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1.  Introduction

 When potential danger is perceived, the brain should decide between two primary solutions to survive: fight or 
flight (Jacobs 2001). Physical and mental threats activate the fight or flight response in the same way and there is 
no substantial difference between them (Wilhelmsen 2000). The emotions that are related to this physiological 
reaction such as anger or fear are controlled by a ‘primitive’ part of the brain called the amygdala. Since there is 
no connection from the prefrontal cortex (which controls the conscious and decision-making processes) to the 
amygdala, and since there are so many pathways from the amygdala to the cortex, the level of consciousness in 
these situations is insignificant (LeDoux 2007). Therefore, the physiological response to the threat is essentially 
controlled by the amygdala. It is known that the amygdala, as a part of the limbic system, activates the sympathetic 
nervous system while sending information to the hypothalamus (Lacroix 2000). The hypothalamus is of 
fundamental importance for the control of ACTH secretion and hence for the adrenal cortex and corticosterone 
secretions that regulate vasoconstriction and vasodilation in different parts of the body (Buijs 2000).

One of the first rigorous experimental analyses of temperature changes on the face after emotional stimu-
lation has pointed out that this mechanism can be observed on the face by a high-sensitivity infrared thermal 
camera (Pavlidis and Levine 2002). The subjects started the experiment in a quiet room with low light to create 
a calming environment. Then, without any notice, the participants were startled with a loud sound while their 
faces were monitored with a thermal imager. By comparing before and after the startle, it was found that there 
is a temperature increase in the periorbital region. Since the measured temperature change was so quick and 
occurred in less than 300 ms, in controlled environmental conditions it was concluded this is the result of the 
fight or flight mechanism on the cutaneous vasculature. In another investigation evaluating different regions 
of interest (ROIs) on the face, different patterns of temperature changes before and after stress stimulation were 
reported (Shastri et al 2009). It was found that blood redirects from some areas on the face that require less blood, 
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Abstract
Objective: We introduced a novel framework to identify the dynamic pattern of blood flow changes 
in the cutaneous superficial blood vessels of the face for ‘fight or flight’ responses through facial 
thermal imaging. Approach: For this purpose, a thermal dataset was collected from 41 subjects in 
a mock crime scenario. Five facial areas including periorbital, forehead, perinasal, cheek and chin 
were selected on the face. Due to the cause and effect movement of blood in the facial cutaneous 
vasculature, the effective connectivity approach and graph analysis were used to extract causality 
features. The effective connectivity was quantified using a modified version of the multivariate 
Granger causality (GC) method among each pair of facial region of interests. Main results: Validation 
was performed using statistical analysis, and the results demonstrated that the proposed method 
was statistically significant in detecting the physiological pattern of deceptive anxiety on the face. 
Moreover, the obtained graph is visualized by different schemes to show these interactions more 
effectively. We used machine learning techniques to classify our data based on the GC values, which 
result in a greater than 87% accuracy rate in discriminating between deceptive and truthful subjects.
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for example the cheek and nose, to ROIs that need more, for example the periorbital muscle that needs to con-
tract more due to faster eye movements during threatening situations.

One of the most significant discussions in this area is the validity of facial thermal imaging as an indirect 
method to detect blood flow in the cutaneous facial blood vessels. To this date, laser Doppler is considered the 
gold standard method for quantifying the microvascular cutaneous blood flow and it can be used to evaluate 
the performance of thermal imaging. A comparative study showed that thermal imaging is linearly correlated 
(Pearson correlation  =  0.85) with laser Doppler imaging (Merla et al 2008). In another major study, Puri col-
lected thermal videos of the forehead area in addition to the oxygen consumption rate (for measuring energy 
expenditure) of 12 subjects. He showed that there is a high correlation (Pearson correlation  =  0.91) between the 
maximum temperature of the forehead area and oxygen consumption rate, which is an indicator of stress (Puri 
et al 2005). The perinasal response to stress stimuli was shown to be well correlated with the transient perspira-
tory response on the fingers (Pavlidis et al 2012).

