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Pattern Trees Induction: A New Machine
Learning Method

Zhiheng Huang, Tamás D. Gedeon, and Masoud Nikravesh

Abstract—Fuzzy classification is one of the most important ap-
plications in fuzzy set and fuzzy-logic-related research. Its goal is
to find a set of fuzzy rules that form a classification model. Most
of the existing fuzzy rule induction methods (e.g., the fuzzy de-
cision trees (FDTs) induction method) focus on searching rules
consisting of triangular norms (t-norms) (i.e., AND) only, but not
triangular conorms (t-conorms) (OR) explicitly. This may lead to
the omission of generating important rules that involve t-conorms
explicitly. This paper proposes a type of tree termed pattern trees
(PTs) that makes use of different aggregations, including both
t-norms and t-conorms. Like decision trees, PTs are an effective
tool for classification applications. This paper discusses the dif-
ference between decision trees and PTs, and also shows that the
subsethood-based method (SBM) and the weighted-subsethood-
based method (WSBM) are two specific cases of PT induction.
A novel PT induction method is proposed using similarity mea-
sure and fuzzy aggregations. The comparison to other classification
methods including SBM, WSBM, C4.5, nearest neighbor, support
vector machine, and FDT induction shows that: 1) PTs can obtain
high accuracy rates in classifications; 2) PTs are robust to overfit-
ting; and 3) PTs, especially simple pattern trees (SPTs), maintain
compact tree structures.

Index Terms—Fuzzy classification model, fuzzy decision trees
(FDTs), pattern trees (PTs).

I. INTRODUCTION

THE MAJOR advantage of using fuzzy rules for classi-
fication applications is to maintain transparency as well

as a high accuracy rate. There is extensive research on fuzzy-
set-based machine learning. Wang and Mendel [15] have pre-
sented an algorithm for generating fuzzy rules by learning from
examples. Inspired by the classic decision tree induction by
Quinlan [10], there is substantial work on fuzzy decision trees
(FDTs). For example, Yuan and Shaw [20] have proposed FDTs
induction using fuzzy entropy. Janikow [5], Olaru and We-
henkel [8] have presented different FDT inductions. Suárez and
Lutsko [14] and Wang et al. [16] have presented optimizations
of FDTs. Other fuzzy-based machine learning algorithms are
also suggested. For example, Chen et al. [3] have proposed
a subsethood-based machine learning method. Rasmani and
Shen [12] have proposed a weighted-fuzzy-subsethood-based
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learning method. To avoid the exponential growth of the size of
the rule base when the number of input variables increases, Raju
et al. [11] have proposed hierarchical fuzzy systems. Recently,
Kóczy et al. [6] and Wong et al. [18] have presented fuzzy sig-
natures that model the complex structure of the data points in a
hierarchical manner.

Most of the existing fuzzy rule induction methods, including
FDTs [20], focus on searching for rules that only use triangular
norms (t-norms) operators [13] such as the MIN and algebraic
MIN. Disregarding of the triangular conorms (t-conorms) such
as MAX and algebraic MAX is due to the fact that any rule using
t-conorms can be represented by several rules that use t-norms
only. This is certainly true, and it is helpful to simplify the rule
induction process by only considering t-norms. However, it may
fail to generate important rules in which fuzzy terms are explic-
itly connected with t-conorms. This will be shown in an artificial
dataset in Section IV. Related research includes fuzzy signature
and multiaggregator FDTs that employ varied operators. Kóczy
et al. [6] have proposed fuzzy signatures to model the complex
structures of the data points using different aggregation oper-
ators including MIN, MAX, and average, etc. Nikravesh [7]
has presented evolutionary computation (EC) based multiple
aggregator FDTs, in which more choices of operators, such as
harmonic mean, are available.

This paper proposes a type of tree termed pattern trees (PTs)
that makes use of different aggregations (including t-norms and
t-conorms). Like decision trees, PTs serve as a tool for classi-
fication applications. A novel PT induction method is proposed
using similarity measure and fuzzy aggregations. The compari-
son to other classification methods, including subsethood-based
method (SBM), weighted-subsethood-based method (WSBM),
C4.5, nearest neighbor, support vector machine (SVM), and
FDT induction, shows that: 1) PTs can obtain high accuracy
rates in classifications; 2) PTs are robust to overfitting; and
3) PTs, especially simple PTs, maintain compact tree structures.

The rest of the paper is arranged as follows. Section II pro-
vides the definitions of similarity, aggregations and PTs. In
Section III, a novel PT induction method using similarity mea-
sures and fuzzy aggregations is proposed. Section IV presents
the related work that includes the SBM, WSBM, and FDTs.
Section V gives the experimental results. Finally, Section VI
concludes the paper and points out some further research work.

II. SIMILARITY, AGGREGATIONS, AND PATTERN TREES

This section first defines the similarity and fuzzy aggregations
that will be used in PTs induction in Section III. It then presents
the concept of PTs, the aggregations of PTs, and the use of PTs
as a classification tool.

1063-6706/$25.00 © 2008 IEEE
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TABLE I
SIMILARITY MEASURES

TABLE II
ARTIFICIAL DATASET

A. Similarity Between Two Fuzzy Terms

Let A and B be two fuzzy sets [21] defined on the universe
of discourse U . The commonly used fuzzy similarity definitions
are shown in Table I, where ∩ and ∪ denote a certain t-norm
operator and a t-conorm, respectively. Usually, the MIN (∧)
and MAX (∨) operators are used. Jaccard measure, the most
commonly used, is selected to demonstrate the construction of
PTs in Section III, which is computed in practice as

Sim(A,B) =

∑m
j=1[µA (xj ) ∧ µB (xj )]∑m
j=1[µA (xj ) ∨ µB (xj )]

(1)

where xj , j = 1, . . . , m, are the crisp values discretized in the
variable domain, and µA (xj ) and µB (xj ) are the fuzzy mem-
bership values of xj for A and B.

