
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 13, NO. 6, DECEMBER 2005 809

Fuzzy Rule Interpolation for Multidimensional Input
Spaces With Applications: A Case Study
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Abstract—Fuzzy rule based systems have been very popular in
many engineering applications. However, when generating fuzzy
rules from the available information, this may result in a sparse
fuzzy rule base. Fuzzy rule interpolation techniques have been es-
tablished to solve the problems encountered in processing sparse
fuzzy rule bases. In most engineering applications, the use of more
than one input variable is common, however, the majority of the
fuzzy rule interpolation techniques only present detailed analysis
to one input variable case. This paper investigates characteristics
of two selected fuzzy rule interpolation techniques for multidimen-
sional input spaces and proposes an improved fuzzy rule interpola-
tion technique to handle multidimensional input spaces. The three
methods are compared by means of application examples in the
field of petroleum engineering and mineral processing. The results
show that the proposed fuzzy rule interpolation technique for mul-
tidimensional input spaces can be used in engineering applications.

Index Terms—Fuzzy rule interpolation, multidimensional input
spaces, sparse fuzzy rules.

I. INTRODUCTION

WHEN fuzzy systems are applied to typical engineering
problems, the fuzzy rule base is constructed using any

available information. The information can be in the form
of measured data or might come from some computational
simulation. The fuzzy systems thus created are normally based
on classical inference techniques of fuzzy control originally
proposed by Zadeh [1], Mamdani [2], and Takagi and Sugeno
[3]. Fuzzy models based on these theories have been producing
promising results in control applications with the limitation
of not having more than five to ten state variables. However,
in many cases, the information provided is not enough to
construct a complete and comprehensive fuzzy rule base or, its
complexity does not allow a tractable approach; these problems
require different techniques of reasoning.

In the case when a fuzzy rule base contains gaps, which is
called sparse rule base, classical fuzzy reasoning methods can no
longer be used. This fact is due to the lack of traditional inference
mechanism in the case when observations find no fuzzy rule to
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fire. This cannot be allowed when using a fuzzy system in any
engineering application and such a fuzzy system is considered
useless. Containing gaps could be a major drawback from using
fuzzy systems in many engineering applications. Fuzzy rule
interpolation techniques provide a tool for specifying an output
fuzzy set even when one or all of the input spaces are sparse.
Kóczy and Hirota (KH) [4] introduced the first interpolation
approach known as (linear) KH interpolation (named after its
inventors), which was the basis of many other interpolation
techniques described in Section II. These methods determine the
conclusion by its -cuts in such a way that the ratio of distances
(in some sense) between the conclusion and the consequents
should be identical with that among observation and the an-
tecedents for all important -cuts, e.g., breakpoint levels. In
most fuzzy applications, the input vector involves more than one
variable, therefore the characteristics of fuzzy rule interpolation
for multidimensional input spaces is of much interest [5], [6].
This paper presents a new technique to perform fuzzy rule inter-
polation for multidimensional input spaces referred to as IMUL.

The paper is organized as follows. Section II gives an
overview of fuzzy rule interpolation techniques. Section III
presents the extension of the basic fuzzy rule interpolation
theories to be used for multidimensional input spaces. Sec-
tion III finishes with the presentation of the new technique.
Section IV presents results of the new technique. Section IV-A
presents the results of IMUL as compared with results of MACI
and KH methods; the latter two are the most used fuzzy rule
interpolation techniques. Section IV-B presents application of
these three methods to petroleum engineering and Section IV-C
presents results with an application to mineral engineering.
Finally, some concluding remarks are stated in Section V.

II. OVERVIEW OF FUZZY RULE INTERPOLATION TECHNIQUES

In this section, we give an overview of fuzzy rule interpola-
tion techniques based on [7], with special emphasis on the first
published (and most commonly used) -cut-based fuzzy inter-
polation, termed KH interpolation (Section II-C).

