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Abstract. Three-dimensional face reconstruction is one of the popular appli-

cations in computer vision. However, even state-of-the-art models still require

frontal face as inputs, which restricts its usage scenarios in the wild. A similar

dilemma also happens in face recognition. New research designed to recover the

frontal face from a single side-pose facial image has emerged. The state-of-the-

art in this area is the Face-Transformation generative adversarial network, which

is based on the CycleGAN. This inspired our research which explores the per-

formance of two models from pixel transformation in frontal facial synthesis,

Pix2Pix and CycleGAN. We conducted the experiments on five different loss

functions on Pix2Pix to improve its performance, then followed by proposing a

new network Pairwise-GAN in frontal facial synthesis. Pairwise-GAN uses two

parallel U-Nets as the generator and PatchGAN as the discriminator. The detailed

hyper-parameters are also discussed. Based on the quantitative measurement by

face similarity comparison, our results showed that Pix2Pix with L1 loss, gradi-

ent difference loss, and identity loss results in 2.72% of improvement at average

similarity compared to the default Pix2Pix model. Additionally, the performance

of Pairwise-GAN is 5.4% better than the CycleGAN and 9.1% than the Pix2Pix

at average similarity.
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1 Introduction

Three-dimensional face reconstruction from a single image is one of the popular top-

ics in computer vision over the past twenty years. Although end-to-end learning meth-

ods achieve the state-of-the-art in three-dimensional facial reconstruction [1,2], they

still cannot infer the missing facial information if the input facial image is a side-pose

at more than 30 degrees. This issue not only happens on three-dimensional facial re-

construction tasks but also exists on other facial applications in computer vision. Face

recognition is a widely used authentication and detection technique that currently re-

quires front face images. However, this condition is challenging to fulfill in real life,

especially for video surveillance which captures the object under any situation.

Inferring the missing facial information, known as frontal facial synthesis, is a good

alternative for these applications to solve the issue raised by the side-pose facial im-

age. From 2013, an increasing number of deep learning methods have been proposed
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to improve performance on frontal face synthesis problems [3,4,5,6]. With the publi-

cation of Two Pathways Generative Adversarial Network (TP-GAN) [7] and complete

representations generative adversarial network (CR-GAN) [8], the focus of solving face

synthesis problems was shifted into models based on GAN and CGAN [7,8,9,10].

The current state-of-the-art frontal facial synthesis is Pose-Invariant Generator Ad-

versarial Network (FT-GAN) proposed by [9]. FT-GAN combines Cycle-Consistent

Adversarial Networks (CycleGAN), considered state-of-the-art in pixel-to-pixel trans-

formation [21,29,30,31], with key point alignment to generate frontal facial synthesis

more realistically. Their results indicated that FT-GAN is 10% and 4% better than CR-

GAN and CycleGAN respectively, when the input side-pose image is between 60 and

75 degrees.

With these motivations, we begin our work by exploring two models, Pix2Pix and

CycleGAN, from style transformation into frontal facial synthesis. Our research aimed

to evaluate the performance of these two models under default hyper-parameters using

the Color FERET Database [11]. We conducted our experiments in two stages:

1. We applied different loss functions to the Pix2Pix model and evaluated their perfor-

mance.

2. We proposed a new CGAN network named Pairwise-GAN, based on the network

architecture of Pix2Pix and CycleGAN, and compared its performance with state-

of-the-art models.

The main contributions of this work are listed below:

– Five different loss functions were analyzed to improve the performance of the

Pix2Pix in frontal facial synthesis. The best loss results achieved an 2.72% im-

provement compared to Pix2Pix, which is close to CycleGAN’s performance.

– Pairwise-GAN which targets frontal facial synthesis is proposed as a new network

architecture of CGAN. Pairwise-GAN reaches 44.3 average similarity and 74.22

maximum similarity between synthesis and ground truth. It gains 5.4% better re-

sults than the CycleGAN and 9.1% than the Pix2Pix. Compared to a 4% improve-

ment over CycleGAN by the FT-GAN [9].

– A new quantitative measurement on face frontalization is introduced to evaluate the

similarity between the generated frontal face and the ground-truth image.

2 Methods

2.1 Dataset and Pre-processing

We selected the Color FERET Database from NIST [11] since it is free to access for

research purposes. It contains 11,338 facial images from 994 different subjects. Images

were collected at 14 different times between December 1993 to August 1996 [11], so the

focus length and position of the camera are different each time. This results in various

facial sizes. To minimize the influence of this noise to GAN training, we used MTCNN

[12] to crop out the face for each image.