An alternative similarity definition is proposed in this paper
for PT construction. Consider that the root mean square error
(RMSE) of fuzzy sets A and B can be computed as

RMSE(A,B) =

√∑m
j=1(µA (xj ) − µB (xj ))2

m
. (2)

The RMSE-based fuzzy set similarity can thus be defined as

Sim(A,B) = 1 − RMSE(A,B). (3)

The larger the value Sim(A,B) takes, the more similar A and
B are. It is easy to verify that both Jaccard and RMSE-based
similarity definitions retain 0 ≤ Sim(A,B) ≤ 1.

Example 1: Assume that an artificial dataset, as shown in
Table II, has two input variables A and B, with each having two
fuzzy linguistic terms Ai and Bi , i = 1, 2. Also assume that this
dataset has two output classes X and Y . The similarity between
A1 and X , according to Jaccard, is computed as Sim(A1 ,X) =
0.6585, and, according to RMSE, is computed as Sim(A1 ,X) =
0.6838.

B. Fuzzy Aggregations

Fuzzy aggregations are logic operators applied to fuzzy mem-
bership values or fuzzy sets. They have three subcategories,
namely t-norm, t-conorm, and averaging operators such as
weighted averaging (WA) and ordered-WA (OWA) [19]. t-norms

TABLE III
BASIC t-NORMS AND t-CONORMS PAIRS

were introduced by Schweizer and Sklar [13] to model distances
in probabilistic metric spaces. In fuzzy sets theory, t-norms and
t-conorms are extensively used to model logical operators AND

and OR. The basic t-norm and t-conorm pairs that operate on
two fuzzy membership values a and b, a, b ∈ [0, 1], are shown in
Table III. The definitions of WA and OWA are given as follows.

Definition 1: A WA operator of dimension n is a map-
ping Rn → R that has an associated n-element vector w =
(w1 , w2 , . . . , wn )T , wi ∈ [0, 1], 1 ≤ i ≤ n, and

∑n
i=1 wi = 1,

so that

WA(a1 , . . . , an ) =
n∑

j=1

wjaj . (4)

Definition 2: An OWA operator [19] of dimension n is a
mapping Rn → R that has an associated n-element vector w =
(w1 , w2 , . . . , wn )T , wi ∈ [0, 1], 1 ≤ i ≤ n, and

∑n
i=1 wi = 1,

so that

OWA(a1 , . . . , an ) =
n∑

j=1

(wjfj (a1 , . . . , an )) (5)

where fj (a1 , . . . , an ) returns the jth largest element of the col-
lection {a1 , . . . , an}.

A fundamental difference of OWA from WA aggregation is
that the former does not have a particular weight wi associated
for an element, but rather a weight is associated with a particular
ordered position of the element. It is worth noting that two
special OWA operators are equal to MAX and MIN:

1) If w∗ = (1, 0, . . . , 0), then

OWA(a1 , . . . , an ) = max{a1 , . . . , an}. (6)

2) If w∗ = (0, 0, . . . , 1), then

OWA(a1 , . . . , an ) = min{a1 , . . . , an}. (7)

The main factor in determining which aggregation should be
used is the relationship between the criteria involved. Compen-
sation has the property that a higher degree of satisfaction of one
of the criteria can compensate for a lower degree of satisfaction
of another criterion. The variable w∗ means full compensation
(OR) and w∗ means no compensation (AND). Normally, an OWA
operator lies in between these two extremes. An OWA operator
with many nonzero weights near the top will be more OR than
AND.

The extension of aforementioned aggregations to fuzzy terms
is straightforward: the aggregation result of two fuzzy terms
would be a new fuzzy term, with the aggregation applied be-
tween two fuzzy terms in a pairwise fashion.
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Fig. 1. Primitive PTs.

Example 2: Consider the small dataset in Example 1. The
MIN of fuzzy terms A1 and A2 is calculated as

MIN(A1 , A2) = (0.2, 0.1, 0.5, 0.2, 0.4, 0.3)T

while the OWA of fuzzy terms A1 and A2 is calculated as the
following, if the weight vector of w = (0.7, 0.3) is given by

OWA(A1 , A2) = (0.6, 0.7, 0.5, 0.6, 0.5, 0.6)T .

C. Pattern Trees

A PT is used to represent the pattern of data that belongs to the
same class. In PT structures, leaf nodes represent fuzzy terms
and internal nodes represent fuzzy aggregations. Under the same
conditions in Example 1, Figs. 1 and 3 show some exemplar PTs.
As can be seen, a PT is a tree that propagates fuzzy terms using
different fuzzy aggregations. Each PT represents a structure for
one output class that is located at the top as the root of this
tree. The fuzzy terms of input variables are on different depths
(except the top) and they use fuzzy aggregations as presented in
Section II-B to aggregate upwards. In particular, each of the
trees shown in Fig. 1 consists of only one leaf node (fuzzy
set) to predict the output class (X in this case) and they are
referred to as primitive PTs. Typically, primitive PTs do not
lead to high classification accuracy. Multidepth PTs that are built
via the aggregation of primitive trees are desirable to achieve
satisfactory performance.

Aggregation of two PTs consists of three parts: the candidate
PT, the slave PT, and the aggregation operator. The slave tree is
used to grow the candidate tree by attaching the root of the slave
tree to the root of the candidate tree using the given aggregation:
the aggregated tree thus subsumes both the candidate tree and
the slave tree. The names of candidate and slave trees come from
the assumption that the latter cannot have more depth than the
former. This paper follows the convention that a candidate tree
is always drawn as the left child of the aggregated tree while a
slave tree is drawn as the right child. Fig. 2 shows two examples
of PT aggregation, with the first being the aggregation between
the candidate tree B1 ⇒ X and the slave tree A2 ⇒ X using
the AND operator, and the second being the aggregation between
the previously aggregated tree and the slave tree A1 ⇒ X using
the OR operator.

