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Stress is a major growing concern in our day and age adversely impacting both individ-

uals  and society. Stress research has a wide range of benefits from improving personal

operations, learning, and increasing work productivity to benefiting society – making it an

interesting and socially beneficial area of research. This survey reviews sensors that have

been used to measure stress and investigates techniques for modelling stress. It discusses

non-invasive and unobtrusive sensors for measuring computed stress, a term we coin in the

paper. Sensors that do not impede everyday activities that could be used by those who would

like  to monitor stress levels on a regular basis (e.g. vehicle drivers, patients with illnesses

linked to stress) is the focus of the discussion. Computational techniques have the capac-

ity  to determine optimal sensor fusion and automate data analysis for stress recognition
tress sensors

tress computational techniques

and classification. Several computational techniques have been developed to model stress

based on techniques such as Bayesian networks, artificial neural networks, and support vec-

tor machines, which this survey investigates. The survey concludes with a summary and

provides possible directions for further computational stress research.

ciation UK [5],  SupportLine [6] and Lifeline Australia [7])  in
.  Introduction

here are escalating changes in technology and society, which
ring growing demands for better techniques in dealing with
ellbeing by containing everyday unavoidable life pressures
nd challenges. Stress is the leading threat to people because
hese daily demands cannot be satisfactorily handled, and is

 risk to health and social aspects of life. The term, stress,
ntroduced by Selye, defined stress as “the non-specific
esponse of the body to any demand for change”. In general,

tress is a “complex reaction pattern that often has psycholog-
cal, cognitive and behavioural components” [1].  It can essen-
ially be used to describe the wear and tear of the body experi-
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encing changing environments, thus giving three main facets
– input stimulus, processing and evaluation, and response [2].

It has been widely accepted that stress, when sufficiently
powerful so that it overcomes defence mechanisms, has a
range of severe impacts on immune and cardiovascular sys-
tems on individuals. As stress becomes chronic, it makes
individuals more  vulnerable to infections and incurable dis-
eases, and slows down the body’s recovery processes [3].  In
addition, stress causes financial burdens on society [4].  There
are organisations (e.g. International Stress Management Asso-
 Computing, Research School of Computer Science, Building 108,
 2 6125 7060.
deon@anu.edu.au (T. Gedeon).

place to help individuals deal with stress and in creating
awareness of the issues associated with stress, a major prob-
lem faced by the world today.

erved.
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Various response (or symptom) measures have been used
to interpret stress levels and fluctuations. The response meas-
ures reflect reactions of individuals and their body to stressful
situations. Some individuals may react differently to stressful
events from others due to their body conditions, age, gender,
experience and so on. There are computational techniques,
such as artificial neural networks, that can deal with these
variables [8].  Additionally, uncertainties and complexities also
exist that need to be dealt with when defining stress. Tech-
niques such as, fuzzy logic, can narrow the gap.

Hormonal imbalances and physiological and physical
changes are some characteristics associated with stress,
i.e. they are symptoms of stress. When a person is under
stress, increased amounts of stress hormones (e.g. corti-
sol or catecholamine levels) are released and measures for
these hormones are obtained via invasive methods (e.g. tak-
ing blood, saliva or urine samples), possibly performed by
qualified practitioners, and require lengthy analysis proce-
dures conducted by qualified scientists ([9–12]). Also under
stress, changes in heart rate (HR) [13], blood pressure (BP) [14],
pupil diameter (PD) [15], breathing pattern [16], galvanic skin
response (GSR) [17], emotion [18], voice intonation [19] and
body pose [20] are observed, which, unlike measuring stress
hormones, can be acquired through non-invasive means. This
paper concentrates on non-invasive and automated methods
requiring shorter time periods for detecting and analysing
stress. Physiological (e.g. heart rate, skin conductivity) and
physical (e.g. facial expressions, voice intonation, body poses,
and gestures) features enable such methods and can be used
to model stress objectively.

In this paper, a measure of stress refers to a primary (or
symptom) measure (or signal) for stress, monitoring stress
means examining fluctuations in primary measures for stress,
and indication or detection of stress refers to certain fluctua-
tions in primary measures for stress that show an increase in
stress towards distress. These terms will be used in the survey
to describe work done in literature.

We  coin the term computed stress and define it as the
stress computationally derived from instantaneous measures
of stress symptoms obtained by non-invasive methods. A
computational model of stress will take some combination
of stress symptom measures as inputs to produce a computed
stress measure as an instantaneous measure of stress at that
point in time.

The literature suggests stress is defined as a self-reported
measure (e.g. self-assessment [21,22])  or observer-reported
measure (e.g. human behaviour coder [23]). These reported
measures are used to support stress measures drawn from
directly measuring stress symptoms, but do not give an
instantaneous stress measure.

The key differences in our approach is that we assume
there is an underlying property called stress for which both
the symptom measurements and the reported measures are
approximations, and that we can use both these sources
of information in AI models to learn the underlying model
of true stress. Henceforth we  use our term, computed stress,
and distinguish it from the traditional overall stress mea-

sure. With our computed stress, stress cannot only be compared
across time but also across multiple individuals. A conse-
quence of our model is that the computed stress will be
b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 1287–1301

statistically more  reliable than individual reporting or symp-
tom measures.

Stress research has a wide range of potential applications
including the capacity to improve personal, government and
industry operations, including increasing the robustness of
military operations, law enforcements, athlete performance
[24], games and education software, life support systems and
commercial products. It also has the potential to improve
learning and increase work productivity [25]. Computer sys-
tems using non-invasive techniques that dynamically provide
indications of stress have been exploited to determine stress
in fighter pilots [26], but were obtrusive and do not suit usual
flight operations and behaviour. However, less intrusive sys-
tems have been developed to detect stress in a range of people
including car drivers [23,27,28],  computer users [29], army offi-
cers [30,31],  pilots in flight [31,32],  surgeons [33], and surgical
patients [34].

The current focus of stress research is in determining
ways to measure and monitor stress and is in the early
stages of computational modelling. A range of sensors and
techniques from various fields, including computer science
(e.g. bio-inspired, machine learning, data mining), engineer-
ing and statistics, have been applied to stress problems. This
survey will investigate sensors for primary measures (physi-
ological and physical measures) of stress and computational
techniques used for signal analysis, feature extraction, stress
detection and recognition, and computational models used in
literature over the recent years, and provides a direction for
future research.

