Learning Synonyms and Related Concepts in Document Collections

R.A. Bustos and T.D. Gedeon

School of Computer Science Engineering
The University of New South Wales
Sydney NSW 2052, Australia
{tom | robertb}@cse.unsw.edu.au

Abstract
For very large document collections or high volume streams of documents, finding relevant documents is a major information filtering problem. Traditional full text retrieval methods can not locate documents which use specialised synonyms or related concepts to the formal query. We use a neural network approach to learn synonyms and related clusters of words defining similar concepts from a sample document set. The task is then to filter the document collection to find more of the same.

1 The Information Filtering Problem

A high-volume information source is one where the rate of document arrival makes it infeasible for an individual to examine and assess the importance of every document. Each document is a (possibly structured) piece of text which is concerned with a set of topics. Users of the information source are interested in a particular set of topics. The information filtering problem is to select, from the incoming document stream, all documents which are closely related to the user’s interests, and to select only those documents [1].

A number of researchers [2-4] have developed systems to assist with information filtering. A local example of an information filtering system is the grapeVINE system developed at the University of New South Wales [5]. The
well-known SMART information retrieval system [6], has also been applied to
the task of information filtering on Internet news. All of these systems,
have, however, require significant assistance from the user/information-provider in
creating and/or maintaining the filters, specifying categories, building synonym
lists, and so on. Hence we are interested in automatic indexing as applied to
information filtering [7].

2 Automatic Indexing

The aim of indexing text items is to (implicitly) summarise their content. The
possible approaches to this problem can be categorised according to whether they
are syntactically-based or semantically-based. One extreme, the semantic, natural
language understanding approach would construct a deep representation of the
semantic content of documents. This is an extremely difficult, complex and as
yet unresolved problem. At the other extreme, the information retrieval approach
extracts a list of key terms from the document via simple syntactic processing,
and devises a document signature based on the following significant measures
[8]:

Frequency-keyword approach
Take the complete text, remove the “stop” words, then sort all the
remaining distinct words (keywords). Count the frequency of each
keyword. Assign significance to keywords according to their frequency.

Title-keyword Approach
Compile a list of keywords from the title, subtitle and headings of the
document on the basis that the main concepts of the document are likely
to be mentioned there. Higher significance can be assigned to the
keywords from the main title, and so on.

The location method
A keyword occurring at the introduction and/or conclusion of a paragraph
is likely to be the most central to the theme of the text.

The Cue method
Is based on the notion that certain of the words, which are not keywords,
nonetheless increase or decrease the score of certain keywords, for example
by the use of “significant” versus “impossible”.

The Indicator-Phrase method
Phrases about the topic of the text, for example “the purpose of this
work,” “the main aim of this paper” lend extra significance to following
keywords.
Structure of the document

This includes header information such as the title of this section, markup languages [9] and meta-language constructs used by the source community. Examples of these deriving from the Internet, for example, are: ":-)" to indicate something is being said in jest, use of repeated "!!!" and ALL CAPITALS for emphasis, and so on. Such information affects the weight attributed to key phrases in its vicinity.

The above significance measures form the indexing parameters for an automatic indexer. Current automatic indexing mechanisms assume that there is a best way for combining the significant measures to arrive at a particular signature for a document. Yet, the criteria for arriving at a particular combination is based on intuition rather than active observation of user behaviour. For example, the linear combination of such diverse indications of significance would require the assumption that each of them is providing independent evidence, which can not be readily justified to be correct. The problem of determining the most appropriate way of combining these indexing parameters appears to be amenable to solution using a neural network approach which can learn an appropriate composition function. This involves initial training of the neural network with the inputs which are the individual indicators of significance, and the desired output is the level of relevance of a document as judged by the user reader based on current interests. The hidden neurons in the network could learn the composition function required to best match the inputs (the significance measures) and the outputs (the relevance of the examples).

The first significance measure listed is a global measure, but has been used most extensively, and successfully in the past [10]. We use this method to find consistent indices in full text as follows.

The set of documents with keywords already known is used as a training set in supervised (Hebbian) learning, and their L link weights updated. We retain from prior work the concept of Textual-Associative (T-A) extra links between words and documents to indicate the statistical relationship between each document and the words it contains. This involves the size of the document, frequency of word occurrence, and the overall rarity or commonness of the word. These factors are aggregated to produce the linking T-A weight.

Weight correlations in the multi-dimensional space of input patterns have been shown to be a good indicator of the difference of functionality of neurons [11]. The most consistent index generation will take place when the weights linking word and document neurons are most different, as the words then can best distinguish between different documents, via the generalisation of the keywords it has learnt. To discover the keywords for a new document, we dynamically add an extra neuron to the trained network. The extra document neuron has weights derived from its similarity (correlation) to the training documents (see Figure 1).
This extended neural network is iterated (cycled) until convergence, when the word neurons which are active indicate the keywords generated for the new document. These keywords for the new document are used to determine whether it is to be filtered or retained.

3 Description of study

We wish to train a neural network to reproduce the word frequency measure component of a retrieval index.