From fuzzy term aggregation described in Section II-B, the
aggregated fuzzy term for an aggregated PT can be computed,
which consists of a vector of fuzzy membership values and is
denoted as tree term T (for the aggregated PT) for late reference.
Note that we also use T to denote a PT; the notation of the fuzzy
tree term and the tree itself is thus interchangeable.

Fig. 2. Aggregations of PTs.

Fig. 3. Two example PTs.

Example 3: Let us consider the small dataset in Example 1.
The first aggregation in Fig. 2 leads to the tree

T = MIN(B1 , A2)

= (0.0, 0.1, 0.5, 0.8, 0.4, 0.5)T

and the second leads to the tree

T = MAX( MIN (B1 , A2), A1)

= (0.8, 0.9, 0.5, 0.8, 0.4, 0.5).

Aggregations of small PTs to complex ones may help increase
the goodness of trees, thus resulting in high classification accu-
racy. The goodness of a PT is defined as the similarity between
the tree term T and the output class that this tree represents.
This definition is motivated by the fact that the more similar the
tree and the output class, the more accurate prediction the tree
can offer for data points with respect to the class that the tree
represents.

Example 4: Consider the small dataset in Table II and the two
aggregated PTs in Fig. 2. The goodness (similarities) of the first
and second trees according to (3) are 0.50 and 0.80, respectively.
That means the second PT does a better job of predicting the
class X than the first one.

For a classification application that involves several output
classes, the worked model should have as many PTs as the
number of output classes, with each PT representing one class.
For our problem in classifying to X or Y class, two PTs rep-
resenting X and Y , respectively, are required. Fig. 3 shows an
example model that consists of two such trees. When a new
data sample is tested over a PT, it traverses from the bottom to
the top and finishes with a truth value, indicating the degree to
which this data sample belongs to the output class of this PT.
The output class with the maximal truth value is chosen as the
prediction class.
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Example 5: Consider classifying the first fuzzy data in
Table II, A1 = 0.8, A2 = 0.2, B1 = 0.0, and B2 = 1.0, using
the PTs as shown in Fig. 3; as the truth values of these data
over PTs for classes X and Y are 0.8 and 0.2, respectively, X
is chosen as the output class.

Conventional fuzzy rules can be extracted from PTs. For
example, the following rules can be obtained from the PTs in
Fig. 3:

Rule 1 : IF A = A1 THEN class = X (8)

Rule 2 : IF A = A2 AND B = B1 THEN class = X (9)

Rule 3 : IF A = A2 AND B = B2 THEN class = Y. (10)

It is worth noting that, in addition to the conventionally used
fuzzy aggregations MIN/MAX, PTs can use any aggregations,
as described in Section II-B.

III. PROPOSED PATTERN TREE INDUCTION METHOD

Without losing generality, assume that a dataset has n input
variables Ai, i = 1, 2, . . . , n, and one output variable X . Further
assume that each of the input variables has m fuzzy linguistic
terms denoted by Aij , i = 1, 2, . . . , n, and j = 1, 2, . . . ,m, and
the output variable has k fuzzy or linguistic terms denoted by
Xj , j = 1, 2, . . . , k. That is, each data point is represented by
a fuzzy membership value vector of dimension (nm + k). The
task is to build k PTs for the k output classes (fuzzy or linguistic
terms).

The induction of a PT, say for class X0 , is described in
Algorithm 1. The induction of other PTs follows the same
principle. In the initialization, the set of primitive trees P is
constructed, in which each fuzzy term Aij , i = 1, . . . , n, j =
1, . . . ,m, is used to construct a primitive PT. The primitive PT
that has the highest similarity to output class term X0 is then
selected as the initial candidate tree C0 . Note that the bold sym-
bol such as P indicates that it contains a set of trees in contrast
to one tree such as C0 . The subscript of zero in C0 indicates
that the tree has zero depth.1 In induction, the aggregation is
attempted between the previous candidate tree Ck−1 and any

1Here we assume that a primitive PT has zero depth. The depth of a nonprim-
itive tree is the maximum length of branches in such a tree.

primitive tree S in the primitive tree set P , using any aggre-
gation ψ drawn from the aggregation set Ψ. Note that when
ψ = WA or ψ = OWA, the weights that make the aggregated
term most similar to class term are used. A constraint is imposed
upon the aggregation: the primitive tree S cannot be a subset
tree of the candidate tree Ck−1 , which prevents a primitive tree
from being used in the aggregated tree more than once. Among
all the aggregated trees, the one that has the highest similarity to
class term X0 is selected as the current candidate tree Ck , which
has one more depth than the previous candidate tree Ck−1 . If the
candidate tree has reached the predefined depth d,2 or the new
candidate tree Ck has a lower similarity to X0 than the previous
one, Ck−1 , the induction stops and the tree that has the highest
similarity is returned as the optimal tree.

Notice that in Algorithm 1, an aggregation always happens
between a candidate tree (either a primitive tree or not) and a
slave primitive tree. The aggregated trees thus always have one
fuzzy term as its right child for any of the internal nodes. These
kinds of trees are denoted as simple pattern trees (SPTs) [4].
In contrast, PTs that do not have such a constraint are referred
to as general PTs. This paper proposes an induction method
for general PTs, which subsumes the SPT induction in [4] as
one specific case. In particular, there are two key differences
between the induction of SPTs and that of general PTs: 1) the
former keeps track of only one candidate tree in induction, while
the latter can consider more than one and 2) the former uses only
primitive trees to grow a candidate tree, while the latter does not
have such a constraint. In order to perform the induction of
general PTs, two sizes, namely the size of candidate trees L
and the size of slave trees M , should be specified beforehand.
They indicate the search space for candidate trees and slave
trees, respectively. Intuitively, the higher the values of L and
M , the more exhaustive the search of optimum PTs would be
performed.