Another source of variability of the dataset is the angle of side-images. It is com-

monly agreed that synthesizing the frontal image based on the side-image at a small
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Truth
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Adversarial loss G : Generator of Pix2Pix Model

Fig. 1: Overview of loss functions used in ”exploring loss function” experiment. X and

Y in the figure are the input image (side-pose facial image) and the generated frontal

image. The ground identity is generated by applying the generator to the ground truth

image

angle is more accessible than the large-angle since the former one can provide more

facial features. Therefore, we added another constraint to frontal facial generation by

requiring the angle of side-pose images to be at least 60 degrees. We also restricted the

maximum angle of fewer than 90 degrees as models gain fewer facial information after

this degree.

Train set and Test set After pre-processing, there are 3,135 images (2,090 pairs) in the

training set and 369 (246 pairs) in the test set, where one pair contains one frontal image

and one side-pose image. The size of input images in experiments is further resized into

256 by 256 pixel, due to the limitation of computation. The reason we chose 256 is that

elaborate facial features can be reflected in the generated image from 256 to 512 pixels,

such as hairstyle or detailed information on eyes [14].

2.2 Synthesis Loss Functions

Experimental setup Based on the train set and test set, we performed our first stage of

experiments, which explored five different loss functions on Pix2Pix [23]. The overview

of four different loss functions is shown in Fig. 1. This model was chosen because

Pix2Pix and CycleGAN are two state-of-art models in style transformation where frontal

facial synthesis also belongs. Additionally, the Pix2Pix is more applicable to experiment

with different loss functions compared to the CycleGAN.

The generator in Pix2Pix is a modified U-Net [15,23] which contains eight blocks

in the encoder and eight blocks in the decoder. Each block in the encoder is constructed

by one convolution layer, one batch normalization layer, and Leaky ReLU as the acti-

vation function. Each block in the decoder consists of one transposed convolution layer,

one batch normalization layer, and ReLU as the activation function. Additionally, the

dropout is also applied to the first three blocks of the decoder.

Adversarial loss aims to optimize the generator, which achieves a minimum Kullback-

Leibler divergence (KL-divergence) between the generated data and ground truth data [19].

Theoretically, the generator tries to get a higher score from the discriminator. In other

words, the generated image trends to be a sharp frontal facial image whose facial fea-

ture is closer to the input person. However, in practice, it commonly appears that the
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discriminator in the conditional adversarial network only focuses on whether the gener-

ated image is sharp and contains basic facial features or not, ignoring the input of the

domain. Based on this, we continued to explore other loss functions.

Adversarial Loss = Ex∼Px(X)[log(D(G(x)))] (1)

where G(x) refers to generated data (fake image) by the generator; D refers to the

discriminator in Pix2Pix; G refers to the generator in Pix2Pix mode.

L1 Loss (Mean Absolute Error) is employed to facilitate content consistency between

the generated frontal image and the ground-truth frontal image. L1 loss also accelerates

optimization in CGAN [7].

L1 Loss =
1

W ×H

W∑

i=1

H∑

j=1

| GTi, j − Yi, j | (2)

where GT refers to the ground truth image; Y refers to the generated image; W , H is

the width and height of the images; i, j is the x coordinate and y coordinate of each

pixel.

Gradient Difference Loss (GDL) aims to penalize the differences of image gradient

predictions directly, where gradients are the differences between neighboring pixel val-

ues [20]. Since the facial images usually have continuous value within the neighboring,

this formula can strengthen this relationship in the generated image, making it more

realistic.

GDL Loss =
∑

i, j

(||Yi, j − Yi−1, j | − |GTi, j −GTi−1, j ||
α+

||Yi, j−1 − Yi, j | − |GTi, j−1 −GTi, j ||
α)

(3)

where Y , GT represents the generated image and ground truth image respectively; i, j
is the x coordinate and y coordinate of that pixel; α can be any integer greater or equal

to 1, we tested α = 1 and α = 2 in our experiments.

Symmetry Loss Symmetry is one of the features in human faces. Based on this phe-

nomenon, [7] proposed the symmetry loss, which encourages symmetrical structure

generated by the generator. Additionally, this formula behaves more robustly in the

Laplacian image space as it can overcome the illumination difference between two sides

of faces. However, we only apply it to the original pixel image, because the illumination

difference is minor in Color FERET dataset.