There is very little previous literature on the physiological mechanism of stress response in the facial superfi-
cial vasculature. Some research findings on the importance of the periorbital area have not been consistent with 
those of Pavlidis et al (2000). For instance, Yuen and his team used nine volunteers for a mathematical calculation 
experiment and found there was an increase in the overall temperature of the face during their experiment that 
was mostly caused by the forehead, lips and ears (Yuen 2009). Furthermore, in a study that replicated the proto
col of Pavlidis with 24 subjects and chose periorbital, cheek and carotid as the ROIs, the results indicated that 
the periorbital area seems not to be as important as the cheek area in a deception detection approach (Pollina 
et al 2015). These experimental observations and results suggest a hypothesis that there is a special pattern for 
each type of emotion, reflecting the physiological and anatomical variations following an affective stimulation. 
These physiological patterns can be investigated by thermal image acquisition and analysis of the human body, 
especially the face, and could lead to better understanding of underlying physiological mechanisms. As a specific 
example, it is still uncertain what the effect of the fight or flight response is on the temperature distribution and 
superficial blood flow changes on the face.

Network physiology as a new interdisciplinary field has emerged to investigate the complex network and 
dynamic behavior among integrated physiological systems and subsystems (Ivanov et al 2016). This approach 
focuses on the question of how physiological interactions can be assessed and analysed through an integrative 
network framework where graph theory is utilized to extend our knowledge about the inherent physiological 
mechanism as a non-linear, non-stationary and spatio-temporal scale system. This approach has led to some 
interesting outcomes about the statistical evaluation of organ dysfunction like sepsis (Moorman et al 2016) and 
multiple organ failure (Buchman 2006). All previous research in this field has focused on neural connections 
among various organs after a stimulation or during a disease activation. As far as we can find, there is no pub-
lished literature or study on blood flow or temperature time series as a consequence of neural activation and its 
use in studying the inherent nature of their interactions.

In this paper we propose a novel methodology by effective connectivity analysis, to investigate the physiologi-
cal blood and temperature redistribution following fight or flight responses. This kind of connectivity approach 
has been widely used in EEG and fMRI time series analysis for different psychological disorders (Seth et al 2015). 
In our study, we considered facial ROIs as our nodes (instead of the brain regions used in other studies) and 
the temperature distribution pattern over the face as the connectivity information. Note that the vascular and 
nervous branch structures are partly similar: in the vasculature the carrier is blood, and in the neural system it is 
action potential. Further, the speed of blood flow changes following activation of the sympathetic nervous sys-
tem is very quick (Pavlidis et al 2000), therefore the same methodological procedure can be chosen for these two 
different natures (neural and vascular) connections. We modelled this connectivity by weighted directed graph 
analysis, in which nodes are the ROIs on the face and the links are the causal connections between ROIs.

This paper suggests ‘effective connectivity’ for investigating the effect of fight or flight responses on blood 
flow changes between different ROIs on the face. A dataset for this study was collected by facial thermal imaging 
of 32 subjects in a mock crime interrogation. By extracting the Granger causality (GC) values which consider the 
instantaneous interactions between five ROIs on the face, we examined the effective connectivity between them 
and visualized these causalities by graph representation techniques. We also employed four feature selection 
methods and four classification models to evaluate the power of these features to discriminate between deceptive 
and truthful subjects. Furthermore, other measures such as sensitivity, specificity, precision and F-score were 
used to show the performance of the utilized classifiers. The results indicate the effective utilization of these 
machine learning techniques.

2.  Experimental setup

We collected our experimental data using a mock crime protocol, in which the participants were divided into 
two groups: deceptive and truthful. The deceptive participant entered a crime room and ‘stole’ a gold necklace 
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from a locked drawer using some keys that they easily ‘found’ in the room. The truthful subjects left the room 
without being instructed to perform any ‘criminal’ act. All of the subjects were brought to an interrogation 
room where the interviewer asked eight yes/no questions based on the comparison question test (CQT) protocol 
(Ben-Shakhar 2002). The questions were categorized as Relevant, Irrelevant and Neutral questions, in which 
the deceptive subjects were asked to deceive the interviewer in questions relevant to deception. A software was 
developed to manage the question and answer timeline. The questions were as follows.

	1.	�Do you live in Tehran?
	2.	�Do you intend to answer all the questions honestly?
	3.	�Have you ever checked your sister’s/brother’s phone without her/his consent?
	4.	�Did you enter the office at the back of the building?
	5.	�Do you have any plan after this interview?
	6.	�Did you steal the necklace?
	7.	�Would you be happy if our device does not work properly?
	8.	�Is there any other question that could make you anxious?

Meanwhile, their psycho-physiological signs were monitored using facial thermal imaging. For our research, 
we used a FLIR T640 thermal camera. The camera had an uncooled and stabilized microbolometer detector with 
a maximum focal plane array (FPA) resolution of 640  ×  480. The thermal sensitivity was 35 mK at 30 °C and the 
frame rate was set to 10 fps in all our recordings.