Algorithm 2 shows the induction of a general PT for class X0
in pseudocode. In the initialization, the set of primitive trees P

2The determination of d is a design choice; we make use of d = 5 or d = 10.
In fact, as suggested by the experiments, d = 5 attains compact tree structures
and d = 10 can achieve higher performance.
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is constructed, in which each fuzzy term Aij , i = 1, . . . , n, j =
1, . . . ,m, is used to construct a primitive PT. The L primitive
PTs that have the highest similarities to output class term X0
are selected to form the set of initial candidate trees C0 . Note
that the bold symbol indicates C0 , which consists of a set of
trees rather than one tree. Again, the subscript of zero indicates
that the trees in this set have zero depth. The slave tree set
is empty at the initialization. In induction, the aggregation is
attempted between any previous candidate tree C (in the can-
didate tree set Ck−1) and any slave tree S in primitive tree set
or slave tree set P ∪ Sk−1 , using any aggregation operator ψ
drawn from the aggregation set Ψ. Again the constraint is im-
posed upon the aggregation: the slave tree cannot be a subset
tree of the candidate tree. Since a candidate tree always has
more than or at least equal to the depths of the slave tree, the
aggregations lead to the candidate trees in Ck have one more
depth than those in Ck−1 . Among all the aggregated trees, the
best L ones are selected to form the new candidate tree set
Ck . The slave tree set Sk is then updated with the M trees
that have the highest similarities to class term among the cur-
rent candidate tree set Ck and previous slave tree set Sk−1 .
If the candidate trees have reached the predefined depth d or
the highest similarity of the current candidate trees is less than
that of previous loop, the induction stops and the candidate
tree that has the highest similarity is returned as the optimal
tree.

In terms of computation complexity, both simple and general
PT inductions are of O(nmo), where n,m, and o are the number
of input variables, the number of fuzzy terms for each variable,
and the number of data. The computation effort is mostly spent
on line 6 in Algorithm 1 and line 7 in Algorithm 2. In the SPT
induction, there are nm slave trees used to aggregate a candi-
date tree in each for loop. In each aggregation, the complexity
of O(o) is required. Given that the predetermined depth d is a
constant, the complexity is thus O(nmo). Similarly for general
PT induction, the complexity is aggregations between L candi-
date trees and nm primitive slave trees plus a constant number
(M ) of nonprimitive slave trees; thus, the complexity remains
the same as O(nmo).

Two examples of PTs induction are given as follows for clar-
ification, with the first presenting the induction of a SPT and the
second presenting the induction of a general PT.

Example 6: Assume that the artificial dataset in Table II is
given. Fig. 4 shows the induction of a SPT for class X using
only MIN/MAX, OWA, and WA aggregations (for simplicity).
The construction of a tree for Y follows the same principle and
is thus omitted. In this figure, each of the PTs are denoted as
Ti, i = 0, . . . , 9. They are numbered in the order of the time
that the trees are constructed. That is, the trees with smaller
indexes are constructed earlier than the ones with larger indexes.
The candidate trees are highlighted by rectangular boxes with
rounded corners. In particular, solid, dashed, and dotted lines
are used for candidate trees with depths 0, 1, and 2, respectively
(corresponding to the loops on line 5 in Algorithm 1). The
number shown at the bottom of each tree Ti is the similarity
between the tree and the class term X . The detailed computation
is described as follows.

Fig. 4. Induction of a SPT.

TABLE IV
SIMILARITIES BETWEEN AGGREGATED TREES AND CLASS TERM X IN STEP 3

1) Build four primitive PTs T0 , T1 , T2 , and T3 , with the Jac-
card similarities calculated from (1) being 0.6585, 0.5217,
0.4545, and 0.4348, respectively.

2) Assign T0 that has the highest similarity to class term X
as the candidate tree C0 for depth zero trees.

3) Now consider the tree aggregation from depth 0 to depth
1. Try the rest of the primitive PTs T1 , T2 , and T3 in
turn to aggregate with candidate tree T0 using different
aggregation operators MIN, MAX, OWA, and WA. Note
that T0 is not allowed as a slave tree to aggregate the
candidate tree C0 = T0 as it has already appeared in the
candidate tree. The similarities between the aggregated
trees and the class term X are shown in Table IV.
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TABLE V
SIMILARITIES BETWEEN AGGREGATED TREES AND CLASS TERM X IN STEP 5

4) Choose the aggregated tree T5 as the new candidate tree
C1 for depth 1 trees. This is because the aggregation of
T0 and T2 with a MAX operator results in the highest
similarity of 0.7778 that is greater than the similarity
produced by T0 alone. Also, the aggregated tree term
of T5 , (A1 MAX B1) = {0.8, 0.9, 0.9, 0.8, 0.4, 0.5}, is
stored for further aggregation.

5) Now consider the tree aggregation from depth 1 to depth
2. Try the rest of the primitive trees T1 and T3 in turn
to aggregate with T5 using different aggregation opera-
tors. The similarities of aggregated trees are shown in
Table V.

6) Choose the aggregated tree T7 as new candidate tree
C2 , since it has the highest similarity 0.7792 among
all aggregated trees, and it is also greater than the
similarity produced by T5 . Note that the weights
w = (0.91, 0.09) is calculated, associated with the
WA aggregation. Also, the aggregated term of T7 =
{0.8185, 0.9000, 0.8259, 0.7444, 0.41856, 0.50000} is
stored for further aggregation.

7) Now consider the tree aggregation from depth 2 to depth
3. Try the rest of the primitive tree T3 to aggregate with
T7 using different aggregation operators. None of the sim-
ilarities of aggregated trees are greater than the current
similarity of 0.7792. The PT induction stops and the best
candidate tree C2 is returned.

It is worth noting that each primitive tree is being checked
to see if it is a subset tree of the candidate tree before the
aggregation happens. For example, at depth 1 for candidate tree
T5 , only T1 and T3 among all primitive trees are allowed to
aggregate. This is because other primitive trees have already
appeared in T5 .