2.  Measuring  stress

Traditionally, stress has been measured using assessment
based on humans rating stress levels on some scale (e.g.
Relative Stress Scale [35], Fear Survey Schedule [36], Cook-
Medley Hostility Scale [37], and Brief Symptom Inventory
[38,39]), which are subjective. All these assessments require
major human intervention, including manually recognising
and interpreting visual patterns (possibly with some support
tools) of behaviour in observational studies. Stress experi-
ments that use various sensors to obtain objective measures
of stress also use subjective assessment to verify measure-
ments obtained from sensors [23]. Lack of data and insufficient
capability of existing modelling techniques forces the activity
of measuring stress to include these subjective conventional
methods. It is regarded that self-assessment is a good mea-
sure of stress [35,37],  and this alerts us that more  work needs
to be done to bring objective methods for measuring stress
up to par (if not, even better). So far, work proposing objec-
tive measures of stress and using these measures to develop
a model has not been coherently reviewed and a purpose of
this survey is to bring together the major contributions in the
field and provide a foundation for future computational stress
research.

Primary measures for stress investigated in this survey are
characteristic is defined as a property that humans can see
changes in without the need for equipment and tools, unlike
physiological features, which require the use of tools that

dx.doi.org/10.1016/j.cmpb.2012.07.003
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Fig. 1 – Common physical and physiological measures used to detect stress. The figure shows the usual sources for the
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easures. The measures in this figure are investigated in th

eed to be attached to individuals to detect general fluctua-
ions. However, sophisticated equipment and sensors using
ision and audio technologies are still needed to obtain phys-
cal signals at sampling rates sufficient for data analysis and

odelling.
Common techniques for detecting stress include analysing

hysiological signals, electroencephalography (EEG), blood
olume pulse (BVP), heart rate variability (HRV), galvanic
kin response (GSR), and electromyography (EMG). In addi-
ion, physical signals for measuring stress include eye gaze,
upil diameter, voice characteristic, and face movement. Fig. 1
hows the physical and physiological signals that will be inves-
igated in this survey.

.  Physiological  measures

he Autonomic Nervous System (ANS), responsible for
nvoluntary activities, is made up of Sympathetic and
arasympathetic nervous systems. Stressful events or emer-
ency situations cause dynamic changes in ANS, where
he activity rate in the Sympathetic Nervous System (SNS)
ncreases and the Parasympathetic Nervous System (PNS)
ctivity decreases. Alternatively, activities in the PNS dom-
nate during resting activities. SNS and PNS regulate the
alvanic skin response, heart rate variability, and brain waves,
hich are the main measures for stress used in literature, and
ther physiological systems including blood pressure. Details
f how stress affects the ANS at molecular and cellular levels

re provided in [41]. Note that stress towards distress is not a
ole contributor to changes in the ANS and the features it con-
rols, for instance, eustress (which characterises as a positive
tate, e.g. joy) can elevate skin conductance like distress [42].
rvey. The person figure is adapted from [40].

Symptoms of stress appear as time progresses and this
makes continuous recordings of physiological signals sig-
nificant to monitor variations and trends to detect stress
reliably. In order to deal with voluminous data associated
with such recordings, measurements from physiological sen-
sors are usually divided up into segments before features are
obtained. In a driving experiment [23], segments were made
up of 5 min  data out of 30 min, which included rest, city and
highway driving representing low, medium and high stress
respectively. Main features obtained from physiological data
have included normalised mean, root mean square, mean
amplitude, variance, and normalised signals. Using feature
values over time segments does not only provide data from
different perspectives but also helps reduce the effect of noisy
or missing data during analysis as opposed to analysing raw
signal values.

3.1.  Skin  conductivity

Galvanic skin response (GSR), also known as skin conductance
or electrodermal activity response, is reliable indicator of stress
[17,23,43,44]. It is a measurement of flow of electricity through
the skin of an individual. When the individual is under stress,
skin conductance is increased [45] due to increase in mois-
ture on the surface of the skin, which increases the flow of
electricity. Conversely, the skin conductance is reduced when
the individual becomes less stressed. Physiological details
of the way the SNS affects skin conductance can be found
in [46].
The fluctuations in skin conductance are recorded as
changes in GSR. Variations in GSR have reflected stress lev-
els in individuals while they played a competitive racing game
[47]. In addition, cognitive load [48] and work performance [49],

dx.doi.org/10.1016/j.cmpb.2012.07.003
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Table 1 – Analysis of GSR measurement systems.

GSR measurement system Advantages Disadvantages

Biopac GSR100C (connected to a
computer with AcqKnowledge
software suite)

Data  transferred to a computer in real-time
Allows real-time viewing and analysis of data
and trends
Raw data is available
Sampling rate of 1 kHz

Equipment not portable
Sensitive to equipment movement
Electrodes are attached to fingers using conductive
gel
Expensive

Thought Technology FlexComp
(connected to a computer with
Biograph software suite)

Data transferred to a computer in real-time
Allows real-time viewing and analysis of data
Waveforms accurate to 500 Hz 2000 samples/s

Equipment not portable
Expensive

Thought Technology GSR2 Frequency range from 0 to 40,000 Hz Does not allow viewing of data in real-time
Fingers have to be stably placed on electrode plates
for data acquisition
Requires RelaxTrace software to upload and view
data on the computer

Affectiva Q Sensor Sampling rate of 2–32 readings/min
Portable armband
Enables long term data collection
Enables real-time data viewing and collection
Theoretical characteristics have been reviewed
by researchers

Relatively new and lacks usage reviews
Expensive

BodyMedia Sensewear Portable armband
Enables long term data collection

Does  not allow viewing of real-time data
Data is recorded after every minute – this restricts
pattern recognition capability for stress detection
Main purpose is to assess physical activity with the
aim to determine calorie expenditure

BodyBugg Portable armband
Enables long term data collection

Does  not allow viewing of real-time data
Data recorded after every minute – this restricts
pattern recognition capability for stress detection
Main purpose is to assess physical activity with the
which can be seen as stressors [50,51],  have strong correlations
with GSR.

GSR measurement can be taken by measuring electrical
potentials between electrodes placed on surfaces of the skin.
Electrodes are typically placed on the hand, first and mid-
dle fingers. Some popular equipment used in stress related
research experiments to monitor GSR include the Biopac
GSR100C [47], Thought Technology Limited GSR2 [52], Affec-
tiva Q Sensor [53], BodyMedia Sensewear [54], and BodyBugg
[55]. An analysis of the characteristics of these equipments is
given in Table 1.

GSR features that require minimal calculations (e.g. mean
and sum) have been used for comparing stress in differ-
ent tasks [48]. More  complex features, such as, number of
orienting responses in a time segment, sum of the star-
tle magnitudes, sum of the response durations, and sum
of the estimated areas under the responses have also been
used [56]. However, it is not known whether these com-
plex measures gave better indications of stress than minimal
calculations.

