits LSK(v)i to its parent, where LSK(v)i is the skyline
of the points at sensor v. Otherwise, it calculates LSK(v)i

and the upper bound of the transmission radius of sensor
v, UR(v)i. Sensor v then transmits the points in LSK(v)i

whose radii are no greater than UR(v)i to its parent. Hav-
ing received the points from all children, the base station r
calculates LSK(r)i and UR(r)i. The newly found skyline
in the ith iteration is SKi = {p | p ∈ LSK(r)i, R(p) ≤
UR(r)i,∀q ∈ ∪i−1

j=1SKj , q �≺ p}, where q �≺ p means that
point q cannot dominate point p. Some points in SKi will
be chosen for broadcast as the global filter to update the
local filter of each sensor v. In case SKi is empty, the sky-

line merge algorithm will be applied to find the remaining
skyline points. The algorithm terminates and the number
of iterations k = i + 1 is determined. The skyline on P is
SK(P ) = ∪k

i=1SKi. In the following we detail which points
in SKi will be chosen.

3.2 Global Filter Broadcasting
Having obtained SKi at r, a simple way to update the

local filter of each sensor v is to broadcast all the points in
SKi to it. However, this naive approach will incur a much
more energy overhead than needed. On the other hand,
if none of the newly found global skyline points is broad-
cast, the local filter of each sensor cannot filter out as many
unlikely skyline points as possible without the help by the
newly skyline points. To this end, we propose a method
to tradeoff the energy consumption between broadcasting
and data transmission, based on the volume of the efficient
dominance region of points. The efficient dominance region
of a point p is the subspace of the dominance region of p
that has not been covered by the dominance regions of pre-
viously found skyline points and all the points inside are not
yet examined.

Denote by EDR(p)j an approximate volume of the effi-
cient dominance region of point p at the jth dimension, 1 ≤
j ≤ d. Let GSFi be the set of chosen skyline points to broad-
cast after the ith iteration. Given a set P of d dimensional
points, let MAX = (max1, . . . , maxd) and MinSK(i) =
(minSK(i)1, . . . , minSK(i)d) be the virtual points, where
maxj is the maximum value at the jth dimension of the
points in P , and minSK(i)j is the minimum value at the jth
dimension of all found skyline points in previous iterations.
The approximate volume of the efficient dominance region
of point p = (p1, p2, ..., pd) in SK(Pi) at the jth dimension

is EDR(p)j = (minSK(i)j − pj) ∗ (
Qd

k=1,k �=j(maxk − pk)−
Qd

k=1,k �=j(UR(r)i − pk)). For each dimension j, the point

p in SKi with the maximum value of EDR(p)j is chosen
and added to GSFi if p �∈ GSFi and EDR(p)j > 0. As a
result, at most d skyline points (at most one point chosen
in each dimension) are chosen for broadcast to update the
local filters.

4. SKYLINE MAINTENANCE ALGORITHM
Once the initial skyline is found, what followed is to moni-

tor the skyline with time progress. In this section we propose
a novel algorithm MSM to maintain the skyline under a sliding
window environment incrementally.

4.1 Overview of the Maintenance Algorithm
Let t0 be the time step at which the update starts and

Pt0 is the initial set of points. The initial skyline, SK(Pt0),
is obtained by the proposed algorithm DRP. Algorithm MSM

is used to maintain the skyline in the WSN at each time
step t with t > t0, which consists of two phases. One is to
update the new skyline points by traversing the sensors in
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the routing tree in the bottom-up fashion. Another is that,
the base station r determines which found skyline points so
far to be broadcast to update the local filter of each sensor.
In the following, we detail these two phases.

4.2 Updating New Skyline Points
At time step t, each sensor first updates set P (v)t by re-

moving expired points and adding newly generated points,
where P (v)t is the set of points at sensor v. Each sensor
also removes expired points from its local filter LF (v)t. If
point p in P (v)t is dominated by another point q in either
P (v)t or LF (v)t and q.time ≥ p.time, p is safely removed.
Let CSK(v)t be the set of remaining points in P (v)t that
are not dominated by any point in LF (v)t. The skyline

merge algorithm is then applied on set ∪v∈V CSK(v)t to
obtain the skyline NewSKt, and the skyline on the union of
NewSKt and the subset of SK(Pt−1) of non-expired points
is the skyline of the dataset at time step t, i.e., SK(Pt). The
base station r then determines whether to broadcast some
skyline points obtained since last broadcast to update the
local filters, and which skyline points should be broadcast.
In the following, this issue will be addressed.

4.3 Broadcasting
We first address which found skyline points to be cho-

sen for broadcast to avoid excessive energy consumption by
broadcasting all the skyline points. To do so, two factors are
to be taken into account: one is that a point with longer re-
maining lifespan will potentially filter out much more points;
another is that a point with larger volume of efficient dom-
inance region will filter out more points. Specifically, de-
note by GSFt′ the set of points broadcast at time step t′

and GSFt′(t) = {p | p ∈ GSFt′ , p.time > t − W}, where
t is the current time step. Let Mint = (minSK(t)1, . . . ,
minSK(t)d) be a d-dimensional virtual point, where minSK(t)i

is the minimum value at the ith dimension among all the
points in GSFt′(t) at time step t. Let margin(p, t)i rep-
resent the distance from point p to the region being dom-
inated by the skyline points in GSFt′(t) at the ith dimen-
sion. If minSK(t)i > pi, margin(p, t)i = minSK(t)i − pi;
otherwise, margin(p, t)i = ∞. The approximate evalua-
tion function of the efficient dominance region EDR(p, t)i =

margin(p, t)i ∗
Qd

k=1,k �=j(pk). A point p with smaller

EDR(p, t)i is able to filter out more points. For every
point p in set SK(Pt)−GSFt′(t), define the weight of p as
w(p)i = EDR(p, t)i/(W − t + p.time) at each dimension i
is calculated, and the point p is added to GSFt if w(p)i =
min{w(q)i,∀q ∈ SK(Pt) − GSFt′(t)} and p �∈ GSFt, where
W − t + p.time is the remaining lifespan of p.