Example 7: Following the conditions given in the previous
example, the induction of a general PT using the size of can-
didate trees L = 2 and size of slave trees M = 3 is shown in
Fig. 5. The candidate trees are highlighted by rectangular boxes
with rounded corners, while the slave trees are highlighted by
rectangular boxes. Again, solid, dashed, and dotted lines are
used to distinguish candidate and slave trees with depths 0, 1,
and 2, respectively. The induction is described as follows.

1) Build four primitive PTs T0 , T1 , T2 , and T3 , with the Jac-
card similarities calculated from (1) being 0.6585, 0.5217,
0.4545, and 0.4348, respectively.

2) Assign T0 and T1 that have the highest similarities to class
term X as the candidate trees C00 and C01 , with the first
subscript referring to the depth of the candidate tree and
the second referring to the index of the candidate tree
(from 0 to L − 1).

3) Now consider the tree aggregation from depth 0 to depth
1. For the first candidate tree C00 = T0 , try the rest of the
primitive PTs T1 , T2 , and T3 in turn to aggregate using
different aggregation operators MIN, MAX, OWA, and
WA. The best aggregated PTs are T4 , T5 , and T6 , with
similarities being 0.6585, 0.7778, and 0.7021. Note that
there is no nonprimitive slave trees available to grow the
candidate tree.

4) For the second candidate tree C01 = T1 , try the rest of the
primitive PTs T0 , T2 , and T3 in turn to aggregate using
different aggregation operators MIN, MAX, OWA, and
WA. The best aggregated PTs are T7 , T8 , and T9 , with
similarities being 0.6585, 0.7814, and 0.7128. Again, no
aggregations between the candidate tree and nonprimitive
slave trees happen.

5) Assign T8 and T5 that have one depth and the highest
similarities as the candidate trees C10 and C11 . Also assign
T8 , T5 , and T9 that have the highest similarities as the slave
trees S10 , S11 , and S12 , with the first subscript referring
to the depth of the slave tree and the second referring to
the index of slave tree (from 0 to M − 1).

6) Now consider the tree aggregation from depth 1 to depth
2. For the first candidate tree C10 = T8 , use the primitive
PTs T0 and T3 that do not appear in the candidate tree
to aggregate with. The aggregated trees are T10 and T11 ,
with similarities being 0.7772 and 0.7814, respectively.
Then use the slave trees T5 and T9 to aggregate with C10 ,
resulting in T12 and T13 , with similarities being 0.7962
and 0.7814.

7) Similarly for the second candidate tree C11 = T5 at depth
1, four aggregated trees T14 , T15 , T16 , and T17 are gener-
ated, with similarities being 0.7792, 0.7778, 0.7962, and
0.7788, respectively.

8) This induction is carried out in the same manner from
depth 2 to depth 3. T18 , T19 , T20 , and T21 are constructed.
As none of them has a higher similarity than C20 = T12 ,
the building process stops and C20 is returned.

It is worth noting that the duplication removal is performed
in selecting the candidate trees and slave trees. For example,
at depth 2, although T16 has a high similarity measure, it is
not selected as a candidate tree or a slave tree since tree T12 is
identical to it, and also T12 is constructed earlier.

It can be shown from Figs. 4 and 5 that the search space of a
SPT is subsumed by that of a general PT, as every PT considered
in the SPT induction has been considered in the general tree
induction. Generally, the greater the sizes of candidate (L) and
slave trees (M ), the larger search space the induction of an
optimal general PT can reach, and thus, less likely the search is
to be trapped in a local optimum. For example, PT T7 in Fig. 4
is the optimum tree from SPT induction; however, it is only a
local optimum tree (corresponding to T14 ) in Fig. 5 in general PT
induction. This tree is not chosen to proceed as its peers T12 and
T11 have higher similarities. In this paper, the setting of L = 2
and M = 3 is used throughout all examples and experiments
to tradeoff the search effort and the capacity of escaping from
local optima. On the other hand, the configuration of L = 1 and
M = 0 corresponds to the induction of simple PTs [4], which
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Fig. 5. Induction of a general PT.

attempts to find optimal simple PTs with little computation
effort.

IV. RELATED WORK

Related work includes the fuzzy SBM [3], its extension, the
WSBM [12], and the well-known FDT induction [5], [20]. In
fact, the first two are two specific cases of PT induction. All
three methods are briefly reviewed, and they, along with the PT
induction, are evaluated using the small dataset given in Table II.

A. SBM

The SBM consists of three main steps:
1) classifying training data into subgroups according to class

values, with each group having the data that prefer voting
for one class;

2) calculating fuzzy subsethood values of a certain output
class to each input fuzzy term. A fuzzy subsethood value of
X with regard to A1 ,Sub(X,A1) = (X ∩ A1)/X , rep-
resents the degree to which X is a subset of A1 (see [3]
and [12]), where ∩ is a t-norm operator (MIN is used);

3) creating rules based on fuzzy subsethood values. In par-
ticular, the fuzzy term for each input variable that has the
highest subsethood value, and such value is greater than
or equal to a prespecified threshold value α ∈ [0, 1] (0.9
used in [3]), is selected. The selected fuzzy terms for all

input variables are used to construct a fuzzy rule using
t-norm MIN.

Regardless of the subgrouping process and the use of subset-
hood rather than similarity measure, the SBM always generates
a PT that has only one depth. In this tree, the fuzzy terms that
have the greatest subsethood values per input variable and whose
values are greater than or equal to α are aggregated via a t-norm
operator (MIN) to predict a class concerned.

For the dataset in Table II, two groups are created. The first
has the first four data points, which prefer voting for class X
rather than Y , and the second has the remaining two data points.
Assume that class X is considered. The subsethood values of
X to Ai,Bi, i = 1, 2, are calculated as 0.6970, 0.4848, 0.4848,
and 0.6061, respectively. If α is set to 0.9 as in [3], no fuzzy rules
(PTs) can be generated: although fuzzy terms A1 and B2 have
the highest subsethood values among input variables A and B,
respectively, their values are not greater than the α value. They
are thus not qualified to construct a fuzzy rule (PT). However,
for comparison purposes, α is set to 0.6 to generate the PT for
class X , as shown in Fig. 6. This figure also shows the PT for
Y that is constructed in the same manner.