The experiment included 41 participants, but one subject’s data was removed from our dataset for data 
recording technical issues, as the thermal data was corrupted. They were aged 18–35 with equal gender distri-
bution (20 males and 21 females), and with a mean age of 24.4 years with a standard deviation of 3.5 years. The 
subjects were undergraduate and postgraduate students in Tehran, Iran. The experiment was conducted accord-
ing to the Helsinki Declaration on proper treatment with human subjects. All the participants completed an 
informed-consent form upon arrival and they were assigned to the two groups randomly. Furthermore, they 
were asked to complete another form to declare any current health conditions that could affect their emotional 
responses, including using any medication in the previous 24 h. They were informed of the procedure of the 
experiment by printed instruction and also by verbal explanations from the experimenter.

3.  Methods

Our main objective is to find a graph representation that effectively shows the psycho-physiological mechanism 
of the fight or flight response on bloodstream regulation over the face. Specifically, we employed the well-known 
‘effective connectivity’ method (Friston 2011) and graph analysis for visualization. The weighted directed graph 
representation of this mechanism was validated by an ANOVA statistical test, which showed that the extracted 
Granger features were statistically significant. Figure 1 illustrates an overview of the study architecture that was 
developed and is presented in this paper.

3.1.  ROI segmentation
To extract the information of any specific emotional state, we selected some ROIs on the face that were most likely 
to correlate with the emotional states in which we were interested. Appropriate ROI selection is a very challenging 
issue in the psycho-physiological application of facial thermal imaging. Some studies in the deception detection 
framework have used the periorbital region as their targeted area on the face (Tsiamyrtzis 2007, Rajoub and 
Zwiggelaar 2014, Derakhshan 2014). On the other hand, other studies used different ROIs like the cheek region, 
which they found to contain higher information capacity in comparison to the others (Pollina et al 2015).

In this study, we investigated the blood flow connectivity between different regions on the face. The ROIs were 
selected manually based on the previous studies in this field (Ioannou and Merla 2014) and the anatomy of facial 
cutaneous blood supply. It is known that the bloodstream in facial skeletal muscles is supplied through two major 
branch arteries of the carotid artery: the external carotid artery (ECA) and the internal carotid artery (ICA). 
Facial, maxillary and superficial temporal arteries are three branches of ECA that supply the lower part of the face 
including nose, lips, chin, cheeks and neck areas. Besides, the upper areas on the face such as the periorbital region 
and forehead are mostly supplied by the ophthalmic artery that is a branch of the ICA (Prendergast 2013). There-
fore, the most important areas on the face can be categorized as perinasal, chin, cheeks, periorbital and forehead. 
The approximate position of each ROI used in this study is shown in figure 2.

Unwanted head movements were compensated by the Viola–Jones algorithm for face detection (Viola and 
Jones 2001) and Kanade–Lucas–Tomasi (KLT) method for finding feature points on the face and tracking them 
continuously in each facial thermal video (Tomasi and Kanade 1991). For each ROI, we computed the maximum 
temperature value in each frame, which created the temperature signal. Since the selected regions are highly 
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enriched in blood vessels, this thermal signal correlates with the blood flow fluctuations in the cutaneous facial 
vasculature. We normalized all values to [0 1] by the Min-Max normalization method for data uniformity.

After calculating the maximum temperature signal for all ROIs on the face, we used a rlowess3 smoothing 
filter (Jacoby 2000), a robust non-parametric regression method, to suppress any high-frequency fluctuations 
in the temperature signal due to imperfection in the face tracking. This filter is highly effective, especially when 
the signal contains outliers that is similar to our case. By the end of this process, we had five temperature signals 
which represent the temperature variations on the important vascular regions of the face.

3.2.  Effective connectivity analysis and graph measurement
Study of brain connectivity networks provides an opportunity for the neuroscientist to develop their knowledge 
of brain function in various disorders. There are three types of connectivity in brains. The first one studies the 
existence of anatomical integration connecting areas of the brain (structural connectivity); the second refers to 
the correlation among different regions (functional connectivity); and the third is the causal interactions which 
exist between those regions (effective connectivity). The analysis of effective connectivity investigates the directed 

Figure 1.  Overview of the methodology in this study. The collected facial thermal videos were tracked and the maximum 
temperature values in each ROI created a thermal time series. Five thermal time series regarding periorbital, forehead, cheek, 
perinasal and chin areas were extracted respectively. Effective connectivity between these time series were computed by an 
extended version of the GC approach and provided input to four linear and non-linear classifier models. Furthermore, the graph 
measurement and representation of these connectivity values were demonstrated by different templates.

