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ABSTRACT

It has been estimated that some 70% of applications of neural networks use some variant of the multi-layer
feed-forward network trained using back-propagation. The use of such networks has a number of problems, including
the speed of training, and the avoidance of local minima. Here we report on a series of experiments to test the
hypothesis that a reduction in the complexity of a training set can improve learning. We have found that a simple
heuristic method of reduction of the size of a training set can produce a trained network with improved performance on
the validation test set.

ASSUMPTIONS

In this paper we will assume a multi-layer feed-forward network trained using back-propagation, and will use the
general expression “neural network” to mean such a network. All connections are from units in one level to units in the
next level, with no lateral, backward or multi-layer connections. Each unit is connected to each unit in the preceding
layer by a simple weighted link. The network is trained using a training set of input patterns with desired outputs, using
the back-propagation of error measures. The network is tested using a validation set of patterns which are never seen
by the network during training and thus can provide a good measure of the generalisation capabilities of the network.
The separation of the total set of patterns into training and test sets is generally at random to avoid introducing
experimenter bias.

By back-propagation we mean the general concept of developing the error gradient with respect to the weights, and
not restricted to the original gradient descent method. In the examples we use here, we have used the basic
sigmoidal logistic activation function y = (1 + e-1)-1, though this is not germane to the substance of our results.

INTRODUCTION

A number of contributions in the domain of pruning of neural networks have shown that a reduction in network size to
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-----------------------------------------------------------------------------------------
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0275000 3400      1 F    T10-yh     2.5  3    3   18    4.5  3   14   18.5 24    2.5  68  
0275105 3420      1 F    T9-ko      3    4    2.5 17   17    3    5   14   10    2.4  56  
0275139 3420      1 F    T4-ko      0    5    2.5 18   17    3    6   10   28    2.4  57  
0275164 3400      1 F    T2-no      .    3    1.5  8.5  .    1.5  .    .   10.2  2.4  44  
0275279 3420      1 F    T2-no      3    3    .   19   18    2    5.5  4   20    2.4  60  
0275282 3400      1 F    T4-ko      2.5  3    3   19    .    3    .   10   16    2.4  51  
0275298 3400      1 F    T9-ko      3    5    2.5 17   18    3    8.5 18   21    2.4  61  
0275315 3420      1 F    T10-yh     2    3    0.5 14    .    1    .    .    7    2    26  
0275567 3400      1 F    T10-yh     .    3.5  2.5 19.5  .    2.5  .    .   11.5  .    36  
   .
   .
Table 1: Raw data

minimal size can improve the generalisation capabilities of the neural network. The seminal work on pruning by
inspection was by Sietsma and Dow (1991); more recently Gedeon and Harris (1991a) introduce an automatable
method called distinctiveness analysis for network size reduction, and include a survey of other work in this area.

Kruschke (1989) has shown that a reduction in the dimensionality of the space spanned by the hidden unit weight
vectors (without reducing the number of hidden units) also improves the generalisation capabilities of a neural
network.

The use of validation sets to stop training before generalisation degrades is now well established (eg, Morgan and
Boulard, 1990).



The commonality between the above methods is of course the introduction of some constraints which limit the
resources available to the network and force it to generalise rather than learn the specific patterns presented. This sets
the scene for our hypothesis that a reduction in the number of training patterns may be usable as a resource limiting
constraint in a similar fashion to improve generalisation.

A suggestion that more is not better when it comes to the number of training patterns can be found in Chauvin
(1990), citing the Runge effect where an overfitting error can increase with the size of the sampling data set.

Finally, a cautionary note, in that there are dangers in reducing the size of the training set. In the realm of reducing
network size, Gedeon and Harris (1991b) have discussed the relationship between the minimal size of a neural
network and the (lack of) robustness of the solution. Thus, while the use of a validation set to determine when to stop
training is in general a useful idea, it must be noted that it is essential to use a validation set when we reduce the
number of training patterns. This is because the time it would take to overtrain the network (number of epochs of
training) is also reduced in parallel with any speeding up of the learning done.

APPLICATION DOMAIN

The experiments were performed on a sample of 153 patterns taken from the class results of an undergraduate
Computer Science subject COMP1111 at the University of New South Wales.