B. WSBM

The WSBM is a weighted version of the SBM. It uses a certain
weighting strategy to represent fuzzy terms rather than choosing
the one that has the greatest subsethood value per variable. In
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Fig. 6. PTs generated by SBM.

Fig. 7. PTs generated by WSBM.

Fig. 8. Decision tree generated by FDT induction.

particular, the weight for fuzzy term Ai is defined as

w(X,Ai) =
Sub(X,Ai)

maxj=1,2Sub(X,Aj )
. (11)

Using this equation, the weights for A1 , A2 , B1 , and B2 in
the classification of X are calculated as 1.0, 0.7, 0.8, and 1.0,
respectively. The WSBM then constructs a PT with two depths.
On the bottom depth, all fuzzy terms (with different weights) for
each variable aggregate via a t-conorm operator, on the top depth
the aggregated values, further aggregate via a t-norm operator.
The trees, generated by WSBM using data in Table II, are shown
in Fig. 7.

Unlike the proposed PT induction that can generate patter
trees with various depths, the SBM and WSBM generate trees
with fixed depths (one and two, respectively). The limited depths
of the SBM and WSBM trees may prevent them from obtaining
high accuracy in classification applications (see Section IV-E).

C. FDT Induction

Inspired by the classic decision tree induction by Quin-
lan [10], there is substantial work on FDTs. For example, Yuan
and Shaw [20] have used fuzzy entropy to generate FDTs.
Janikow [5], Olaru and Wehenkel [8] have presented differ-
ent FDT inductions. An FDT as shown in Fig. 8 can be built
using [20] over the dataset in Table II. It has a root on the top
and several leaf nodes at the bottom. When a new data sample
needs to be classified by the FDT, it traverses from the top to
the bottom. The output class of a leaf node in the bottom, which
the data sample reaches with the highest truth value, is chosen
as the prediction class.

Fig. 9. Alternative PTs converted from the decision tree in Fig. 8.

For the same training dataset, FDT induction may generate
different results with a different minimal number of instances
per leaf, which is used as a criterion to terminate the tree building
process. Considering that only six data samples are available,
this criterion can be set to 1–6. Among all these, the best result
(as shown in Fig. 8, when the minimal number of instances
per leaf is set to 1 or 2) has been chosen for comparison in
Section IV-E.

D. Relation Between FDTS and Pattern Trees

An FDT can be converted to a set of PTs whose size is equal
to the number of output classes. The easiest way is to convert
an FDT to a set of semibinary PTs. That is, there are maximally
two branches allowed for each node in the PT except for the
root. The conversion is outlined as follows. For each fuzzy rule
(a branch from the root to a leaf node) in a decision tree, the
input fuzzy terms are connected by a t-norm operator (usually
MIN) in different depths of the PT. A fuzzy rule consisting of n
fuzzy terms results in an (n − 1)-depth binary PT as the bottom
depth contains two fuzzy terms. The fuzzy rules that have the
same classification class are connected by a t-conorm (usually
MAX) at the top depth (depth n) to construct a PT for this output
class. The number of depths of the generated semibinary PTs
remains the same as the FDT, regardless of whether the decision
tree is binary or not. Fig. 3 shows the PTs that are equivalent
to the decision tree, as shown in Fig. 8. They both have the
same rule base as listed in (8)–(10). Note that the conversion
from a decision tree to PTs is not unique. For example, an
alternative conversion from Fig. 8 is shown in Fig. 9, which can
be represented by two rules as follows:

Rule 1 : IF A = A1 OR B = B1 THEN class = X (12)

Rule 2 : IF A = A2 AND B = B2 THEN class = Y. (13)

These two fuzzy rules are functionally equal to rules (8)–(10).
When the size of fuzzy terms for each variable increases, the
conversion of a FDT to multibranch PTs becomes complicated
and the work on that is on-going.

It is worth stressing that decision trees and PTs are different
in terms of four aspects.

1) The former focus on separating data samples that have
different output classes, while the latter focus on representing
the structures of data samples that have the same output classes.

2) For each internal node, the former consider all fuzzy terms
of the chosen input variable in the downward branches, while
the latter only consider one in the upward branch.

3) The former normally make use of MIN and MAX ag-
gregations only, while the latter can use any aggregations, as
described in Section II-B.
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Fig. 10. PTs generated using SPT induction.

Fig. 11. PTs generated using general PT induction.

TABLE VI
RESULTS OF SBM, WSBM, FDT, AND PTS

4) The tree induction methods are completely different, with
the former based on the heuristics of entropy measure [20] while
the latter is based on the heuristics of similarity measure.

E. Comparison Using the Small Dataset

This section facilitates the comparison between SBM,
WSBM, FDTs, SPTs (with L = 1 and M = 0) and PTs (with
L = 2 and M = 3) over the small dataset given in Table
II. All aggregations, including MIN/MAX, algebraic AND/OR,
Łukasiewicz, EINSTEIN, OWA, and WA are considered in SPT
and PT inductions, and both Jaccard and RMSE-based similar-
ities are tried, and the latter is reported, as it produces better
results. The maximum depth d is set to 3 for this toy example.
Figs. 10 and 11 show the PTs generated by SPT induction and
general PT induction, respectively. It is worth noting that, if
only MIN/MAX are allowed in the SPT induction, the gener-
ated trees are exactly the same as those shown in Fig. 9, with
AND being MIN and OR being MAX.