Figure 2.  The ROIs that were segmented based on the anatomy of human facial vasculature including periorbital (1), forehead (2), 
cheek (3), perinasal (4), and chin (5).

3 Robust locally weighted scatterplot smoothing.

Physiol. Meas. 40 (2019) 014002 (13pp)
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influence of each neuron group on the others by a recorded BOLD4 time series. In recent years, multivariate GC 
has been widely employed to assess directional influence between two or more time series in neuroscientific 
studies (Deshpande and Hu 2012, Friston et al 2013, Bellucci 2017). It was first introduced by Granger (1969) 
in terms of vector auto regressive (VAR) modelling of multivariate processes. GC is an increasingly popular 
approach for estimating the causality among paired time series. However, there are some studies in neuroscience 
which shows that neglecting the instantaneous effect of physiological variables might lead to misrepresentation 
of directed paths (Smith 2011). By utilizing methods which consider the contemporaneous causal interactions 
in addition to the lagged values, they could better return a simulated fMRI dataset (Ramsey 2014, Henry 2017).

In this study, we computed an extended version of the GC algorithm (Schiatti et al 2015) in all our recorded 
thermal time series, to assess the blood flow changes due to fight or flight responses in different facial ROIs. 
This method has been successfully used for finding network physiology (Duggento 2016, Porta and Faes 2016, 
Ren 2017). We used thermal times series, which represents the blood flow changes and reflects the physiological 
mechanism of this phenomenon (fight or flight response).

3.2.1.  Extended Granger causality (eGC)
Based on the basic concept of GC, assume that we have two time series, X and Y, and we try to predict the future 
terms of X based on the past data from X and Y. We can consider Y as the cause of X if the past term of Y would be 
useful for predicting the future term of X (Bressler and Seth 2011). The procedure for calculating the GC between 
each pair of ROI temperature signals is described below.

	 •	�The VAR model for X that depends only on previous terms of itself can be written as (1)

X (t) =
p∑

j=1

A ( j)X (t − j) + ε (t).� (1)

	 •	�The MVAR model for the dependency of X on its own past plus the past terms of Y is

X (t) =
p∑

j=1

A1 ( j)X (t − j)+
p∑

j=1

A2 ( j)Y (t − j) + ε′ (t)� (2)

where A is the model coefficient, ε (t)  is the prediction error and p  is the model order.
	 •	�Then, the GC (F ) between Y and X is

FY→X = ln
var(ε)

var(ε′)
.

� (3)
Although GC is a popular method for inferring the causality between paired nodes, there are some shortcomings 
and drawbacks which could limit the application of GC in physiological computing. Some of the literature 
has showed that without considering instantaneous causal effects, GC can lead to erroneous conclusions of 
causality in physiological systems. The main issue is the interference between time-lagged and zero-lagged effects 
in the VAR model, which has been addressed in both time domain and frequency domain analysis previously 
(Hyvärinen et al 2010, Faes and Sameshima 2014). Thus, they utilized both time lagged and instantaneous (no-
delayed) effects as an extended version of GC derived from an extended version of VAR model which accounts for 
zero-lag effects in linear regressions (Porta and Faes 2016):

X (t) =
p∑

j=0

B ( j)X (t − j) + Wj (t)� (4)

X (t) =
p∑

j=0

B1 ( j)X (t − j)+
p∑

j=0

B2 ( j)Y (t − j) + W ′
j (t)� (5)

4 Blood oxygenation level-dependent.

Physiol. Meas. 40 (2019) 014002 (13pp)
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where B(j ) is the new model coefficient based on the extended version of GC. To estimate the eGC, we need 
to compute the zero-lagged effect among each pairwise timeseries, which is a complicated process compared 
to traditional GC. For this purpose, we employed a two-step procedure to identify these interactions, which 
was previously proposed and utilized by Schiatti and her colleagues, effectively (Schiatti et al 2015). First, we 
investigated any effects between X(t) and Y(t) by computing their partial correlation matrix through the inverse 
of the covariance matrix (Marrelec et al 2006). Then, we used pairwise likelihood ratios for non-Gaussian data to 
identify the direction of the zero-lagged effect among each pairwise time series (Hyvarinen and Smith 2013). The 
eGC then can be obtained by equation (6):

eGCY→X = ln
var(Wj (t))

var(W ′
j (t))

.� (6)

The model order was chosen as three based on the Bayesian information criterion (BIC) (Rissanen 1989) model 
selection procedure. The BIC values for different model orders are reported in table 1. Another reason in choosing 
this model order is that since the frame rate of the thermal camera was set to 10 Hz, and the minimum natural 
time to respond to the stimulation of the sympathetic nervous system is about 300 ms (Pavlidis et al 2000, Gane 

et al 2011), the optimum model order is three.
The GC indexes were normalized to [0 1] for each person by the Min-Max normalization technique. Finally, 

the normalized GC between each pair of five ROIs creates a 5  ×  5 weighted directed graph for each subject. The 
values on the main diagonal of this matrix are the self-causality, which is not relevant to us here, so these values 
were replaced by zero.