The raw data consisted of the results from a number of laboratory exercises, assignments and a mid-term quiz all of
which compose 40% of a student's mark for the subject. The exam mark which comprises the remaining 60% has
been omitted, and the final aggregate mark is provided.
The goal of the exercise is to predict the final mark based on the partial marks. The educational imperative for such
prediction is to be able to provide for students a reliable prediction of their final mark based on their current
performance. This will of course be expected to invalidate the prediction in that students with low predicted final marks
will take extra steps to improve their preformance. A sample of the raw data is shown in Table 1.

The raw data has been pre-processed to produce values in the range from 0 to 1, with adaptive banding being used
rather than a simple mapping onto the range. Thus, the column for lab10 in the raw data in Table 1, becomes the fifth
column from the right in Table 2 with the values from 2.5 and above being distinguished from the most common
value of 2.4, and so on. The final mark is banded into the ranges for a Distinction, Credit, Pass or Fail and represented
by a 1 in the appropriate output category.
   .
   .
p0275000 0.35 1.00 1.00 0.25 0.70 0.40 1.00 0.80 0.60 1.00 0.70 1.00 0.53 1.00 0 1 0 0
p0275105 0.35 1.00 1.00 1.00 1.00 0.70 0.70 0.40 1.00 1.00 0.30 0.70 0.22 0.50 0 0 1 0
p0275139 0.35 1.00 1.00 1.00 0.00 1.00 0.70 0.80 1.00 1.00 0.30 0.70 0.62 0.50 0 0 1 0
p0275164 0.35 1.00 1.00 0.50 0.00 0.40 0.00 0.20 0.00 0.00 0.00 0.00 0.23 0.50 0 0 0 1
p0275279 0.35 1.00 1.00 0.50 1.00 0.40 0.00 0.80 1.00 0.40 0.30 0.30 0.44 0.50 0 0 1 0
p0275282 0.35 1.00 1.00 1.00 0.70 0.40 1.00 0.80 0.00 1.00 0.00 0.70 0.36 0.50 0 0 1 0
p0275298 0.35 1.00 1.00 1.00 1.00 1.00 0.70 0.40 1.00 1.00 0.30 1.00 0.47 0.50 0 0 1 0
p0275315 0.35 1.00 1.00 0.25 0.40 0.40 0.00 0.40 0.00 0.00 0.00 0.00 0.16 0.00 0 0 0 1
p0275567 0.35 1.00 1.00 0.25 0.00 0.70 0.70 0.80 0.00 0.70 0.00 0.00 0.26 0.00 0 0 0 1
   .
   .
Table 2: Processed data

The actual pre-processing used does not affect our results, and are provided in Table 2 in the interests of
completeness.

RESULTS

The network architecture used has 14 input units corresponding to the features of the processed student mark data, 5
units in the hidden layer, and 4 output units. This network size produces acceptable predictions of the final mark. As
mentioned earlier, what we mean by acceptable in this case is being reported elsewhere.

The original set of 153 patterns is divided at random into 53 patterns to form a validation test set which will never be
seen by the network during training. The remaining 100 patterns form the starting training set, which is later reduced in
size. For each run, the same set of 53 patterns is used to validate the network trained by both the full size training set
and the reduced size training sets. In each run, the same starting weights are used when training with the different
sized training sets. This is to minimise the effects of the initial random functionality of the network unit weights.

The network was inititally trained for 1,000 epochs on the full 100 pattern training set. The individual training patterns
were mapped onto a one-dimensional adjacency measure using their contribution to the total sum of squares. This
adjacency was used as the base to make arbitrary assumtions as to sizes of clusters of training patterns. Thus,
assuming an homogenous distribution of clusters of pairs of patterns, the training set can be reduced to half its size.



Clearly, this rough heuristic is unlikely to hold in general, nevertheless the results were encouraging as shown below.

We have performed 15 runs of each configuration, with different initial weights. A sample of the results are displayed
in Table 3, with the prediction accuracy being represented by the total sum of squares (tss) value, the lower tss the
better the prediction.
           -sec6-   -sec7-   -sec8-   -sec9-   -sec10-

-cont6-    37.980   28.719   34.488   35.549   40.820

-cont5-    30.417   46.022   34.858   36.695   43.113

-cont4-    44.050   49.013   49.568   32.536   36.981

-cont3-    42.258   52.686   43.832   46.727   42.592

-cont2-    37.216   48.361   36.547   35.132   43.892

-cont1-    36.713   41.121   55.530   40.834   29.800

Table 3: Prediction accuracy in terms of tss for an
         example set of 5 runs

Subsequent lines in Table 3 are the tss values for a series of smaller training set sizes. All of the training sets are
different reductions of the original 100 pattern training set, and have been trained for 1,000 epochs. The ad-hoc nature
of the reduction used accounts for the inconsistently varying results for smaller pattern set sizes. The success of the
method is shown by the low error rates observed at the bottom of the table. Table 4 summarises the results for the
experiments.