We then investigate when the base station r broadcasts
GSFt into the sensor network to update local filters. As-
sume that r broadcasts GSFt0 into the sensor network. At
each time step t, the base station r computes GSFt as men-
tioned above. Triggering a broadcast depends on whether
the gain of filtering out more points by the updated local
filters outweighs the broadcast overhead. We now analyze
the gain of broadcasting GSFt. Assume that St is the set of
points received by the base station r and dominated by the
points in GSFt−1. If GSFt−1 was broadcast at time step
t− 1, all the points in St will be filtered out from the trans-
mission and thus the total amount of saved energy is at least
Σp∈Sth(p, v)4d(R + re), where h(p, v) is the number of hops
between r and sensor v in which point p is originally located,

which will be used to predict that it will bring the similar
amounts of energy saving in future if GSFt is broadcast,
and GSFt is expected to be part of the local filter within
the time interval (t, t + Tt], where Tt is the average remain-
ing lifespan of the points in GSFt. Thus, the total amount
of energy saving Esave(t) during (t, t + Tt] is as follows,

Esave(t) ≥ Σp∈Sth(p, v) ∗ 4d ∗ (R + re)Tt (1)

We finally evaluate the overhead on broadcasting GSFt

at time step t, which includes the energy consumption over-
head on broadcasting GSFt into the sensor network and the
unpaid energy saving overhead on the last broadcast at time
step t′ with t′ < t. The total amount of energy overhead on
broadcasting to the whole sensor network is no greater than
(d ∗ 4d ∗ (R + re) + (ρt + ρr)) ∗ n, where n is the number
of sensors, because every sensor will receive a message from
its parent and broadcast the message to its children. On
the other hand, GSFt′ is expected to be part of the local
filter of each sensor from t′ to t′ + Tt′ , where Tt′ is the av-
erage remaining lifespan of the points in GSFt′ . However,
if r broadcasts GSFt at time step t during (t′, t′ + Tt′ ], this
means that the last broadcast does not deliver its promised
energy saving from t + 1 to t′ + Tt′ . Thus, the amounts of
unpaid energy are Σp∈St′ h(p, v)4d(R + re) ∗ (Tt′ + t′ − t),
where St′ is the set of points being forwarded to the base
station r and dominated by GSF (t′) at time step t′. Ac-
cordingly, the overhead on broadcasting GSFt, Cost(t), is
thus

Cost(t) ≤ (4d2(R + re) + (ρt + ρr))n

+Σp∈St′ h(p, v)4d(R + re)(Tt′ + t′ − t). (2)

If t < Tt′ + t′, combined inequalities (1) and (2), we have

Σp∈Sth(p, v)4d(R + re)Tt ≥ (4d2(R + re) + (ρt + ρr))n

+Σp∈St′ h(p, v)4d(R + re)(Tt′ + t′ − t), (3)

Otherwise,

Σp∈Sth(p, v)4d(R + re)Tt ≥ (4d2(R + re) + (ρt + ρr))n (4)

Thus, the base station r will trigger a broadcast if the
inequality either (3) or (4) is met, depending on whether
t < Tt′ + t′.

5. PERFORMANCE EVALUATION
In this section we evaluate the performance of algorithms

DRP and MSM against existing algorithms in terms of the total
energy consumption and the maximum energy consumption
among sensors. We assume that the sensor network con-
taining 500 sensors with each being 10 meters transmission
range is used to monitor a 100m × 100m region of interest,
and the base station is located at the square center. The en-
ergy overheads on transmitting and receiving a header and
handshaking are ρt = 0.4608 mJ and ρr = 0.1152 mJ . The
energy consumptions of transmitting and receiving one byte
are R = 0.0144 mJ and re = 0.00576 mJ , respectively. In
our experiments, the datasets are the real sensing datasets
obtained by the Intel Lab at UC Berkeley [12].

We first evaluate the performance of algorithm DRP against
existing algorithms by varying dimensionality d from 2 to 4.
We refer to the dynamic filter algorithm by Huang et al [2]
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as algorithm DF, the single point filter algorithm and grid
index filter algorithm by Xin et al [10] as algorithms TF

and GI, respectively. Fig. 1(a)-(d) show the total energy
consumption and the maximum energy consumption among
the sensors by various algorithms on real datasets. It can
be seen that the proposed algorithm DRP outperforms the
others significantly.
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Figure 1: The performance of evaluation algorithms

We then study the performance of different algorithms for
skyline maintenance on real sensing datasets. The window
length is set W = 300. Fig. 2 plots the performance of dif-
ferent maintenance algorithms within sliding windows from
time step 301 to 3,600. From Fig. 2(a)-(f), algorithm MSM

has the best performance among all the algorithms in terms
of the total energy consumption and the maximum energy
consumption among the sensors. With time going by, the
performance gap between algorithm MSM and algorithm GI

becomes bigger and bigger. Thus, algorithm MSM delivers a
longer network lifetime than that of existing algorithms.

6. CONCLUSIONS
In this paper we first devised an algorithm DRP for sky-

line query evaluation that returns the skyline points progres-
sively. We then proposed an energy-efficient incremental al-
gorithm MSM for skyline maintenance within sliding window
environments. We also conducted experimental simulations
on real sensing datasets. The experimental results show that
the proposed algorithms significantly outperform existing al-
gorithms in terms of various performance metrics.
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