A. Fuzzy Rule Based Interpolation Techniques

The classical inference methods in fuzzy control (Zadeh,
Mamdani and Sugeno) deal with dense rule bases, where the
input space is completely covered by the rule premises. If the
universe of discourse is not completely covered by the rule
antecedents it can happen that for certain observation no rule
is fired. Fuzzy rule interpolation, proposed first by Kóczy and
Hirota [4], is an inference technique for fuzzy rule bases, when-
ever the antecedents do not cover the whole input universe, i.e.,
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for so-called sparse fuzzy rule bases. Let us now consider the
reasons that could lead to sparse or incomplete rule bases.

1) Fuzzy inference methods are often criticized when the
number of inputs is large (over 10): the size of the rule
base and the complexity of the inference algorithm grow
exponentially with the number of inputs. A possible solu-
tion to break down the complexity is the omittance of re-
dundant rules. This can, however, lead to incomplete rule
bases [8].

2) Incomplete knowledge about the modeled system—re-
gardless of the technique of construction—can result
in sparse rule bases. At the beginning, on the basis of
Zadeh’s initial concept about linguistic variables, fuzzy
systems were constructed from linguistic IF-THEN rules
provided by human experts. More recently, learning tech-
niques have increasingly been developed and applied to
the construction of fuzzy IF-THEN rules from numerical
sample data. Both methods of construction can result
in sparse rule bases. In the former case, an incomplete
rule base can be the consequence of missing expertise
for certain system configurations and state space regions.
In the latter case, it may happen that sample data do not
represent sufficiently some regions of the input domain.

3) Even originally dense rule bases (inputs are completely
covered by rule premises) can turn to be sparse: by tuning
the rules of a dense rule base, rule premises can be par-
tially shifted and shrunk in such a way that the tuned
model will also contain gaps [9]. The reason of this phe-
nomenon is that tuning by learning is usually concentrates
to typical, frequently occurring situations, which are rep-
resented by the majority of training data/expert knowl-
edge.

4) “Gaps” can be defined between rule bases intentionally, in
order to avoid too high complexity in very large systems.
Hence, fuzzy interpolation techniques have important role
in hierarchically structured systems [10].

The rule bases containing gaps require completely new tech-
niquesof reasoningandcontrol ascompared to theoriginalZadeh
(CRI), Mamdani (Larsen, etc.), and TS-algorithms. The family
of methods works well only if the system has the “nice” property
of not behaving too unexpectedly in areas where the model does
not cover. Luckily, in practice such a nice behavior might be ex-
pected in most cases. The class of systems where the following
algorithms can be applied termed “interpolative system.”

B. A Survey of Interpolation Techniques

The first result published in this field was given by Kóczy and
Hirota [4]. It is applicable to convex and normal fuzzy (CNF)
sets. It determines the conclusion by its -cuts in such a way that
the ratio of distances between the conclusion and the consequents
should be identical with the ones between the observation and the
antecedents for all important -cuts. The fundamental equation
of rule interpolation [FERI, see also Section II-C, (2)] describes
the connection between the ratios of distances for -cuts. FERI
is in accordance with the gradual semantic interpretation, pro-
posed first by Dubois and Prade in 1992 [11], “the more similar
is the observation to an antecedent the more similar the conclu-
sion should be to the consequent corresponding to the given an-

Fig. 1. Abnormal conclusion generated by the KH technique.

tecedent.” This semantic rule interpretation is an improvement
of the approximate analogical reasoning technique proposed by
Türkşen [12] “the closer the observation is to an antecedent the
closer the conclusion should be to the corresponding consequent
of the given antecedent.” In this work, Türkşen defined the dis-
tance between the sets by the measure of overlapping [13] after
a very thorough overview and evaluation of various definitions
of distance between fuzzy sets. The Revision Principle devel-
oped by Ding et al. in 1993, which constructs the conclusion
by means of a so-called semantic curve [14]–[16], can be con-
sidered as another antecedent of rule interpolation.