Symmetry Loss =
1

W/2×H

W/2∑

i=1

H∑

j=1

| Yi, j − YW−(i−1), j | (4)

where Y refers to the generated image; W , H is the width and height of the images; i,
j is the x coordinate and y coordinate of that pixel.
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Identity Loss first appeared in the implementation of CycleGAN [21] and was dis-

cussed in Cycada [22]. One intention of this function is to regularize the generator,

which should not map the input image into a different domain image if it is already in

the target domain. Our experiment found that this loss function helps preserve facial

identity information from different people.

Identity Loss =
1

W ×H

W∑

i=1

H∑

j=1

| GTi, j −GIi, j | (5)

where GT refers the ground truth image; GI refers to the ground identity image; W , H
is the width and height of the images; i, j is the x coordinate and y coordinate of that

pixel.

2.3 Network Architecture of Pairwise-GAN

During the experiments, we discovered that Pix2Pix and CycleGAN have outstanding

achievements in general pixel-to-pixel transformation but gain ordinary performance

on frontal facial synthesis. Notably, it was hard to balance the ratio of adversarial loss

and other types of losses. If the proportion of adversarial loss is adjusted higher than

the other, the generator can easily deceive the discriminator by generating a realistic

image unrelated to the input domain. Alternatively, parts of the generated image are

close to the original person but the entire image is not a real face, for example, the face

may contain three eyes. As a result of further study of the network architecture, we

developed Pairwise-GAN which is based on the network architecture of Pix2Pix and

CycleGAN.

Generator The generator of Pairwise-GAN is based on U-Net [15] which is also used

in the generator of Pix2Pix and CycleGAN [21,23]. Unlike usual conditional adversarial

networks and [7,27,28], Pairwise-GAN has two independent auto-encoders and weight

sharing of the first two-layers of the decoder (Fig. 2). The layered architecture of U-Nets

contains eight blocks in the encoder, eight blocks in the decoder, and skip connections

between the encoder and decoder. Specifically, the detail layers used in each block of

encoder and decoder are the same as Pix2Pix, except for the normalization layer. In

Pairwise-GAN, we use instance normalization instead of batch normalization to boost

the performance of generator [24,25,26].

When training, Pairwise-GAN requires two side-pose images at the same angles

from the same person but in a different direction as inputs (Xleft, Xright). Left gen-

erator G1 takes the side-pose image from the left direction, while another side-pose

image will be passed into generator G2. After different encoders extract facial features,

two frontal facial images are generated through two decoders. As these two generators

are independent, only one side-pose image is required to be input for prediction. This

approach addresses affordability and the difficulties in pixel-to-pixel transformation in-

herent in the complexities of human faces.
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Left Generator G 1

Right Generator G 2

X left

X right

G1 (X left)

G2 (X  right)

.. .. .. .. .. .. .. ..

.. .. .. .. .. .. ....

Weight 
Share

Weight Share

Skip Connection

Fig. 2: Generator Architecture of Pairwise-GAN. Xleft left-side facial input; Xright

right-side facial input. Providing both side faces is a common attribute for most facial

databases, such as Multi-PIE Face Database, CAS-PEAL Face Database, and Color

FERET Database

Discriminator A standard discriminator in a GAN maps the input image into a scalar

value which classifies whether it is real or fake. The output scalar value is a weighted

sum of the whole data field, which cannot reflect the characteristics of the local fea-

ture. To address this lack of precision, we used the patch-based discriminator of GANs

(PatchGAN) as the discriminator for Pairwise-GAN as proposed in Pix2Pix [23]. Patch-

GAN maps the input image (256 by 256 pixel) to an N-by-N matrix of outputs X ,

where each Xi, j represents whether the patch (i, j) is real or fake. Additionally, the

patch (i, j) is the convolution result of one receptive field which the discriminator is

sensitive to, for example, the ear, tooth, and eyes if the input image is a human face

(Fig. 3).

The operation described above is mathematically equivalent to cropping the input

data into multiple overlapping patches, respectively discriminating the difference by

the classifier (discriminator), and averaging the results. The result outlined in [23,21],

indicated that PatchGAN extracted the local characterization of the images. This is

conducive to generating the images in a high resolution.