Note that the values for the total sum of squares (tss) are the minima of the number of runs done and can 
be from different runs. Given that we have used a simplistic method to reduce the number of patterns we did not
expect a consistent improvement, nor the degree of improvement possible. The reduction in tss value and the
improvement in prediction when half of the pattern were removed is significant. Further, the result for 25 patterns is
actually better than or equal to the majority of results found by the 5 networks displayed in Table 3 on the full 100
training patterns.
Number of Patterns Tss value

100         28.719
 80         27.379
 67         30.477
 50         24.777
 33         32.903
 25         34.688

Table 4: Minimum tss values for
         numbers of patterns

Finally, it must be noted that a statistical evaluation of the same data by an independent statistical consulting group
reported that there was insufficient data present for reliable statistical predictions to be made. Nevertheless, one of
the networks we have produced performs very well indeed. The difference between the best statistical result and
that from the best neural network prediction we have produced is being reported elsewhere.

TESTING

Fifty patterns were set aside as a test set and were never used in training. The remaining 100 patterns were used to
create 50 sets of 70 pattern training sets at random. Fifty networks for each of the Absolute Criterion, LMS, LTS,
Bimodal Distribution Removal (Slade and Gedeon, 1993), and Heuristic Reduction (Gedeon and Bowden, 1992)
were trained, as well as normal back-propagation. The integrated bias and variance were then calculated. The results
for the latter 2 cases are shown here.
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Figure 1: Heuristic Reduction

Heuristic Pattern Removal produces an interesting result. The asymptotic nature of neural networks indicates that
network performance becomes optimal as the size of the training set approaches infinity. Yet, measurements of bias
and variance for training on a half size training set show the Heuristic method performs as well as the Bimodal
Distribution Removal method. Bias and variance are very sensitive to the complexity of the data and by how much
the training set is reduced every 1,000 epoch. This can be seen by the slope of the variance plot in Figure 1.
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Figure 2: Normal back-propagation

CONCLUSION

We have shown that a simple heuristic method can be used to reduce the size of the training pattern set
considerably, with an improvement of performance on the validation set. This improvement is most likely due to the
simplification of the error surface in pattern space traversed by the network as it attempts to locate the minimum. That
the minima found after simplification can be better than those found with the original pattern set indicates that none of
the significant features of the original pattern set have been lost. A reduction in the number of training patterns also has
possibilities in speeding up the training of feed-forward networks as the time taken to learn is related to the number of
patterns used during training.

REFERENCES

Chauvin, H "Dynamic Behaviour of Constrained Back-Propagation Networks," Proc. NIPS-2, pp. 642-649, 1990.

Gedeon, TD & T.G. Bowden, TG, “Heuristic Pattern Reduction,” Int. Joint Conf. on Neural Networks, Beijing, vol. 2,
pp. 449-453, 1992.

Gedeon, TD & Harris, D, “Network Reduction Techniques,” Proc. Int. Conf. on Neural Networks Methodologies and



Applications, AMSE, San Diego, vol. 2, pp. 25-34, 1991a.

Gedeon, TD & Harris, D, “Creating Robust Networks,” Int. Joint Conf. on Neural Networks, Singapore, vol. 3, pp.
2553-2557, 1991b.

Kruschke, JK, “Improving generalization in back-propagation networks with distributed bottlenecks,” Int. Joint Conf. on
Neural Networks, vol. 1, pp. 443-447, 1989.

Morgan, N & Boulard, H "Generalisation and Parameter Estimation in Feedforward Nets: Some Experiments," Proc.
NIPS-2, pp. 630-637, 1990.

Sietsma, J, Dow, RF, “Creating Artificial Neural Networks That Generalize,” Neural Networks, vol. 4, pp. 67-79,
1991.

Slade, P & Gedeon, TD “Bimodal Distribution Removal,” Proc. IWANN Int. Conf. on Neural Networks, Barcelona,
1993.