The main purpose to introduce fuzzy rule interpolation was the
great computational complexity requirement of classical fuzzy
reasoning methods [8], [17]. Rule interpolation is efficient if the
shape of the rules is simple, most frequently piecewise linear,
even, triangular or trapezoidal, since in these cases the rules,
i.e., the fuzzy sets involved in them, can be described with only a
few characteristic points. It is a natural demand that the method
should determine the conclusion based only on a sufficient
number of -cuts, namely, based on the characteristic points (or
breakpoint levels) of the involved sets, because otherwise the
calculation becomes too “expensive”. Although it could be ex-
pected that the conclusion preserves the linearity of the premises,
it is not satisfied in general, i.e., the shape of the conclusion can
be different from the shape of the other involved sets. Kóczy and
Kovács [18], [19], Kawase and Chen [20], and Shi and Mizumoto
[21]–[23] examined the condition for preserving linearity for the
generated conclusion. The investigations give estimates for the
linear deviation error, which turns out to be considerably low for
most practical cases. This means that it is sufficient to calculate
the conclusion only for characteristic points.

Another problematic point of the original method that stim-
ulated researchers to modify the original KH rule interpola-
tion approach is the following. The KH interpolation technique,
though it shows advantageous properties in several aspects, has
the shortcoming that under certain configurations of the input
fuzzy sets (too heterogeneous shape) the calculated conclusion
is abnormal, i.e., not directly interpretable or even completely
empty as the fuzzy set obtained as conclusion shown in Fig. 1.
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Fig. 2. Formation of solid in the input dimension and determination of A .

Now we give a brief overview of the alternative fuzzy rule in-
terpolation techniques proposed to solve this problem.

The method proposed by Vass et al. [4], [8], [24] decreases
the applicability limit of the method, but does not eliminate it
completely. Authors compute the conclusion based on the dis-
tance of the central points and the supports of fuzzy sets.

Conceptually different approaches were proposed by Baranyi
et al. [25]–[28] based on the relation of the fuzzy sets and by
Baranyi et al. in 1998 [29] based on the semantic and inter-
relational features of fuzzy sets. They determined the location
(central point or most typical point) of the conclusion based on
the ratio of the centers of the observation and the antecedents.
After all involved sets are rotated by 90 around their centres,
and by connecting the corresponding points of antecedents and
consequents, two solids can be formed: one in the input and one
in the output dimension. On Fig. 2 we depicted the solid formed
in the input dimension. The solids are cut at the centres of the
observation and at the determined location of the conclusion,
respectively, which results in the set in the input space and in
the set in the output space. Then, a revision function is used
to determine the final conclusion based on the similarity of
the observation and the “interpolated” observation . A
practically applicable technique for determining the exact shape
of this solid is described in detail in [28].

These methods have numerous advantages, such as

— they always give an interpretable conclusion as a “real”
fuzzy set, i.e., any abnormal shape of the conclusion is
precluded;

— they can be applied to arbitrary shaped fuzzy sets, i.e.,
neither convexity nor normality is required, only the
centres of the sets are supposed to be ordered. It means
that some part of the observation can even exceed the
support of antecedents;

— versions specialized for piecewise linear fuzzy sets
produce piecewise linear fuzzy set as conclusions,
hence the shape of the sets at hand is preserved.

The only problematic point of these methods is that the calcula-
tion of the revision function even for the special piecewise linear
case needs considerable time, thus one of the most important
reasons for inventing fuzzy interpolation techniques is violated
or at least partly neglected.

Another fuzzy interpolation technique was developed in 1996
by Gedeon and Kóczy [30] founded on the preservation of “rel-
ative fuzziness,” a term referring to the size a fuzzy set’s flanks
(see also Fig. 5). This approach cannot be applied if any of the

consequent sets are crisp, because of a zero divisor in the for-
mulae. This technique was extended by Kóczy in 1997 [31],
which was suitable for the above mentioned crisp sets, as well.
The authors also showed its immediate connection with FERI.
These techniques are applicable also to CNF sets.

In 1996, Kovács and Kóczy proposed yet another interpola-
tion technique based on the approximation of the vague envi-
ronment of fuzzy rule bases [32]–[34].

A further modified variant of the original technique was pub-
lished by Tikk and Baranyi in [7], which was termed modified
alpha-cut based interpolation (MACI). MACI technique solves
the abnormality problem effectively, while it maintains the ad-
vantageous properties of the original approach. In [35] the au-
thors show that MACI can be applied to arbitrary shaped fuzzy
sets, i.e., even the normality of sets can be relaxed. Obviously,
the complexity of the involved fuzzy sets increases the calcula-
tion need required to determine the conclusion.