3.2.  Heart  activity
Heart rate variability (HRV) is a popular non-invasive measure
to detect cardiovascular conditions [57], ANS activities [8],  and
is another reliable primary measure for stress [13,44,57–59].
Many stress monitoring systems use HRV to detect stress
aim to determine calorie expenditure

[60,61]. It is believed that HRV also reflects how well individuals
are able to adapt to changes [57].

Electrocardiogram (ECG), also known as elektrokardio-
gramm (EKG), is highly sensitive to heartbeats and a superior
measurement for HRV [62]. ECG is a graphical recording of elec-
trical activity produced by an impulse of ions flowing through
cardiac muscles, which dissipates into the region around the
heart with diminished amounts spreading around the surface
of the body. The main electrical signals are produced by cardiac
cells depolarising and repolarising. Depolarising occurs due to
the flow of ions accompanying atrial heart muscle constriction
which results in a P wave.  The impulse then travels through
the ventricles of the heart causing septal depolarisation, early
ventricular depolarisation followed by late ventricular depo-
larisation. This series forms a QRS wave,  the dominant wave.
After the completion of depolarisation, ventricular cells repo-
larise by restoring it to resting polarity, resulting in a T wave.
A change in potential can be measured between electrodes
attached to a person’s body on each side of the heart during
the electrical stimulation cycle of the heart. ECG signals are
periodic and have persistent features such as R–R intervals, a
parameter to determine HRV. The Einthoven’s Triangle, theoret-
ical triangle area around the heart representing lead vectors,

can be used for lead configuration based on desired informa-
tion. There are three main lead configurations, but Lead I is
sufficient to obtain a HRV signal because it gives the complete
QRS waveform [63].

dx.doi.org/10.1016/j.cmpb.2012.07.003
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Table 2 – Analysis of heart activity measurement systems.

Heart rate measurement
system

Advantages Disadvantages

Thought Technology FlexComp
(connected to a computer with
Biograph software suite)

Data transferred to a computer in real-time
Allows real-time viewing and analysis of data
and trends
Waveforms accurate to 500-2000 Hz

Equipment not portable
Expensive

Biopac ECG100C (connected to a
computer with AcqKnowledge

Data  transferred to a computer in real-time
Allows real-time viewing and analysis of data

Equipment not portable
Sensitive to equipment movement
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software suite) and trends
Sampling rate of 1 kHz

Popular systems used to obtain continuous heart rate
nclude the Thought Technology FlexComp and Biopac
SR100C [47]. An analysis of these systems is presented in
able 2.

Acute stress causes the heart to contract with high force
nd increased frequency. With more  chronic stress, the mass
f the heart is increased to provide the body with greater
esponse to stressors [64]. A decrease in ECG amplitude is
n indicator of stress in healthy individuals [65]. This is due
o vasoconstriction, where peripheral blood vessels constrict.
etails of how the SNS affects heart activity when an individ-
al is exposed to stressors are presented in [66].

Heart activity has been found to be more  correlated with
tress as opposed to EMG  and respiration recordings [23]. How-
ver, the baseline heart rate depends on cardiovascular fitness
f an individual and the activity the individual is doing at
he time. This means that heart activity measurements can-
ot be directly compared across multiple people for stress
nless measurements are standardised using some baseline
easurements.
HRV is an indicator of dynamic and cumulative load mak-

ng it a good measure for stress. Short term lower HRV reflects
cute stress, which means that HRV can be negatively affected
uring stress [67]. Generally, low frequency (LF) and high fre-
uency (HF) bands of HRV are used to analyse stress. LF and
F are known to reflect SNS and PNS activities respectively.
F has been categorised as 0–0.08 Hz [23], 0.04–0.15 Hz [8,68]
r 0.05–0.15 Hz [13,52] and HF has is either in the 0.15–0.5 Hz

13,23] or 0.16–0.40 Hz [52] range. It has been suggested that
hese definitions for frequency bands could be inappropriate if
he respiratory frequencies are not in the range of 0.15–0.40 Hz
ecause it could affect ANS activity estimates [68]. Examples of
ctivities where the respiratory frequencies could be extreme
re during intense exercise or during extreme relaxation with
espiratory frequencies of 0.7 Hz and 0.1 Hz respectively [68].
he frequency of ECG between 0 Hz and 0.04 Hz, sometimes
nown as very low frequency (VLF), has been found to distort
tress detection [69].

Stress levels are expected to increase with increase in
nergy RatioECG in Eq. (1) (used as a stress feature in [23,52,70]),
hich is defined in terms of total energy values in LF and HF:

nergy ratioECG = total energy in LF
(1)
total energy in HF

 clustering based fuzzy model has been established where
RV features are mapped to a 0–100 (mental) stress scale [8].
Electrodes are attached to skin using
conductive gel
Expensive

Three HRV features, each corresponding to VLF (0.01–0.04 Hz),
LF (0.04–0.15 Hz) and HF (0.15–0.5 Hz) bands, were used as
parameters to the fuzzy model. The features were defined
using continuous wavelet transformations, where detailed
definitions are given in [8].

3.3. Brain  activity

Research shows that relationships exist between brain activ-
ity and stress [71,72] and further research is required for more
insight to develop models based on brain activity to deter-
mine stress. Some methods by which data can be obtained
for analysing brain activity are functional magnetic reso-
nance imaging (fMRI), positron emission tomography (PET)
and electroencephalography (EEG). Of the lot, EEG is the most
commonly used due to high temporal resolution, low intru-
sive equipment and low cost. EEG has been used to determine
stress levels in computer game players [71] and biofeedback
games [72].

Neural activity in the brain produces electrical signals,
including well known signals that are captured in EEG. EEG
records complex electrical waveforms at the scalp formed by
action electrical potentials during synaptic excitations and
inhibitions of dendrites. Potentials at the scalp range from 20
to 100 �V [73], which can be recorded by pairs of electrodes
attached to the scalp (on both sides of the brain hemisphere).
The waveforms are characterised by frequency, amplitude,
shape and sites of the scalp. Also, age and state of alertness is
also relevant to analyse the waveforms [73]. Activities in the
right hemisphere of the brain dominate the activities in the
left hemisphere of the brain during negative emotions [74],
which suggests an area for stress detection. Literature that
provides details of the way stress affects the brain include [75].

The potentials can also be measured using less intrusive
equipments, such as the Emotiv EPOC headset. An analysis
of common brain activity measurement systems is given in
Table 3.