Table VI shows the classification results of the SBM, WSBM,
FDT, SPT, and PT over the dataset in Table II. The com-
parison includes the number of correctly classified data sam-
ples (No.), the RMSE of the classification for classes X,Y ,
and their average (ARMSE). It is clear that the PTs perform
the best, in terms of both the correctly classified number and
the mean square error, among all the methods. SPTs perform
slightly worse, but still better than the FDT. This example shows
that the SBM and WSBM cannot get good results, due to the
fact that their fixed depths prevent them from finding optimal
tree structures. FDTs, on the other hand, ignore some candi-
date trees involved with t-conorm aggregations. For instance,

TABLE VII
CLASSIFICATION ACCURACY OF SBM, WSBM, AND FOUR VARIANTS OF PTS

USING IRIS PLANT DATASET

TABLE VIII
EXPERIMENTAL DATASETS SUMMARY

in this example, Fig. 8 considers whether A1 , A2 , A1 ∨ A2 ,
and A2 ∧ B1 , etc., are important or not for the classification,
but not A1 ∨ B1 explicitly, thus failing to find such an im-
portant rule. In contrast, the proposed PT induction method
explicitly makes use of both t-norm and t-conorm aggrega-
tions of fuzzy terms in building trees. The induction provides a
ground on which the t-norm and t-conorm compete with each
other to see which can provide more optimal trees. In this ex-
ample, PT induction evaluates not only A1 , A2 , A1 ∨ A2 , and
A2 ∧ B1 , but also A1 ∨ B1 . It is thus more likely to find optimal
trees.

V. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed PT induc-
tion method, Section V-A presents comparative studies with the
fuzzy SBM [3] and the WSBM [12] using the Iris Plant dataset.
In addition, Section V-B presents an extensive comparison to
the C4.5 decision tree (C4.5) [10], nearest neighbor (NN) [1],
J. Platt’s sequential minimal-optimization-based support vector
classifier (SVM) [9], and FDTs [20], over the datasets obtained
from the University of California, Irvine (UCI) machine learn-
ing repository [2], which include Iris Plant, Wisconsin Breast
Cancer, Glass Identification, Diabetes, Wine Recognition, and
Credit.

Four variants of PTs participate in the comparison: SPTs
with L = 1,M = 0, and d = 5 (SPT5), SPTs with L = 1,M =
0, and d = 10 (SPT10), general PTs with L = 2,M = 3, and
d = 5 (PT5), and general PTs with L = 2,M = 3, and d = 10
(PT10). Note that both SPTs and general PTs may not have the
depths as specified, as the tree induction stops once the highest
similarity does not increase (as described in the break statements
in Algorithms 1 and 2). These four variants make use of RMSE-
based similarity and all aggregations listed in Section II-B. It is
worth noting that the use of aggregations rather than MIN and
MAX inevitably deteriorates the transparency of trees. However,
the PTs can have significant performance gain, thanks to the
variety of aggregations, especially WA and OWA.
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TABLE IX
TENFOLD CROSS-VALIDATION CLASSIFICATION ACCURACY AND STANDARD DEVIATION OF C4.5, SVM, KNN, FDT,

AND FOUR VARIANTS OF PT OVER SIX DATASETS

A. Classification Accuracy Comparison With SBM and WSBM

Iris Plant dataset is a classic small benchmark for machine
learning algorithm evaluation. It has 150 data samples, with
each having four input variables and one of three class labels.
The configuration is set up according to [12]: 1) a simple fuzzi-
fication method based on three evenly distributed trapezoidal
membership functions for each input variable is used to trans-
form the crisp values into fuzzy values and 2) the whole data
are divided into two parts, namely the odd-labeled data and the
even-labeled data. Two experiments are carried out, with the
first (Exp1) using odd-labeled data as the training set and even-
labeled data as the test set. The second (Exp2) uses even-labeled
data as the training set and odd-labeled data as the test set.
Table VII shows results of different methods. As can be seen,
the four variants of PTs3 produce better results than do the SBM
and WSBM.

B. Classification Accuracy Comparison With C4.5, KNN, SVM,
and FDT

The C4.5, KNN, and SVM classifiers implemented in the
Weka machine learning toolkit [17] form a crisp classifier group.
The default settings of each classifier in the toolkit are used. For
example, the minimal number of instances per leaf is set to 2 for
C4.5 and the number of neighbors to use is set to 1 for KNN. The
FDT and four variants of PTs SPT5, SPT10, PT5, and PT10 form
a fuzzy classifier group. After trials of experiments, the minimal
number of instances per leaf for FDT is tuned to 10 in the
experiments. On the other hand, the four variants of PTs do not
have any parameters to tune. For the classifiers in a fuzzy group,
a simple fuzzification method based on six evenly distributed
trapezoidal membership functions for each input variable is used
to transform the crisp values into fuzzy values. The experiments
presented in this section compare the classification accuracy
of different classifiers in their original prototypes. There is no
attempt made to any optimizations, although the optimizations
do exist, such as the tree pruning for C4.5 and FDT, and the
fuzzification optimization for FDT and variants of PTs.

The datasets of Iris Plant, Wisconsin Breast Cancer, Glass
Identification, Diabetes, Wine Recognition, and Credit obtained
from the UCI machine learning repository [2], which have been
widely used as benchmarks in classification applications, are
summarized in Table VIII. Each dataset is stratified and divided
into tenfold of (approximately) equal size. Each time one fold
is left out of the whole dataset from training, and this fold is

3They produce the same results.

used for testing. As a result, there are ten runs for each classifier
based on one dataset. Table IX shows the average classification
accuracy and the corresponding standard deviation of all ten runs
per dataset and classifier. Fig. 12 shows the average, minimal,
and maximal classification accuracy among all ten runs per
dataset and classifier. The paired student’s t-test is employed
to justify if a classifier is statistically better than another for
a given dataset. The ◦ and • in Table IX indicate statistically
significant improvement or degradation (with a confidence level
of 95%) of other classifiers, compared to the baseline C4.5
classifier. That means, for example, the SVM has a significant
win and loss compared to C4.5 over Wisconsin Breast Cancer
and Glass Identification datasets, respectively. Similarly, the
paired student’s t-test can be applied to any pair of classifiers
for a given dataset. Table X summarizes the wins, losses, and
ties of classifiers among all the tests. The first column in Table X
is the difference between the number of wins and the number of
losses that is used to generate the ranking [17]. As can be seen,
the SVM, PT10, and PT5 are tied with the net wins, although
they have different individual wins and losses. The performance
of the other two variants of PT is not as good, but they are still
better than the FDT, C4.5, and KNN.