We remark that recently Jenei gave an axiomatic characteriza-
tion of fuzzy rule interpolation [36]–[38]. This work is however
more theoretical and does not propose any easily implementable
algorithm, although it completely excludes abnormality in the
conclusion.

C. The KH Rule Interpolation Technique

Let us introduce the concept of -cut-distance-based KH rule
interpolation. Every fuzzy sets can be approximated with the use
of the family of its -cuts. Theoretically all infinite many cuts
should be calculated for the approximation that would yield a
combinatorial explosion. In most practical cases, however, if the
membership function is piecewise linear, it is often sufficient to
calculate its -cuts for only a few important or typical values
[18], [21], [22], e.g., in the trapezoidal or triangular cases for

and .
The KH rule interpolation algorithm requires the following

conditions to be fulfilled: the fuzzy sets in both premises and
consequences have to be CNF sets with bounded support, having
also continuous membership functions. When input and output
universes are bounded and gradual—guaranteeing the existence
of a total ordering on them—a partial ordering can be introduced
among CNF sets of the input by means of their -cuts

and

i.e., in words, precedes . Here, denotes the set of all
CNF sets of .

Based on comparable fuzzy sets, the concept of fuzzy dis-
tance can be introduced, and this reduces the problem of de-
termining conclusion in sparse rule bases to the application of
classical function approximation techniques like interpolation
or extrapolation (more details in [39]).

The simplest of these techniques is the linear interpolation of
two rules for the area between their antecedents. This can be
applied if the observation is located so that

and (1)
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Fig. 3. Location of involved fuzzy sets.

with an apparent ordering . Here and
form the pair of flanking rules for the observation (see
Fig. 3).

Using the concept of fuzzy distance ,
FERI can be written as

(2)

where (the consequent) is unknown. After decomposing (2)
for all (in practice only breakpoint levels are consid-
ered), it can be solved for every independently.

The following formulas are the solution for the linear KH in-
terpolator ( and denote “lower” and “upper” fuzzy distance,
respectively)

(3)

The two families of solutions determine a fuzzy set , if
they satisfy for every , cf. [39], and
also and
whenever . In certain cases these conditions are not
satisfied and, hence, we obtain a conclusion that is not directly
interpretable as a fuzzy set or that is completely empty. This
is the most important disadvantage of the linear KH technique
apart from the restriction on the shape of the input sets, which
is rather intuitive for most real applications.

In order to alleviate this problem, conditions were imposed
by Kóczy and Kovács [18], Kawase and Chen [20], and Shi
and Mizumoto [21], [23] so as to yield a real fuzzy set (see
also the survey on other proposed approaches in the previous
Section II-B).

The principle of interpolating two rules can be extended in
many different ways. One of the most obvious extensions of the
interpolation of two rules is the interpolation of rules ( and

flanking the observation in the sense of ), where pairs of
flanking rules are considered, and the further the elements of
the pair from the observation are located, the less weight the re-
spective consequents play in the construction of the conclusion.
It is obtained from the solution of (3) repeatedly for the pairs

Fig. 4. Notations used.

of points and by averaging the various solutions in a weighted
way. The overall solutions are

(4)

More details on this technique can be found in [4]. It was shown
in [40] that the generalized form of KH interpolator is a mathe-
matically stable technique, i.e., independently of the location of
the fuzzy sets being the basis of the calculation, the KH inter-
polator is able to approximate “well” any continuous function;
i.e., KH interpolator possesses a practically enhanced version of
the general universal approximator property.

III. FUZZY RULE INTERPOLATION FOR MULTIDIMENSIONAL

INPUT SPACES

In real fuzzy applications, the input vector involves more than
one variable, therefore the characteristics of fuzzy rule interpo-
lation for multidimensional input spaces is of much interest. In
fact, the advantages of using sparse rule bases manifest only
with a few to a few dozen variables really. In this paper, we will
limit ourselves to the analysis of only three techniques that can
be extended for use in multidimensional input spaces: the orig-
inal KH fuzzy interpolation technique [4], the modified -cut
fuzzy interpolation (MACI) technique [7] and finally the new
improved fuzzy interpolation technique for multidimensional
input spaces (IMUL) proposed here. Fig. 4 shows the notations
for two trapezoidal rules used in the following analysis.