EEG signals are categorised by frequency and each cate-
gory represents some state for a person. The indices, waves  or
bands in the EEG are categorised in Table 4. Beta and alpha
waves represent conscious states whereas theta and delta
waves signify unconscious states [76]. Rapid beta wave  fre-
quencies (from decrease in alpha wave frequencies) are the

main characteristics indicating stress [73,76,77].  Alpha waves
appear on both sides of the brain, but slightly higher in ampli-
tude on the non-dominant side, generally observed in people
who are right-handed [73]. Band pass filtering can be used to

dx.doi.org/10.1016/j.cmpb.2012.07.003
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Table 3 – Analysis of brain activity measurement systems.

Brain activity measurement
system

Advantages Disadvantages

Thought Technology FlexComp
Infiniti (connected to a computer
with Biograph Infiniti software
suite)

Data transferred to a computer in real-time
Allows real-time viewing and analysis of data
and trends
Waveforms accurate to 500 Hz 2000 samples/s

Equipment not portable
Expensive

Emotiv Research Edition SDK Portable headband
Less intrusive than conventional EEG caps
Allows real-time viewing of data and trends

Minimal data analysis methods and tools provided
with the system
Data analysis has to be done offline
Sampling rate of 128 Hz

remove noise and obtain certain parts and features of an EEG
signal before analysis. EEG signals can be filtered using a band
pass filter with appropriate values for low and high pass filters,
e.g. 30 Hz and 4 Hz respectively.

Brain activity has been examined for those who have expe-
rienced chronic stress. It has been found that females with
post-traumatic stress have an increased activation in the ante-
rior and middle insula when presented with stimuli that
reminded them of the previous stressful events [78]. This char-
acteristic was obtained through fMRI recordings and analysis.
In a different study, positive, neutral and negative emotions
were classified using EEG [74]. EEG frequency band power,
cross-correlation between band powers, peak frequency in
alpha band and Hjorth parameters [79] were some features
used. Hjorth parameters are time-based characteristics of an
EEG signal and details can be found in [79].

Signal processing methods (e.g. FT) have been applied to
EEG and analysed in time, frequency and spatial domains. For
physical stress [80], ratio of power spectral densities of the
alpha and beta bands has been calculated and analysed for
stress [81]. Results suggested that the ratios for alpha (r˛) and
beta (rˇ) powers defined as given in Eqs. (2) and (3) respectively
were negatively correlated with self-reports.

r˛ = ˛R − ˛L

˛R + ˛L
(2)

rˇ = ˇR − ˇL

ˇR + ˇL
(3)

where ˛R and ˛L in the equations represent alpha bands on
the right and left hemispheres of the brain. Beta bands, ˇ, are
similarly represented.
Neurofeedback training has been developed to induce
stress management by training the brain to reduce symptoms
of stress, e.g. Interactive Productline Mindball, a competitive

Table 4 – EEG wave band categories.

Wave band Frequency
range (Hz)

Individual characteristic(s)

Beta 13–30 Alertness or anxiety
Alpha 8–13 Relaxation
Theta 4–8 Dream sleep or phase between

consciousness and drowsiness
Delta 0.5–4 Coma or deep sleep
game system. Mindball uses EEG information to assess stress
and provide feedback over a period of time, and the player with
lower stress levels win the game [77].

EEG signals may have more  information about stress levels
than blood pressure and heart rate. EEG has been claimed to
show differences in relaxation (opposite of stress) levels that
blood pressure and heart rate information cannot illustrate
[77]. Sum of alpha and theta, and the sum of alpha, beta and
theta are good measures [77] for relaxation. It is not yet known
whether EEG gives more  details of stress than GSR.

Stress states have been classified using EEG data and a
decision tree model [71]. Other work has used EEG to classify
states that are not directly related to stress but could be used
as a basis for further EEG-based stress models. SVMs, ANNs
and Bayesian classifiers have not showed much variation in
performance for classifying emotions ranging from positive
to negative emotions [74]. In addition, EEG data has been used
to classify different tasks with ANNs and SVMs and their vari-
ance in performance was not significant [82].

3.4.  Other  primary  physiological  measures

Primary measures of stress presented in this section are not
reliable if used solely. They are usually used in conjunction
with other primary measures investigated above. Apart from
stress, there are other body triggers that affect signals of the
primary measures investigated in this section by distorting the
signals, so it makes stress detection difficult if used as a single
measure to detect stress.

3.4.1.  Blood  pressure
Blood pressure (BP) is the pressure exerted on the walls of
blood vessels due to blood circulation and varies between a
systolic (maximum) and a diastolic (minimum) pressure. An
increase BP has been related with increase in stress [83].

Continuous BP waveforms can be measured using systems
such as the Ambulatory Blood Pressure Monitor (ABPM-50) or
Finapres (FINger Arterial PRESsure) monitor system. Just like
traditional BP monitoring systems, ABPM-50 requires a cuff to
be wrapped around the upper arm. However, Finapres requires
its cuff to be wrapped around a finger and is less intrusive and
less disruptive.
3.4.2. Blood  volume  pulse
Blood volume is the amount of blood in a blood tissue dur-
ing a certain time interval. BVP measures the amount of light

dx.doi.org/10.1016/j.cmpb.2012.07.003
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hat is reflected by the skin’s surface. Blood flow through the
lood vessels after each heart beat causes changes in light
eflections, thus, provides measures for constriction of blood
essels and heart rate. Decreases in BVP have shown to be cor-
elated with increases in stress and lower stress levels have
llustrated increases in BVP [84]. Measurements of BVP can be
aken using a Photoplethysmography (PPG) from the skin cap-
llary bed of a finger. A PPG bounces infra-red light on the skin
nd the amount of light reflected provides a measurement of
he amount of blood present in the region. It has been used
y commercial (HRV-based) stress monitoring systems [85,86].
VP has been used with other physiological measures to detect
tress more  reliably [52].

.4.3.  Electromyogram
lectromyography (EMG) shows electrical activity produced by
ctive muscles, i.e. muscle action potentials. For stress detec-
ion, EMG  electrodes have been placed on the trapezius muscle
23], which is located in the shoulder. Other measurements,
uch as, GSR and ECG, have been found to be better indicators
f stress [23].

.4.4. Skin  temperature
kin temperature (ST) in conjunction with other primary
easures [29] has been used to measure stress. Investiga-

ions show that ST is negatively correlated with stress, i.e. ST
ncreases when stress levels decrease and ST decreases when
tress increases [84]. ST has been measured using LM34 IC by
lacing the sensor on the distal phalanx of the left thumb [52].