C. Overfitting Comparison With C4.5, KNN, SVM, and FDT

Overfitting refers to the phenomenon that a classifier may
fit well to the training data but is not generalized enough to
classify unseen data. The tenfold cross-validation-based experi-
ments fairly present the normal behaviors of classifiers but they
do not reveal which classifiers are prone to overfitting. In this
section, the whole data (rather than the tenfold cross-validation
data) are used to train and test C4.5, KNN, SVM, FDT, and
four variants of the PT using the same training parameters as
presented in Section V-B. The results are collectively shown in
Table XI and also in Fig. 12. For each classifier, the RMSE of
the classification accuracies for six datasets between the tenfold
cross-validation and whole data-based is shown at the bottom of
the table. The RMSE reveals how much improvement one clas-
sifier can gain based on the whole data experiment, compared
to the tenfold cross-validation one in average for six datasets.
It is assumed that the more gain for one classifier (the longer
the distance between the dashed lines and the solid lines in
Fig. 12), the more likely that the classifier is prone to overfit-
ting. In other words, the close performance between the tenfold
cross-validation and whole data-based experiments would indi-
cate the robustness to overfitting. The results of this test reveal
that the SVM maintains the best generality (with RMSE being
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Fig. 12. Average, minimum, and maximum classification accuracy of C4.5, SVM, KNN, FDT, and four variants of PT over six datasets.

TABLE X
RANKING OF C4.5, SVM, KNN, FDT, AND FOUR VARIANTS OF PT BASED ON

SIX DATASETS

2.00) and four variants of PT trees perform slightly worse (with
RMSE being 3.04, 2.82, 3.20, and 3.73, respectively). The FDT
performs worse than the SVM and variants of PT, but better
than C4.5. It is not surprising that KNN performs the worst, as
it is totally biased to the nearest neighbor in classification and
makes no attempt to find a general model.

For the tree-based classifiers, the reason that C4.5 and the
FDT are more prone to overfitting than variants of PT is that
the former endeavor to find a set of rules (branches), with each
representing a portion of the training data. It is expected that
the cooperation of the whole rules using a t-conorm leads to
a good classification model. Unfortunately, the construction of
each rule is based on a portion of training data, which causes the
overfitting of individual rules and, in turn, causes the overfitting
of the whole model. This problem gets worse when a lengthy
rule is constructed, as such a rule represents only a small amount

of training data rather than a meaningful pattern. In contrast, the
latter uses the whole training data to find a rule (tree) for each
class. The growth of the tree is permitted only if all training data
(in contrast to a portion of training data) can be better fit into the
tree. Therefore, even complex PTs do not suffer from overfitting.
In other words, the decision tree seeks various local optimal
structures that fit various portions of training data, while the
PT seeks a global tree structure to represent the whole training
data.

D. Structure Complexity

SPTs have compact structures. Each SPT5 and SPT10 has 6
and 11 leaf nodes, respectively. Fig. 13 shows three SPT5 trees
using the Wine dataset (with classification accuracy of 94.44%)
in the first of tenfold cross-validation runs. The ellipses are
the input variables and the rectangles are the output classes
(0, 1, or 2). Fi’s, i = 0, . . . , 5, are the fuzzy terms associated
with each input variable. PT5 and PT10 may have complicated
tree structures because each PT5 may have up to 25 = 32 leaf
nodes and each PT10 may have up to 210 = 1024 leaf nodes.
However, they usually do not have these maximums, as the trees
are not fully spanned. Fig. 14 shows a PT5 tree for class 0 using
the Wine Recognition dataset in one of tenfold cross-validation
runs. Such a tree has only nine leaf nodes, much less than the
maximum of 32. For a rough comparison, the average number
of leaf nodes of FDTs constructed using the Wine Recognition
dataset in the tenfold cross-validation runs is 59. This reveals
that PTs, especially SPT5 and SPT10, can have more compact
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TABLE XI
WHOLE DATA-BASED CLASSIFICATION ACCURACY OF C4.5, SVM, KNN, FDT, AND FOUR VARIANTS OF PT OVER SIX DATASETS

Fig. 13. SPTs generated using Wine Recognition dataset.

Fig. 14. PT generated using Wine Recognition dataset for class 0.

tree structures than FDTs. However, it can be argued that FDTs
may be simplified by tree pruning.

In general, SPTs not only produce high classification accu-
racy, but also preserve compact tree structures, while general
PTs can produce even better accuracy, but as a compromise,
produce more complex tree structures. With respect to choosing
different variants of PTs induction methods for real-world ap-
plications, PT10 are favored if performance is a critical factor.
If, however, the comprehensibility is critical for the solution to
be considered, SPT5 or SPT10 trees are a good choice.

VI. CONCLUSION

This paper proposed a type of tree termed PTs that makes use
of different aggregations, including both t-norms and t-conorms.
Like decision trees, PTs are an effective tool for classification
applications. This paper discussed the difference between de-
cision trees and PTs, and also showed that the SBM and the
WSBM are two specific cases of PT induction.

A novel PT induction method was proposed using similar-
ity measure and fuzzy aggregations. The comparison to other
classification methods including SBM, WSBM, C4.5, nearest
neighbor, SVM, and FDT induction showed that: 1) PTs can
obtain high accuracy rates in classifications; 2) PTs are robust

to overfitting; and 3) PTs, especially simple PTs, maintain com-
pact tree structures.

Although the proposed PT induction method shows promis-
ing results, it does not mean that it cannot be improved. Other
heuristics rather than the similarity measure can be used to guide
the PTs induction. In addition, the underlying relation between
decision trees and PTs needs more research work. The conver-
sion between decision trees and PTs is worth investigating.
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