A. KH Fuzzy Rule Interpolation for Multidimensional Input
Spaces

The KH fuzzy interpolation can be extended to multidimen-
sional input spaces, after normalization of the dimensions by di-
viding the values in by , for every , thus
obtaining ,
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by using the Euclidean distance on all input spaces. For input
dimensions, the following hold.

The right core point for trapezoidal membership

(5)

where

and

The right flank support point is defined by the expression,

(6)

where

and

The left flank support and left core points can be calculated in a
similar way.

B. MACI Fuzzy Rule Interpolation for Multidimensional Input
Spaces

MACI works with the vector description of fuzzy
sets. The fuzzy set is represented by a vector

, where are the char-
acteristic points of , and is the reference point of with
membership degree one. This means that ,
and are the left flank and right flank of ,
respectively. Similarly as in the case of KH interpolation, the
basic technique of MACI is extended to multidimensional input
spaces using Euclidean distance on all input spaces. In our
case, the reference points of all membership functions can be
calculated by taking the mid point of the membership function.
For input dimensions, the reference point of the interpolated
conclusion for trapezoidal membership function is

where

(7)

With the reference point the left and right cores can be calcu-
lated. For the right core

(8)

where

For the right flank

(9)

where

The left side is calculated in a similar way.
MACI will only yield singleton conclusion if and only if the

consequents are singletons themselves.

C. IMUL Fuzzy Rule Interpolation for Multidimensional Input
Spaces

This technique incorporates certain features of the MACI and
the conservation of fuzziness technique, which is also based on
FERI in the original KH interpolation sense [30]. IMUL uses
the vector representation form of fuzzy sets (first proposed in
[41]), and it applies the coordinate transformation features of
MACI. At the same time, it can take the fuzziness of the fuzzy
sets in the input space at the conclusion as those are presented
in the conservation of fuzziness technique. The advantage of
this fuzzy interpolation technique is not only that it takes the
fuzziness of the sets at the input spaces, but also takes the core
at the consequents into the calculation.

For input dimensions, the reference characteristic point of
the interpolated conclusion with the use of Euclidean distance
is:

where

(10)
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Fig. 5. Ratio for the fuzziness.

By using the previous reference point, the right core of the con-
clusion calculated as

(11)

where

The left core is obtained analogously.
After calculating the two sides of the core, the two flanks can

be determined. When calculating the left and right flanks of the
conclusion, the relative fuzziness of the fuzzy sets in all the input
spaces is taken into consideration as follows. See Fig. 5.

First, we present the calculation of the right flank of the con-
clusion. Based on and , the fuzziness of the antecedents

and consequent can be calculated as

(12)

(13)

The fuzziness of the observed antecedents and the interpo-
lated consequent can then be obtained as

(14)

(15)

The distance of the antecedents and consequent are calculated
as follows:

(16)

(17)

In multidimensional input spaces

(18)

(19)

(20)

For the right flank

(21)

The technique is applicable if the observations in each dimen-
sion fulfils

(22)

in the sense that the corresponding coordinates in the vector
representation of these fuzzy sets are monotone according to

, the ordering in the th dimension.
The following statement follows from the properties of the

MACI, but as in [7] it is proved only for the one-dimensional
case, it is extended here.

Proposition 1: if in all dimensions
the location of the antecedents fulfil expression (22).

Proof: We show this for . The proof for the other two
parameters is then straightforward. For it is obvious be-
cause condition (22) implies as

for every . The marginal cases are
obtained when the reference points of all the observations are
identical with the reference points of either the left or the right
antecedents.

Theorem 1: With IMUL technique, the slopes of the conse-
quent never collapse, i.e.,

(23)

Proof: We prove the theorem for the right flank. The re-
sults for the left flank can be obtained similarly.

First, we show that , which is, in fact, a consequence
of the MACI algorithm used

(24)

The last inequality holds, because Proposition 1 ensures that
is in the unit interval and (1) implies that the second mem-

bers of the products cannot be negative.
Second, we show that . This is straightforward from

the definition of , as is nonnegative and
is positive.