.4.5.  Respiration
he rate and volume of respiration has been used to measure

evels of stress but generally in conjunction with other phys-
ological measures [17]. Most respiration monitoring systems
equire individuals to wear a belt around their chest [23]. This
ype of a system is intrusive and may restrict individuals from
erforming their regular activities. In addition, it has been
laimed that other physiological measures, such as HRV and
SR, reflect stress levels to a greater extent than respiration,
articularly in driver stress [23].

.  Physical  measures

n this survey, a physical feature or characteristic is defined as
 property that humans can see changes in without the need
or equipment and tools, unlike physiological features, which
equire the use of tools to detect general fluctuations. Physical
ignals that are sensitive to stress are behaviour, gesture, body
ovement, facial expression, eye gaze, blinks, pupil dilation,

nd voice.

.1.  Behaviour,  gesture  and  interaction

ody language can express stress states and humans are
enerally good assessors at finding these relationships. Body

anguage is defined by body pose and/or body motion. Recog-
ition of body language requires complex techniques that
onsider degrees of freedom for body configurations and
ast variations in motion. Behaviour can be determined by
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examining body language. Behavioural recognition and anal-
ysis requires computer vision techniques with the purpose
of understanding a visual environment. However, the com-
mon method for determining stress through behaviour is by
human experts. Stress levels in car drivers have been assessed
by humans who used their judgement to examine driver
behaviour on recorded videos [23]. Future research could
include developing techniques for automated stress detec-
tion from behaviour data. Due to the time-varying nature of
stress, HMM, Markov chains, Bayesian classifiers [87], Hidden
Semi-Markov Models, ANN, Temporal Scenario Recognition
and Petri Nets are some types of techniques that can be inves-
tigated for interpreting and analysing behaviour associated
with stress.

Stress models based on gesture and interaction features
have been quite simplistic. Driving scenarios are rich in stress
stimuli that induce drivers to react by gestures, which is an
area where stress has been modelled. Gesture recognition has
been used to determine stress in car drivers [23]. Approaches
for predicting driver behaviour have also been developed
through vision based techniques and dynamic Markov mod-
els [88,89].  Haptic cues have been used in stress experiments
which induces interaction with environments. Investigations
with mouse movement  show that individuals click mouse but-
tons harder as their stress decreases [45].

4.2.  Facial  features

Facial features can provide insight to feelings and mental
states for individuals including stress. When conversing with
an individual, a person can get feedback from facial features
which they can act accordingly, e.g. the person might cut a long
story short when they observe and realise that the individual
is showing signs of frustration, agitation or preoccupation by
less nodding, reduced facial muscle movements or frequent
eye movements to other objects in the surroundings.

There are systems established (e.g. FaceLAB, NEVEN Vision
[90]) that automatically determines facial features (e.g. points
on face, head movements, levels of mouth openness) from
cameras or videos. Face LAB, a product by Seeing Machines,
is a system for head and face tracking and allows obtaining
measurements at a sampling rate of 60 Hz for facial features
including eye gaze, pupil dilation and blinking signals non-
invasively and non-intrusively. The equipment consists of a
pair of cameras, with infrared lighting. It does not require any
form of contact during signal acquisition.

4.2.1.  Facial  expressions
Stress classification models have been developed from facial
feature data and results show that facial expressions can be
used to show stress [91]. When responding to stressors, facial
expressions indicate biological responses reliably [10], which
are commonly used to assess stress. Online analysis of facial
expressions can be used to predict behaviour and events, e.g.
car accidents, in real-time [92]. Facial muscle movements have
been used to determine stress. Increase in head and mouth

movements indicate increase in stress [45].

Human observers are good at assessing individuals’ stress.
The human brain of a healthy individual has facial expres-
sion recognition detectors to determine emotions that show

dx.doi.org/10.1016/j.cmpb.2012.07.003
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symptoms of stress of a person but unfortunately the pro-
cess by which the brain deduces such conclusions is yet to be
understood. Machine learning techniques [93], including SVM,
principal component analysis [94], and decision tree-based
classifiers [94] have been used for facial expression recogni-
tion.

4.2.2.  Eye  gaze
Eyes can provide information in social interaction. Eye gaze
provides information on an individual’s attention source, and
enables deducing the individual’s mental states and inten-
tions. Using eyes to focus on a particular object on a computer
screen for a greater period of time and frequent focuses on
the object are characteristics that correlate with stress levels
[45]. The types of measures obtained from eye gaze for mea-
suring stress include gaze spatial distribution and percentage
of saccadic eye movement  [45].

4.2.3.  Pupil  dilation
Pupil dilation has been examined for stress detection [95].
If an individual’s pupil diameter increases [96,97],  the pupil
dilates at a higher frequency, then it suggests that the individ-
ual is possibly in a stressed state [45]. However, both negative
and positive stimuli can cause pupil diameters to increase.
Results of a research experiment suggested that pupil diam-
eters increased significantly when experiment participants
were exposed to negative and positive arousing sounds [15].

A common characteristic used in stress detection are mean
values for pupil diameters. An increase in stress has been
shown by increasing mean values over a time period [52].
Interpolation techniques have been used to determine pupil
diameters during blinks [52], but simple techniques including
replacing the blink with the last valid pupil diameter value
suffices [15].

Some eye tracking systems used to measure pupil diam-
eters are the FaceLAB 4.5 [98] and ASL-504 eye gaze tracking
system [52] with sampling rates of 60 Hz, and Applied Science
Laboratories series 4000 eye tracking system with a sampling
rate of 50 Hz [15]. The eye monitored for pupil dilation does not
seem to be significant but individuals’ left eyes are commonly
used to monitor pupil diameter [15,95].

4.2.4.  Blink  rates
Eye blinks are sensitive to stress but conflicting characteris-
tics have been suggested for stress detection. Some literatures
state that higher frequency of blinks is detected when an
individual is under stressful conditions [99] whereas others
seem to suggest the opposite [45]. These conflicting conclu-
sions could have been caused by analysing data obtained from
different experiment environments. The results of the litera-
ture that suggested a correlation between higher frequency of
blinks and stress were acquired from real driving experiments
whereas the results analysed from solving mathematical tasks
on a computer suggested the opposite. In addition, faster eye
closure has been suggested as a characteristic for higher stress
levels [45].
4.2.5.  Voice
Stress in voice is defined as “observable variability in certain
speech features due to a response to stressors” [100]. Presently,
b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 1287–1301

‘certain’ is not well defined and the ‘features’ may include lexi-
cal, phonological or prosodic features. Detecting stress in voice
is a dynamic process. It is the nonverbal components of voice
that reflect stress. Key features claimed to show increases in
stress are increases in range and rapid fluctuations in fun-
damental frequency [101–103], increases in energy for high
frequency voice components [104], and greater proportions of
high frequency components [19].