From characteristics of patches, the size of the receptive field can be adjusted in dif-

ferent tasks. Specifically, a broader scope of receptive field focuses on the relationship

between objects in a large area. However, it also consumes more expensive computa-

tion power. From the experimental results offered by Pix2Pix [23], the receptive field

with 16-by-16 size already achieves a sharp output. In contrast, results from a smaller

receptive field (1-by-1) lose spatial statistics, and a larger receptive field (70-by-70) can

force results with more colorfulness. As a result, under our computation power, we set

the size of the receptive field as 70-by-70, which results in the output matrix being

30-by-30.

Pair Loss To reduce the difference of generated images between the left generator and

right generator, we examined the weight sharing between two encoders and added the

pair loss into the loss function. This loss was expected to penalize the network param-

eters if there exists a major difference between generated images by the left generator
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Fig. 3: Intuitive view of the discriminator in Pairwise-GAN (Patch-based discriminator

of GANs [23])

and right generator.

Pair Loss =
1

W ×H

W∑

i=1

H∑

j=1

| Y Li, j − Y Ri, j | (6)

where Y L and Y R refer to the image generated by the left generator and right generator

respectively; W , H is the width and height of the images; i, j is the x coordinate and y
coordinate of that pixel.

3 Results and Evaluation

To measure the results quantitatively, we employed the facial similarity, structural simi-

larity (SSIM), Frechet Inception Distance (FID), and Peak Signal-to-Noise Ratio (PSNR)

by comparing the frontal facial synthesis and ground truths. Notably, The result of fa-

cial similarity (confidence) is provided by a commercial face comparison API (Face ++)

based on face recognition.

3.1 Loss Function Analysis

In this experiment, a Pix2Pix with various loss functions was trained with 125 epochs,

with one epoch taking 2,090 pairs of images. Additionally, both generator and discrim-

inator were optimized with Adam and a learning rate of 0.0002, following [15].

Based on the default ratio of adversarial loss and L1 loss in Pix2Pix (1:120), we

first adjusted the proportion of the L1 loss. With a low penalty coming from L1 loss,

Pix2Pix tends to generate the frontal facial less similar to the original domain. If the L1

loss is removed from the loss penalty, the average similarity drops down 40% compared

to the default one (Table 1). However, although a large L1 penalty results in a highly

similar image, the blurring issue of synthetic frontal images becomes more serious. For

instance, we found that the shape of the nose is difficult to determine in the generated

image by 120 weights of L1 loss, compared to the adversarial loss one.
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Table 1: Compare average similarity between ground truth and generated image on

different loss configurations among 40 test images. Higher similarity is better

Hyper-parameters Adv L1 GDL Sym Id Avgerage Similarity

Pix2Pix 1 0 0 0 0 25.68

Pix2Pix 1 40 0 0 0 33.11

Pix2Pix 1 120 20 0 0 31.17

Pix2Pix 20 3 0.5 0 0 34.89

Pix2Pix 20 3 0.1 0.05 0 31.07

Pix2Pix 20 3 0.1 0 5 37.92

Pix2Pix Default 1 120 0 0 0 35.2

CycleGAN Default 1 0 0 0 5 38.7

After applying the GDL (gradient difference loss) into Pix2Pix and keeping the orig-

inal ratio, the average similarity decreased. To further analyze the influence of the GDL

penalty to model training, the proportion of L1 loss is decreased below the adversarial

loss; the ratio between L1 and GDL remains untouched. We noticed that the average

similarity grows to 35. However, the obscured side of the input image is blurred in the

synthesis, which we considered a drawback of the GDL penalty.

The behavior of symmetry loss resulted in a negative influence on the performance

of Pix2Pix as the average similarity decreases into 31. It was hard to converge during

the training progress. As a result, we abandoned the this loss in later experiments.

We explored identity loss which aims to regularize the generator. Compared to the

L1 penalty and GDL penalty, identity loss leads to a significant improvement in the

frontal facial of Pix2Pix, which the synthetic frontal face is most natural and sharp com-

pared to others, notably, hairstyle and glasses were recovered in high quality. As a result,

identity penalty helped to preserve facial identity information, however, adding identity

loss to GAN learning doubled the training time required in each epoch to calculate the

ground identity image through the generator.

3.2 Pairwise-GAN Analysis

We trained each of the experiments of Pairwise-GAN for 250 epochs, with one epoch

taking 1,045 images and used the same data distribution as previous experiments. We

set the batch size to 1 and the learning rate to 0.0002. Additionally, Adam was selected

as the optimizer for both generator and discriminator.