Proposition 2: The IMUL technique results in singleton
fuzzy set if and only if all the observations are crisp (in the
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Fig. 6. Singleton fuzzy set.

sense that apart from the core, the membership degrees vanish)
and the core of the consequents is single point.1

Proof: : This is the consequence of the second
condition, as then in (24) both tags vanish.

: It follows from the first condition, because from this
for all and, thus, .

Remark: It is a very advantageous property of IMUL that no
defuzzification is needed in the case of crisp observations. The
proper selection of defuzzification method is usually a pretty
difficult issue for system designers, because it is problem de-
pendent. This problem can be avoided by using IMUL, if it can
be ensured that all observations are crisp.

IV. CASE STUDY AND DISCUSSIONS

In this section, we will first take a look at the results generated
by the three fuzzy rule interpolation techniques (KH, MACI,
and IMUL) discussed in the previous section. After their results
have been shown and compared, we will further examine the
possible use of these techniques in two real world applications:
well log analysis in petroleum engineering and hydrocyclone
control system in mineral processing.

A. Comparison Study

In this first test, a total of five input dimensions are used to
predict one output dimension. IMUL fuzzy rule interpolation
technique will result in a singleton fuzzy set if and only if all
the observations are crisp and the core of the consequent is only
one point as shown in Fig. 6.

From Fig. 6, it can be concluded that all three techniques
generate similar results. Observe that IMUL has the advantage
of obtaining the prediction results directly from the interpolated
results, i.e., as remarked earlier, no defuzzification is needed.

1The consequents are so-called fuzzy numbers.

In the second test, we use three input dimensions to show
that IMUL and MACI could avoid the undesirable feature of
the original KH interpolation. The result can be observed from
Fig. 7.

In the third test, we use two input dimensions to show that
IMUL has another advantage feature over KH and MACI such
that the interpolated results inherit the fuzziness from the input
space rather than the output space. In other words, the interpo-
lated should be similar to rather than and . Fig. 8
shows the results of this advantage feature of IMUL over KH
and MACI. We can interpret this feature in such a way that
IMULs result is more accurate, as the conclusion is less fuzzy.

In these case studies, we have shown that IMUL can be used
to perform fuzzy rule interpolation for multidimensional input
spaces, with advantages over KH and MACI fuzzy interpolation
technique. In Sections IV-B and C, we will show the use of the
three methods for two real world applications.

B. Application to Well Log Analysis

In petroleum reservoir modeling, boreholes are drilled at dif-
ferent locations around the region. Well logging instruments
are lowered into the borehole to collect data at different depths
known as well log data. Well logging instruments used in the
measurement of well log data fall broadly into three categories:
electrical, nuclear, and acoustic [42]. Examples are gamma ray
(GR), resistivity (RT), spontaneous potential (SP), neutron den-
sity (NPHI), and sonic interval transit time (DT). There are
over fifty different types of logging tools available for different
requirements. Beside the well log data, samples from various
depths are also obtained and undergo extensive laboratory anal-
ysis. This laboratory analysis data is known as core data. In well
log analysis, the objective is to establish an accurate interpre-
tation model for the prediction of petrophysical characteristics
such as porosity, permeability and volume of clay for uncored

Authorized licensed use limited to: Murdoch University. Downloaded on October 27, 2009 at 05:19 from IEEE Xplore.  Restrictions apply. 



816 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 13, NO. 6, DECEMBER 2005

Fig. 7. Undesirable feature of KH interpolation.

depths and boreholes around the region [43], [44]. Such infor-
mation is essential to the determination of the economic via-
bility of a reservoir to be explored.

Normally the information embedded in available core data is
not enough to cover the whole range of values. With the use
of fuzzy rule extraction techniques, fuzzy rules generated from
these core data form a sparse fuzzy rule base, so conventional
fuzzy reasoning techniques cannot be used here. This is due to
the lack of an inference mechanism in cases when observations
find no fuzzy rule to fire, in uncored depths or wells around the
region. This is undesirable when using a fuzzy interpretation
model. If more than half the input instances in the prediction
well cannot find any rule to fire, this interpretation model is
considered useless.