Determining stress levels through speech is non-invasive,
less obtrusive and less expensive [30] compared to other meth-
ods for measuring stress. Such stress monitoring systems are
common and have been developed for users including army
officers [30], and video game players [105]. Air Force Research
Lab (USA) claims that a voice based stress detection system
can efficiently measure officers’ stress, with the aim to reduce
their workload, improve their effectiveness and, as a result,
save lives [30]. Stress is part of everyday life and can change the
characteristics of speech. Intelligent speech recognition and
speaker identification systems use stress models to consider
changes in speech characteristics due to stress [106].

Speeches of drivers under stress have been modelled using
signal processing techniques, Teager energy operator (TEO)
and multiresolution analysis. Dynamic Bayesian networks
and hidden Markov models were used to classify the features
within utterances. A SVM and an ANN were used to model the
features across utterances [107].

Voice features for stress models include loudness, fun-
damental frequency, zero-crossing rate, jitter and energy
frequency ratios [19]. Stress related emotions have been mea-
sured in speech by extracting features including voice quality,
pitch, duration, intensity, formants, vocal tract cross-section
areas, frequency, Teager energy features, glottal character-
istics, duration of silence, and speech rate [103,108–110]. A
system that detects frustration and annoyance (symptoms of
stress) in voice has been developed for flight telephone book-
ing through a prosodic model [109]. Frustration was detected
by longer speech durations, slower speech and pitch rates.

Acoustic components in voice that can be used to show
stress are caused by physiological changes that depict signs
that the human body is responding to stress [19]. This is an
example where physiological and physical characteristics of
stress are related. Micro-muscle tremors (MMT), caused by
muscle tension, and voice stress analysis (VSA) reflect stress.
MMT is caused by the muscles in the vocal tract and is trans-
mitted through speech. MMT and VSA have been used in lie
detector systems [111].

4.3.  Fusion  of  measures

Combinations of sensors have been used to give a better
measure of stress. Facial expressions, eye movements, head
movements, GSR, RTD and BVP data have been fused to
develop a stress model [45]. Physiological sensors have been
fused to determine stress. GSR, BVP and HR have been used to
determine stress in video game players [49]. Computer users
have had their GSR, EMG,  ECG and respiration data used for

stress classification [95]. Car drivers have had their relative
stress levels monitored by ECG, GSR, EMG  and respiration
recordings, but ECG and GSR mirrored stress more  reliably
[23]. In addition, drivers have had facial expressions and road

dx.doi.org/10.1016/j.cmpb.2012.07.003
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Table 5 – Empirical ranking of primary measures for
measuring stress.

Rank Primary measure

1 HRV
2 GSR
3 EEG
4 PD
5 Voice
6 Eye gaze
7 Facial expression
8 BP
9 ST

10 BVP
11 Eye blinks
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features that are more  apparent in the frequency domain
12 Respiration
13 EMG

onditions recorded and synchronised to the physiological
easures to support results [23]. Computer users have had

heir HRV, GSR, pupil diameter and ST recordings monitored
o detect stress [52].

Other work has involved using physiological measures to
odel symptoms of stress, e.g. agitation, anger, fear and frus-

ration. HR, GSR and ST have been used to recognise agitation
n dementia patients [112]. Emotions of anger, fear and frus-
ration have been classified using GSR, HR and ST [54]. An
motional recognition system has been developed based on
EG, GSR, HRV, BVP and respiration [113].

Some measures in a combination of measures may be
edundant with other measures and this may cause collec-
ion of unnecessarily large volumes of data and unnecessary
rocessing time. This motivates using an optimal combina-
ion of measures for measuring stress. Techniques used for
etermining an optimal measure combination include mutual

nformation measure [45] and principal component analysis
71].

.4.  Evaluation  of  primary  measures  for  stress

able 5 provides an empirical ranking of primary measures
or measuring stress based on discussion in this report, their
orrelation with stress claimed in literature, equipment intru-
iveness, techniques developed for mapping to stress scales,
nd extent of usage in the literature.

Accurate features from physical measures can be deduced
ithout attaching sensors on an individual through equip-
ents such as FaceLAB and microphones. However, physiolog-

cal measures have been widely used for stress detection even
n stress monitoring systems, which require individuals to
ear or touch electrodes or sensors. Potential area of research

ould be to develop stress detection techniques using physical
easure features sufficiently powerful so that individuals are

ot required to make contact with equipment.

.  Published  stress  data  sets
 data set for automobile drivers in different stress driving
onditions, consisting of physiological measures (ECG, EMG,
SR and respiration), have been published and details are in
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[23].  The data set is available at http://www.physionet.org/
pn3/drivedb/.

6.  Stress  monitoring  systems

Commercial biofeedback systems (e.g. ThoughtStream [114],
StressEraser [60], emWave  [61]) that provide continuous feed-
back have been developed to assist with managing stress.
The ThoughtStream system bases stress monitoring on GSR,
while StressEraser and emWave  use HRV. Both, StressEraser
and emWave  use a PPG sensor to monitor consecutive blood
pulses in a finger and directs the user to breathe in certain
patterns to reduce stress [85,86].  To lower stress levels using
the ThoughtStream system, the user listens to music where its
tone is controlled by the user’s GSR readings. There are similar
systems, e.g. Procyon [115] and Proteus, developed by Mind-
place [116], the same manufacturers as the ThoughtStream
system, which extend the ThoughtStream system to incorpo-
rate visualisation tools with visual material synchronised with
music.

7. Stress  scale

We  can classify stress by “Very Stressful”, “Stressful”, “Some-
what Stressful”, “OK”, “Somewhat Calm”, “Calm”, and “Very
Calm”. Stress in computer users has been classified as
“Stressed” or “Relaxed” [52]. Similar labels have been used for
stress in computer game players, e.g. “No-Stress”, “Average”
and “High-Stress” [71]. Stress levels in car drivers have been
classified into three different categories – low, medium and
high [23]. Data segments for low-stress were taken from rest
periods, medium-stress segments were taken from uninter-
rupted highway driving, and high-stress segments were taken
from busy main street city driving. Due to the uncertainties,
the categories could be defined in terms of fuzzy sets. Future
research could propose standard categorical labels for stress
that following research can adopt.

Alternatively, stress measure can be defined on a contin-
uous scale. A continuous scale for mental stress has been
defined as 0–100, where higher values represent increase in
stress levels [8].  Stress measure could be represented on a
time-varying scale where each time step has an associated
stress measure, which could be used to summarise stress char-
acteristics over time.