We expected the network architecture with weight sharing gains to achieve a better

performance than using the loss penalty as the former is closer to a coercive specifica-

tion. However, the results indicated another option which the pair loss helps to improve

the average performance, and weight sharing contributes to refresh the peak perfor-

mance (Table 2). If both weight sharing and pair loss are employed in the Pairwise-

GAN, it decreased both peak and average performance, which results from the network

is hard to converge.

Comparing with State-of-the-Art To further analyze the performance of Pairwise-

GAN, we included comparisons with current state-of-the-art models. FT-GAN, the cur-
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Table 2: Results of different configurations on Pairwise-GAN (ablation study) and com-

parsions on Pairwise-GAN with Pix2Pix, CycleGAN, and CR-GAN

Hyper-parameters Similarity Measure Other Measure

Adv L1 GDL Id Pair Weight Share Avg Max Min SSIM FID PSNR

10 0 0 5 10 Disable 44.23 79.14 22.02 0.576 102.141 13.968

10 3 0 5 10 Disable 44.30 74.22 23.56 0.600 91.517 14.517

10 3 0 5 0 Enable 42.34 81.83 17.16 0.550 90.531 14.199

10 0 0 10-5 10-2 Enable 42.79 70.61 16.43 0.515 93.433 13.987

10 0 0 0 10-2 Enable 45.16 71.95 20.07 0.505 119.211 13.209

CR-GAN Default [8] 30.08 47.16 12.9 0.362 171.28 10.916

Pix2Pix Default [23] 35.2 62.12 0 0.502 118.791 13.775

CycleGAN Default [21] 38.9 70.22 14.64 0.493 99.777 13.274

Groud Truth 100 100 100 1 0.0 +Inf

rent state-of-the-art model in frontal facial generation used CMU Multi-PIE database [13],

and did not release the codes [9]. Therefore, we compared our model with CycleGAN

since FT-GAN is built on CycleGAN and within 4 % better than it. Additionally, we

also the CR-GAN in the comparison.

Table 2 shows Pairwise-GAN reaches 44.3 average similarity and 74.22 maximum

similarity between synthesis and ground truth. In other words, the performance of

Pairwise-GAN is around 5.4% better than the CycleGAN and 9.1% than the Pix2Pix,

measured by the average similarity of synthesis and ground truth among 40 test images.

It also obtains the best evaluation results from SSIM, FID, and PSNR. From the syn-

thetic frontal images, we note that CycleGAN only generated the main facial features,

and stacks onto the original side-pose image. On Pairwise-GAN, the field recovered is

broader as it focuses on the facial features as well as other elements, such as hairstyle

and neck. Apart from that, Pairwise-GAN also requires less computation power in both

training and prediction as it only consumes 224 seconds compared to CycleGAN requir-

ing 315 seconds. The prediction can achieve 34 fps by using GPU, RTX 2060S.

4 Conclusion and Future Work

In this paper, we extend current work on synthesizing front face images based on side-

pose facial images. Initially, we focused on the performance of Pix2Pix, which tests and

analyses five different loss functions, including adversarial loss, L1 loss, gradient differ-

ence loss, symmetry loss, and identity loss. Since the improvement based on different

loss penalty was minor, we continued our work to propose Pairwise-GAN. Through the

analysis of experimental results on different loss functions, we concluded that L1 loss,

GDL loss, and identity loss help alleviate the common issue existing in CGAN, where

the output face is related to the input face. The ratio of these five-loss, achieving the

highest score in our experiment is 20:3:0.1:0:5 (adversarial:L1:GDL:symmetry:identity).

In our second experiment, we proved that Pairwise-GAN generated better frontal

face results than the CycleGAN in Color FERET database by using less computation

resources; specifically, it improves around 5.4% on average compared to CycleGAN
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Domain A

Ground
Truth

CycleGAN

Pairwise-GAN

CR-GAN

Fig. 4: Qualitative results of Color FERET Database. Comparison with CR-GAN, Cy-

cleGAN and Ground Truth

in generated quality. We also explored various configurations of Pairwise-GAN, which

demonstrated that either, but not both, pair loss (soft penalty) or weight sharing (coer-

cive specification) positively contribute to improvements. Further research on the net-

work architecture is required to continue minimizing the difference of generated images

by the two generators of Pairwise-GAN.
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