3.2.2.  Node strength
One of the main advantages of graph analysis is the quantification of network features, which can be useful 
for improving the pattern recognition and graphical representations phase. Node strength is a type of graph 
parameter that could be useful in this case (Bullmore and Sporns 2009). The node strength can be calculated 
by summing up all the path weights that are connected to a node (Si =

∑
j Wij). This parameter provides an 

excellent way to show the importance of each node (ROI) as an ingoing or outgoing node. More ingoing links 
is associated with increasing temperature and blood flow in that specific node, which could correspond to the 
mechanism of fight or flight response on the face.

3.3.  Feature evaluation and ranking
To summarize the feature extraction section, based on the CQT protocol, the eight yes/no questions during the 
mock crime interrogation were recorded and the thermal data related to the relevant questions were segregated 
from the others. The effective connectivity between each paired node (ROI) was extracted over the time by the 
extended version of the GC approach, which created 20 features for 31 subjects’ thermal videos and five ROIs on 
each face. This feature vector represents the causal interactions of facial cutaneous blood flow changes related to 
deceptive behaviour. However, not all these features were discriminative or contained information regarding our 
protocol.

Feature selection is the process of ranking all features and selecting a subset using an independent evaluation 
criterion for binary classification of our dataset. This process results in reducing the dimensionality problem and 
maximizing the classification accuracy rate. In this study, the significance of each feature, based on the discrimi-
nation power to separate our two groups, were examined through four evaluation criteria. We chose absolute 
value of paired sample t-test (Li et al 2006), relative entropy (Kullback–Leibler divergence) (Kullback 1987), 
receiver operating characteristic (ROC) (Fawcett 2006) and two-sample unpaired Wilcoxon test (Mann–Whit-
ney) (Kirk 2007) to rank the GC feature set. The MATLAB Bioinformatics toolbox (Henson and Lucio 2004) was 
used to apply the above feature evaluation criteria.

3.4.  Deception classification
We assessed the causality features by their discrimination performance to evaluate the features that were 
extracted by classification accuracy rate. A feature vector containing 20 paired effective connectivity features 
was used to train four classifiers, including decision tree, K-nearest neighbourhood (KNN), linear discriminant 
analysis (LDA) and support vector machine (SVM). For the decision tree classifier, the depth of trees is controlled 
by the maximum number of splits, and this was set to 10. For KNN, we used five neighbours, and for the SVM 

Table 1.  Comparison of different MVAR model order regarding their BIC values. The larger the absolute value of BIC, the better the model 
according to this criterion.

Model order 1 2 3 4 5

BIC value −6880 −7005 −7067 −6913 −6791

Physiol. Meas. 40 (2019) 014002 (13pp)
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we used linear and polynomial kernels where the polynomial degree controls the complexity of the mapping 
space. The default value is 3 and it is generally considered suitable for most cases. Increasing the degree could lead 
to better classification accuracy for the training data, however it can also cause overfitting issues. Furthermore, 
to assess how the result of machine learning techniques will generalize to an independent new dataset, we used 
leave-one-out cross validation. In this method, all the subjects’ thermal data except one were used for training the 
classification model and the single observation was used for testing the performance of the learning algorithm. 
This process was iterated for the size of our dataset and the final classification result is the average of predicted 
labels for all subjects.

Figure 3.  Three visualization schemes for effective connectivity weighted directed graph. The left column is for truthful subjects 
and the right one is related to deceptive subjects. The node sequence is based on the ROI sequence explained in section 3.1. (a) 
5  ×  5 matrix contrast-coded diagram: dark colours represent low values and bright colours higher weights. (b) Node-link diagram 
showing the highest weights in all paths. (c) Facial ROIs with contrast coded representation of each node, averaged over all subjects. 
(d) Average of information inflow and outflow for all subjects in each deceptive and truthful group, separately. The diameter of the 
circles represents the strength of flow. Red circles denote the inflow and black circles indicate outflow of temperature in five regions 
on the face. The sequence of ROIs is the same as (c).