8.  Feature  extraction  techniques

Various signal processing techniques have been used to
extract features from primary nonstationary signals of stress.
Popular techniques include Fourier transformations (FT) and
Wavelet transformations (WT). They can be used to remove
noise in time series or feature extraction [99,117]. It is common
to transform physiological signals (e.g. EEG [99], GSR [23] and
HRV [62]) from time to frequency domain in order to extract
for analysis using FTs. WT  is another technique that allows
signals to be transformed from time to frequency domains,
but allows data to be divided up into different frequency

dx.doi.org/10.1016/j.cmpb.2012.07.003
http://www.physionet.org/pn3/drivedb/
http://www.physionet.org/pn3/drivedb/
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components. Unlike FT, WT performs well when approxi-
mating data that has sharp spikes and discontinuities.

Principal Component Analysis (PCA) and Independent
Component Analysis (ICA) have mainly been used to extract
features from EEG data but can be used for reducing the feature
set or removing unwanted features from the set of primary
measures for stress models. PCA was used to reduce features
in EEG signals to model stress [71]. ICA has been used to
remove eye movement  and other muscular movement infor-
mation, which is generally considered to be noise, from EEG
signals [82].

9. Computational  techniques

Various software programs, tools and packages (e.g. Matlab
[118], AcqKnowledge [119] and Biosignal Analysis Software
[58]) are available for analysing physiological and physical
signals. Most of the tools and applications are not specifi-
cally designed for primary measures of stress but they suffice
for general data exploration. Exploring signal data is benefi-
cial because it enables selection of appropriate computational
techniques to model stress. It also allows detection of noisy,
corrupted or missing signal data, which is useful in the pro-
cess of preparing data before computational stress models are
developed. This section focuses on computational modelling
techniques used for stress.

9.1.  Bayesian  classification

Bayesian classifiers can predict class membership probabil-
ities for given samples. Such classifiers are based on Bayes’
theorem and have been used to calculate posterior probabili-
ties stress states. Naive Bayesian classifiers have been used to
classify stress [52,95],  which assumes classes are independent.
A maximum posterior (MAP) decision rule was used to clas-
sify features from physical measures to stress classes: “Stress”
and “Normal” [52]. Alternatively, Bayesian belief networks
or Bayesian Networks (BN) can be used when classes have
dependencies. A BN can be represented by a directed acyclic
graph or conditional probability tables to show joint condi-
tional probabilities for attributes or variables. Nodes in the
graph depict variables and arcs portray causality. A Dynamic
Bayesian Network (DBN) has been used to model stress [45].
Unlike a traditional BN, a DBN can show how properties of
stress vary over time.

9.2.  Decision  trees

Decision tree classifiers, based on a divide-and-conquer
approach, have been used in stress classification. The struc-
ture of a decision tree is like a flowchart. Each internal node
represents some criteria or test to divide the input space into
regions, each branch denotes an outcome of the test, and
each terminal node or leaf represents a target class. Algo-

rithms have been established to generate decision trees [120].
Unknown samples are classified by starting at the root of the
tree and moving the sample towards the leaf after testing the
sample against the criteria at the internal nodes in the path.
b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 1287–1301

Decision trees have been used to classify stress based on
characteristics in physiological measures (e.g. EEG [71]) and
combinations of primary measures (e.g. combination of BVP,
GSR, PD and ST [52]). A potential problem with using decision
trees to model stress is the crisp splits for prediction. Future
research could investigate softening the decision process with
the use of fuzzy techniques or some probabilistic framework.

9.3. Artificial  neural  networks

Artificial neural networks (ANNs) are inspired by biological
neural networks with characteristics for learning and reacting,
making them a common technique in classification prob-
lems in health systems and an upcoming approach for stress
research. Stress models based on ANN are at the early stages
of research and have produced promising results. It has been
claimed that an ANN is better at recognising stress than
humans from voice recordings [105] and this result contributes
to motivation for further research with ANN for stress.

Multi-layered perceptrons, a type of ANN with multiple
hidden layers, have been used for stress classification [121].
Features from physiological measures were used in the classi-
fication. Recurrent ANNs (RANN) have been used to measure
stress. A RANN is an ANN that contains feedback connections.
It has been claimed to be useful for retaining information of
how the previous sample was processed to process the cur-
rent sample effectively. A RANN based on labelled voice data
for experiment participants playing a video game has been
developed [105]. Utterances were recorded when participants
answered questions while playing the video game.

Choosing the number of hidden neurons and layers is a crit-
ical aspect in defining the structure of an ANN. With a small
number of hidden neurons, an ANN will not be able to dif-
ferentiate between complex patterns, which will result in an
underestimation of the actual trend. On the other hand, a large
number of hidden neurons could lead to a poor generalisation
because of over-parameterisation. The number of hidden neu-
rons is usually obtained empirically. In some situations the
accuracy may be similar for different topologies, for instance,
the accuracy for the one and two hidden layers were similar
when classifying fatigue [122].

9.4.  Support  vector  machines

Stress models have been developed using support vector
machines (SVMs). It can be used for classifying linear and non-
linear primary measures. A SVM transforms training data to
a higher dimension, in which a linear separating hyper-plane
is determined. An appropriate non-linear mapping can sepa-
rate two classes of data with a hyper-plane provided that the
data has been transformed to a satisfactorily high dimension.
Training samples, or support vectors, and margins, which are
defined by support vectors, are used to determine a hyper-
plane. SVMs have been used to predict stress states using BVP,
GSR, PD and ST data [29,52].

Other research has modelled properties more  related with

the symptoms of stress. SVM has been used to recognise agi-
tation in dementia patients based on physiological signals:
HR, GSR and ST [112], which is somewhat related to stress
research. It was claimed that their SVM algorithm was not

dx.doi.org/10.1016/j.cmpb.2012.07.003
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Table 6 – Rankings of techniques used for modelling
stress.

Rank Modelling
technique

Reported
accuracy

Inputs for
model

1 SVM 90.10% [52]
79.3% [18]

GSR, HR, PD, ST
EMG, ECG,
Respiration, GSR

2 Recurrent ANN MSE = 0.084 [105] Voice

3 Adaptive
neuro-fuzzy
system

76.7% [18] EMG, ECG,
Respiration, GSR

4 ANN 82.7% [113]
Not provided

EEG
ECG

5 HMM Not provided Voice

6 Decision tree 88.02% [52] GSR, HR, PD, ST

7 Naive Bayesian 78.65% [52] GSR, HR, PD, ST
c o m p u t e r m e t h o d s a n d p r o g r a m s i n

ependent on experiment subjects. SVM has been used to
odel emotions based on EEG data [74].