A collection of 306 documents (being sections of a legal textbook) comprising of some 1,901 different words was chosen. By removal of stop words and stemming, the number of words was reduced. All words which occurred only once or twice in the whole document collection were removed, further reducing the number of words to some 831 words. This number of words was still too large to input into a supervised training neural network, so some other means of reducing the number of words needed to be found. All words occurring only once or in more than half the documents were removed leaving 200 words. From these, 75 words were selected manually looking for words with a moderate frequency and moderate document occurrence.

The network topology is shown in Figure 2. Note that not all connections are shown. The network was then trained normally using error back-propagation.
When being used for retrieval, it is necessary to create a representation of each document in the collection for comparison to the query vector. For these experiments we have used the \([12]\) technique of inverse document-term frequency weighting (IDTW) to produce these vectors.

This technique (for reducing the size of vectors to be used in the comparison) seeks to identify the most important words in the collection by examining the cumulative total of word weights for each document. This was done by totalling the word-document significance values for each word. This resulted in a second short list of 75 words which were likely to be useful for distinguishing documents in the given collection.

The experiment is to use the title-keyword measure, the location measure and the cue measure as training input to a network, and attempt to predict the frequency-keyword measure. The network will learn the clusters of words forming related concepts, and will produce significant output activations for words which do not occur in documents if enough of the rest of the cluster is present. In effect, the network will be learning to perform a word cluster completion task.

The neural network topology we have chosen has three inputs for each of the
75 words. The network is using a relatively small proportion of the document texts as its input. Further, all of these measures can be calculated locally and do not require global document collection information as is required for the frequency-keyword calculations. This may provide efficiency gains in the future in highly parallel implementations.

4 Results

There are two ways we can test the network produced using comparing lists of documents retrieved.

The more difficult test is to use each document as a query to find similar documents. We compare its index (or vector) in the 75-dimensional space formed by the frequency-keyword values of the words to the vector of all of the other documents to determine which of these are similar. The top ten similar documents using the actual frequencies to form the vector (the traditional method) are compared to the top ten retrieved using the network’s outputs as the components of the index vector. The average overlap is 60.9%. That is, six of the top ten documents in both lists are identical.

The other comparison that can be made is using the original queries which are relevant to the short list of 75 words that were used. The queries are converted into a 75-component vector, and compared to the vectors for the 306 documents, using both the frequency-keyword values and network output values as before.

The average overlap in this case is 100%. That is, we have shown that the neural network can reproduce the behaviour of the frequency-keyword vector retrieval using only the title, location and cue information, in a specialised subset of the document domain. The previous result of 61% demonstrates that some generalisation to the overall document domain was also taking place.

We have also applied a simple analysis technique to the weight matrix of the neural network to determine the relative importance [13] of the three input measures, as shown in equation (1):

$$C_{\text{title}} = \frac{\sum_{i=1}^{75} \sum_{j=1}^{4} |W_{\text{title},ij}|}{\sum_{h=\text{title}}^{1} \sum_{i=1}^{4} \sum_{j=1}^{1} |W_{h,ij}|} \cdot 100\%$$ (1)

This is calculated by summing the absolute magnitude of the weights from a particular measure to the hidden units, and dividing by the sum of all the weights connecting to the hidden units.
Table 1 shows the results for the relative importance of the three kinds of syntactic processing derived significance information represented by the inputs, as produced for the network before and after normal back-propagation training.

Table 1: Relative importance of inputs

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Location</th>
<th>Cue</th>
</tr>
</thead>
<tbody>
<tr>
<td>before training</td>
<td>32.4%</td>
<td>33.5%</td>
<td>34.2%</td>
</tr>
<tr>
<td>trained, simple choice</td>
<td>14.0%</td>
<td>40.7%</td>
<td>45.3%</td>
</tr>
<tr>
<td>trained, IDTW choice</td>
<td>22.8%</td>
<td>37.4%</td>
<td>39.8%</td>
</tr>
</tbody>
</table>

Before training the relative significance of the three measures is the same, as expected due to the random initialisation of network weights.

After training, the Cue method is shown to be the most important, closely followed by the location method. The title method in this domain is relatively unimportant. This accords with observations regarding the quality of the titles of the documents used, which all seem to have fairly similar words in their titles. This clearly demonstrates our contention that the relative importance of various measures will differ across domains. In many domains it is accepted that title keyword measures are important.

The ‘better’ choice of words using the cumulative inverse document term weighting scheme produced slightly higher contribution for the Title method, however the overall greater significance of the Location and Cue methods remains, as well as the slightly greater relevance of the Cue method.

5 Conclusion

For very large document collections or high volume streams of documents, finding relevant documents is a major information filtering problem. We use a neural network approach to learn synonyms and related clusters of words defining similar concepts from a sample document set. The task is then to filter the document collection to find more of the same.

The network will learn the clusters of words forming related concepts, and will produce significant output activations for words which do not occur in documents if enough of the rest of the cluster is present.

We contend that the difference in the predicted and actual frequency keyword values are the most significant measure of the usefulness of any potential cluster member words found.
References