Physiol. Meas. 40 (2019) 014002 (13pp)
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4.  Results and discussion

4.1.  Graph representation
To show the ‘effective connectivity’ patterns among the two group participants, we employed common 
visualization techniques which had been successfully used in brain connectivity analysis previously. Considering 
that there were five nodes and 20 links, network reduction was applied to distinguish which ROIs and connections 
were most involved in fight or flight responses. For effective representation of these causal interactions and 
their differences between groups, we summed up all the causality values for deceptive and truthful subjects, 
respectively, which resulted in a 5  ×  5 matrix for each group. Figure 3(a) shows the colour-coded visualizations 
of these two weighted directed graphs in which the ROIs are the nodes and their averaged strength for all subjects 
after normalization were visualized by colour shades. It shows some significant differences between the groups: 
as in the deceptive category the values in the right part of this scheme are much lower than the left part, which 
shows the temperature information flow from the lower ROIs on the face to the upper ROIs. This supports the 
previous studies in the field, which indicate that blood moves to the forehead and periorbital areas after fight or 
flight affective stimulation (Zhu et al 2007).

Table 2 reports the mean and standard deviation values of GC matrixes for all subjects in deceptive and truth-
ful groups, separately. To emphasize the links with higher weights, the two highest averaged weights for all sub-
jects in all paths are shown in the form of a node-link diagram in figure 3(b). The edge weights are encoded by the 
thickness of arrows. As the figure shows, in the deceptive group the direction of the vectors is toward the periorbi-
tal area, while in the truthful group no meaningful direction can be observed. The importance of chin  →  perior-
bital and perinasal  →  periorbital in the deceptive group and the interaction of periorbital and forehead in the 
truthful group can also be seen in figure 3(a). The node strength values were calculated for each group (deceptive 
or truthful) and normalized and encoded by colour shades in five rectangles corresponding to five selected ROIs 
on the face in figure 3(c). It can be inferred from this figure that there are clearly opposite interactions of perina-
sal–cheek and perinasal–chin in deceptive and truthful subjects. Furthermore, the role of the periorbital area as a 
destination of blood flow and temperature is more pronounced.

We identified the total information inflow and outflow to estimate the interactions of ROIs with each other. 
The information inflow was obtained by the sum of all edge weights which direct the information from all other 
ROIs, or the total information which was received by a ROI. Similarly, the outflow information was obtained by 
the total information directed toward other ROIs. We represented the inflow and outflow values by the diameter 
of red and black circles in figure 3(d). In the deceptive group, the higher outflow temperature for the cheek and 
chin ROIs can be seen, which define the moving out of the blood and dropping the temperature in these regions.

4.2.  Validation
To evaluate the causal interaction among each pair of ROIs, a two-tailed t-test between the two groups was 
performed. The results show that there were four paths with a p  value less than 0.05 (table 3). In this table, 
the path weight deceptive (PWD) refers to eGC values that were averaged over our deceptive group and the 
path weight truthful (PWT) refers to mean causality indexes for the truthful group. The directionality of the 
effective connectivity was indicated in the first two columns. The first column is the source ROIs from which 
the temperature fluctuations affect the ROIs that are listed in the second column. We found that the overall 
directionality on the face is from the lower region ROIs, such as the chin, to the upper region ROIs, such as the 
periorbital region and forehead. Moreover, a significant interacting activation of the forehead and periorbital 
areas can be observed in this table. However, the causal connectivity of the forehead to periorbital ROIs is stronger 
than the other directions.

4.3.  The most discriminative features
Table 4 lists the output of the feature ranking phase. The first row is the feature with the highest discriminative 
power, and the last row is the worst feature. We utilized four feature ranking methods including t-test, relative 
entropy, ROC and Wilcoxon test to compare them and to find the best approach for discrimination of deception 
and truthfulness based on our CQT protocol. The dominance of forehead to periorbital and chin to cheeks stands 
out in table 4 as the highest ranked feature by all four feature selection methods.

The results of classification are reported in figure 4 and, as is shown there, the decision tree achieved the 
highest performance of discrimination in classifying deception from truthfulness. The mean accuracy rate was 
67.7, with a standard deviation of 0.47. Besides the classification performance that was shown for all features, we 
executed the same classification procedure for the selected features set, which was ranked by the relative entropy 
method. We selected the best two features from all four feature ranking methods, and the results indicate an 
effective utilization of feature selection in improving the accuracy for discrimination of truthful and deceptive 
subjects. Closer inspection of the results shows the highest classification rate was obtained by SVM with linear 
kernel, which achieved 87.1% for the selected features ranked by relative entropy method.