.5. Markov  chains  and  hidden  Markov  models

he Markov property is a time-domain process with condi-
ional probability density of the current event depending on
he ith most recent event, given all the past and present events.

 Markov chain is the simplest form of a Markov model. It
odels the state of a system with a random variable, which

aries with time, where a state is dependent on prior states.
he system of a Markov chain is fully observable. On the other
and, a hidden Markov model (HMM)  is a type of a Markov
hain but, as its name suggests, it is partially observable. Only
he sequence of observations can be seen in HMMs. HMMs
re a double stochastic process with a Markov chain that has

 finite number of states and a set of functions that corre-
ponds to each state. The process is in one state in the system
t a time and produces a symbol that is dependent upon a
andom function for that state. The generalised topology of

 HMM  is a fully connected structure where a state can be
eached from any state.

In stress research, HMMs  have been mainly used in recog-
ising stressed speech [106,107,110,123].  HMMs have been
sed for modelling emotions from voice data as well [124].
arkov models, including dynamic-based and HMM, have

een used for behavioural recognition and prediction [89].

.6.  Fuzzy  techniques

uzzy-based techniques, in particular fuzzy clustering have
een used to measure stress. A fuzzy technique has used HR to
odel workload [125], which is somewhat related to stress. In

ddition, fuzzy filters could be used to filter out uncertainties
n physiological measures of stress. A nonlinear fuzzy filter for
educing random variations has been developed for heart rate
ignals [126].

Fuzzy clustering, a hybrid of fuzzy and clustering tech-
iques, has been used to determine stress based on HRV as a
rimary measure [8].  Unlike traditional clustering where data
lements belong to at most one cluster, fuzzy clustering gen-
rates data clusters such that data elements can belong to
ore  than one cluster with different membership degrees.

ach data element has a set of membership level values.

.7.  Combination  of  techniques

ybrid techniques for stress models include an adaptive
euro-fuzzy inference system [18], a fuzzy clustering tech-
ique [8],  and a technique combining WT  and ANN [117].
owever, the number of hybrid techniques developed for

tress models are few and, in relation to the previous sections
n this report, there is scope for more  hybrids. On the other
and, primary measures have been modelled using many
ore  types of hybrid techniques but not directed to stress,

.g. models of behaviour [87] and emotions [127]. A BN and a

MM  was fused for behavioural analysis and recognition [87].
hey used behavioural analysis to discover criminal activities
y using scenes around the airport, e.g. unloading baggage. An
xtension of this research could include determining whether
network

8 Fuzzy clustering Not provided HRV

an individual is stressed by analysing their behaviour, e.g.
interviewee jitteriness during an interview.

9.8. Evaluation  of  techniques  for  modelling  stress

Not many  comparisons have been done to evaluate stress
models. In an investigation for performance of stress models
based on supervised learning, SVM was claimed to be a supe-
rior technique to Naive Bayesian and decision tree classifiers
[52].

Table 6 presents an empirical ranking of techniques used
for modelling stress based on the discussions in this report,
comparisons and usage in literature.

Models of stress in literature have used their own methods
for measuring stress and determining performance. Despite
the differences in metrics, the models have performed much
better than chance, which suggest that stress can be success-
fully modelled and that further research in this area will have
an impact for modelling stress.

10.  Summary  and  future  work

Stress has been identified as a serious and growing issue
adversely impacting both individuals and society, and stress
recognition and classification (or prediction) research can
lead to solving the stress problem. Some benefits arising
from automated stress recognition and classification include
improvement in education, driving and work productivity.

Stress cannot be directly measured but it can be deter-
mined by certain characteristics in primary measures. Primary
measures have been considered in isolation or in some basic
combination. Appropriately collected and collated physiolog-
ical and physical signals can be used to measure stress, which
requires consideration of aligning multi-source signals. Future
work could involve investigating and modelling latencies for

physiological and physical signals for fusion of primary meas-
ures for measuring stress and the use of techniques such as
dynamic time warping to find an optimal alignment.

dx.doi.org/10.1016/j.cmpb.2012.07.003
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Based on literature investigated in this survey, there has
not been an extensive use of combinations of physical and
physiological sensors in research yet where stress can be
monitored through social and emotional interactions. Phys-
iological sensors can detect stress to some extent and usually
fulfils its purpose but they can be somewhat cumbersome.
There are occasions and cultures where it may be inappro-
priate to attach sensors to people, which is a drawback. On
the other hand, some physical sensors require less or no
contact at all and have the capability of detecting stress,
but more  research is required before it can be comfortably
said that physical sensors are as good as, if not better, than
physiological sensors in measuring stress. Combining the two
different types of sensors and analysing their impact could
be a starting point to determine the relationship and dis-
similarities in the functionalities. It will also provide a rich
method of analysing communication, both social and emo-
tional, between any combination of people and intelligent
systems.

Clustering approaches can be used for objectively group-
ing of unlabeled data (including data in time or frequency
domains) for primary measures to determine stress cat-
egories. It can also be used to determine data outliers.
Clustering algorithms that have been established to determine
clusters have been generally categorised as partitioning methods
(e.g. k-means), hierarchical methods (e.g. BIRCH), density-based
methods (e.g. OPTICS), grid-based methods (e.g. WaveCluster),
and model-based methods (e.g. Self Organising Maps) [120]. For
determining stress levels, clustering of data for primary meas-
ures would be more  suitable if a categorical (including an
interval-based) scale for stress is used. Clustering techniques
can be included in the process for determining an optimal
combination of primary measures.

Models developed to date that describe stress are quite
simplistic. Generally, established techniques such as ANN
and SVM have been used to model stress. Novel or more
complex computational techniques are needed for stress
models.

Future stress models could be developed based on mod-
els developed for similar research problems e.g. models for
emotion [128] and mental workload [129] (which have been
based on physiological signals, e.g. EEG, HRV and GSR, and
these signals are based to detect stress). In addition, fear and
anger are some emotions that are symptoms for stress so
models for stress and emotions may overlap. Genetic pro-
gramming (GP) techniques have been used for determining
emotions. A GP has been used to generate regression equa-
tions from facial expressions to measure emotions [130].
In addition, genetic algorithms have been used for fea-
ture selection in EEG for developing emotion models to
reduce computational resources required for an Elman net-
work [113], a type of recurrent ANN. These techniques are
examples of some techniques that can be used in stress
research.
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