Physiol. Meas. 40 (2019) 014002 (13pp)
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To assess the performance of the classifiers, we report the sensitivity (true positive rate), specificity (true neg-
ative rate), precision (positive predictive value) and F-score (combination of precision and sensitivity), which 
have been widely used in machine learning literatures (Sokolova and Guy 2009). Table 5 shows the result of this 
calculation on the three best classifiers and with the three best features which were selected by the ROC feature 

selection method.
As is shown in table 5, the sensitivity and specificity results in the SVM linear classifier is balanced, which 

shows high performance of this classification model. This model achieved an accuracy of 0.87, sensitivity of 0.9, 
specificity of 0.84, precision of 0.85 and F-score of 0.87, which shows the superiority of this model to other clas-
sification models in this study.

5.  Discussion

Several studies have shown that the sympathetic branch of the autonomous nervous system can affect regional 
blood flow changes to support and prepare our body for a fight or flight response, which generally corresponds 
to an increase in muscle irrigation for rapid response such as in the periorbital area that facilitates rapid eye 
movement (Pavlidis et  al 2000, Kosonogov et  al 2017). Although extensive research has been carried out 
evaluating the performance of ROIs in facial thermal imaging for the detection of deceptive behavior and anxiety, 
little research has focused on the connection between these regions and the information that might be behind 
these connections. The initial objective of this study was to identify the network physiology of deceptive anxiety 

Table 2.  The mean and standard deviation parameters of eGC values.

Truthful Deceptive

Link mean std mean std

FH  →  PO 0.574 0.108 0.395 0.074

CK  →  PO 0.340 0.065 0.339 0.048

PN  →  PO 0.365 0.063 0.530 0.114

CN  →  PO 0.455 0.066 0.465 0.066

PO  →  FH 0.579 0.102 0.274 0.026

CK  →  FH 0.443 0.117 0.374 0.098

PN  →  FH 0.483 0.058 0.391 0.085

CN  →  FH 0.322 0.043 0.425 0.054

PO  →  CK 0.383 0.045 0.432 0.090

FH  →  CK 0.399 0.047 0.411 0.083

PN  →  CK 0.303 0.030 0.394 0.060

CN  →  CK 0.411 0.055 0.332 0.067

PO  →  PN 0.354 0.079 0.458 0.092

FH  →  PN 0.421 0.076 0.365 0.079

CK  →  PN 0.370 0.099 0.312 0.052

CN  →  PN 0.379 0.090 0.392 0.060

PO  →  CN 0.399 0.097 0.428 0.122

FH  →  CN 0.470 0.131 0.313 0.038

CK  →  CN 0.515 0.065 0.342 0.061

PN  →  CN 0.294 0.063 0.305 0.034

Note: PO: periorbital, FH: forehead, CK: cheeks, PN: perinasal, CN: chin.

Table 3.  Significant variations in effective connectivity based on the GC between selected ROIs on the face. The average of all path weights 
in deceptive and truthful subjects were reported as well.

Source Target PWD PWT p  values

Forehead Periorbital 0.32 0.57 7 × 10−4b

Chin Forehead 0.34 0.32 1.9 × 10−2a

Chin Perinasal 0.31 0.38 3.5 × 10−2a

Periorbital Forehead 0.23 0.57 4.2 × 10−2a

Note: PWD: path weights in deceptive subjects PWT: path weight in truthful subjects.
a p   <  0.05.
b p   <  0.001.
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on the facial superficial temperature patterns which are highly influenced by blood perfusion changes following 
triggering of the sympathetic nervous system. For this purpose, we used a GC approach to find the effective 
connectivity among different ROIs on the face.

The results indicate that the redirection of blood flow and temperature is from the lower part of the face to 
the forehead and periorbital regions. As table 1 shows, there is a significant difference in forehead to periorbital 
causal connectivity (p   <  0.001). Chin to forehead, chin to perinasal and periorbital to forehead also shows a sig-
nificant difference between the two groups (p   <  0.05). Interestingly, the overall directionality of the temperature 
on the face seems to originate from lower ROIs such as the chin to upper ROIs such as the periorbital and fore-
head. Moreover, significant interacting activation of forehead and periorbital areas can be observed in this table. 
However, the causal connectivity of the forehead to periorbital region is stronger than the other directions. This 
result is consistent with the physiological background that indicates that the blood flow of the whole face will 
increase after fight or flight stimulation through the carotid artery (Naqvi and Hanh 2009).

Table 4.  GC feature ranking based on four feature selection methods. The significant links are highlighted by bold.

T-Test Relative entropy ROC Wilcoxon

1 FH  →  PO FH  →  PO FH  →PO FH  →PO

2 CN  →PN CN  →FH CN  →PN PO  →PN

3 PO  →FH CN  →PN PO  →FH CN  →PN

4 CN  →FH PO  →FH FH  →PN FH  →CN

5 PO  →PN PO  →PN CK  →CN CK  →PN

6 FH  →PN CK  →PN CN  →FH PN  →PO

7 CK  →CN PN  →CK PO  →PN PO  →FH

8 FH  →CN FH  →PN FH  →CN FH  →PN

9 CK  →PN CK  →PO CK  →PN CK  →CN

10 PN  →FH CN  →CK CK  →FH CN  →CK

11 PN  →CK CK  →CN PN  →PO CN  →FH

12 FH  →CK CK  →FH PN  →CK PN  →CN

13 PN  →PO FH  →CN FH  →CK PO  →CK

14 PO  →CK FH  →CK PN  →FH CK  →PO

15 CK  →PO PN  →CN CN  →CK PO  →CN

16 PO  →CN PN  →FH PO  →CN CN  →PO

17 CK  →FH PN  →PO CK  →PO CK  →FH

18 PN  →CN PO  →CK PO  →CK FH  →CK

19 CN  →CK CN  →PO CN  →PO PN  →FH

20 CN  →PO PO  →CN PN  →CN PN  →CK

Note: PO: periorbital, FH: forehead, CK: cheeks, PN: perinasal, CN: chin.

Figure 4.  Comparison of classification accuracy rate for all features and the best two features selected with the entropy method. A 
significant improvement can be seen in the SVM classifier where the classification rate increased from 58.9% to 87.1%.
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Moreover, classification was performed to highlight the discriminatory power of connectivity features. The 
preliminarily results with all features show a successful classification rate of 67.1%. We further improved our 
classification rate to 87.1% by employing feature selection procedures. The results of our work support our 
assumption that the fight or flight response leads to quick blood flow changes in the superficial blood vessels of 
the face. The findings of this investigation complement those of some earlier studies in this field (Tsiamyrtzis 
2007, Shastri et al 2009).

Due to the heat capacity of skin tissue, skin blood flow is assumed to be about 200 ml/100 g tissue min; the 
temperature response to a step change in blood flow will exhibit an exponential curve with a time constant of 
about 30 s (Kosonogov et al 2017). Regarding our data acquisition protocol, we asked eight yes/no questions from 
every subject, and we allowed 20 s for their response to each question. Our analysis focused on question six, which 
was most relevant to the crime, and we specifically extracted the GC values based on equation (6) over this entire 
period (20 s). Therefore, it would follow any intrinsic transient time response of the facial temperature variation 
to the affective arousal stimuli.

6.  Conclusion

The main goal of this study was to identify the dynamic nature of blood flow changes effected by the sympathetic 
nervous system based on the concept of effective connectivity analysis. Our proposed framework assumes that 
there are simultaneous vasoconstriction and vasodilation on the facial cutaneous vasculature to prepare the body 
for response to a stress stimulus. For this purpose, a new facial thermal imaging dataset in a mock crime scenario 
was collected. Five ROIs on the face were selected and the GC indexes between each pair of ROIs were calculated 
respectively.

A further study could assess the effect of applying smaller time periods for finding the exact dynamic behav-
iour of this physiological phenomenon. Previously, utilizing time-delay stability (TDS) between physiologi-
cal time series has been proposed and employed to detect dynamical interactions during different sleep stages 
(Ivanov et al 2017). We believe this algorithm could effectively help us attain an intuitive grasp of the results by 
extracting the timing information about the physiological outcomes for activation of fight or flight response on 
the temperature variations in facial superficial blood vessels.

Furthermore, it would be interesting to assess the ‘functional connectivity’ as well, to explore the time 
domain correlation of thermal signals as a further investigation in the future. In addition, beyond the GC time 
domain method, there are other methods that are mostly in the frequency domain and could identify frequency-
dependent causal interactions on the face. Finally, the framework we proposed in this study can be used in other 
medical thermal imaging research to investigate the physiological mechanisms of any blood flow changes on 
cutaneous vessels.
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