In this case study, data from two wells in the same region are
used. The input well logs used are GR, deep induction resis-
tivity (ILD), and DT. They are used to predict the petrophysical
property porosity (PHI). Core data from one well are used to
establish a prediction model based on the fuzzy rule extraction
algorithm. The model is then used to predict the porosity in the
second well. All variables are normalized between the values of
0 and 1. The first well has a total of 71 core data and is used to
establish the fuzzy rules. The second well has 51 core data and
is used as the testing well to determine the prediction accuracy.
As the fuzzy rule extraction algorithm is not the main focus of

Fig. 8. Broad interpolated fuzzy memberships.

this paper, we will not discuss the details here. The self-gen-
erating fuzzy rules algorithm that has shown successful appli-
cation in this field is used [45]. After all the fuzzy rules have
been set up, the input instances from the second well are used to
infer the predicted PHI. Using Mamdami type fuzzy inference
system [2], it was found that two input instances could not find
any rule to fire. When no fuzzy rule can be found to produce a
reasonable inference, they are set to zero by default.

After the two input instances have been picked up that do not
have any fuzzy rule to fire, the nearest fuzzy rules in the estab-
lished fuzzy rule base need to be selected. From observation and
Euclidean distance measured on each input variable, the nearest
fuzzy rules of the two input instances are determined for use by
IMUL. We proceed analogously when applying KH and MACI
methods. IMUL technique mentioned in the previous section is
used as a fuzzy rule interpolation technique to interpolate the in-
ference results of the input instances that find no fuzzy rules to
fire. All values have been normalized between 0 and 100 when
performing fuzzy rule interpolation.

In order to highlight the significance of using IMUL fuzzy
rule interpolation in real world application, we have designed
two tests. In the first test, we applied input instances to a fuzzy
inference system that showed that two input instances could not
find any fuzzy rules to perform inference and set to zero by de-
fault. After which, the predicted PHI from this fuzzy inference
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Fig. 9. Comparison of KH, MACI, and IMUL on petroleum data.

TABLE I
COMPARISON RESULTS ON PETROLEUM DATA

system and the core PHI were used to calculate the average mean
square errors. In the second test, we extracted the two input
instances that could not find any fuzzy rules to perform infer-
ence and applied KH, MACI, and IMUL fuzzy rule interpola-
tion techniques to interpolate PHI for them. Fig. 9 depicts a case
when rule interpolation methods were used. Table I shows the
comparison average mean square errors (MSE) of fuzzy systems
constructed from the two tests.

We can observe that with the assistance of fuzzy rule inter-
polation techniques, the mean square error of the predicted PHI
as compared to the core PHI has decreased quite significantly.
This is partly due to the default prediction output for the two
input instances being set to zero. The three fuzzy rule interpo-
lation techniques yield similar MSE, where KHs error is some-
what higher than the ones obtained by IMUL and MACI.

Here we note again that in the case of IMUL, no defuzzifica-
tion is needed because the observations are crisp. This is a clear
advantage over MACI in real-world applications. When defuzzi-
fication comes into question, there is another decision: which
method to choose. In the example, we experienced with COG,
COA and MOM methods, and they produced different MSE er-
rors. In Table I the best values are tabulated obtained with COG.
Applying COG, MSE errors of IMUL and MACI are identical in
the given examples, because have the same reference point
in both cases and is a symmetrical fuzzy set.

In this case study, the number of input instances that cannot
find any fuzzy rule to fire is small. In cases where more than half
input instances in the prediction well cannot find any rule to fire,
the Mamdani based fuzzy model could not be used for petro-
physical properties prediction at all. With the applied fuzzy rule
interpolation techniques (IMUL, MACI, or KH), the number of

fuzzy rules is considered the same, as no extra fuzzy rule is
added into the system. However, the prediction ability has im-
proved. This is a desirable characteristic for fuzzy petrophysical
properties prediction, as an increase in the number of fuzzy rules
would result in an increase in complexity that would make the
examination of the fuzzy rule base more difficult.

C. Applying in Hydrocyclone Parameter Determination

Hydrocyclones are used extensively in mineral processing
and manufacturing industries to classify and separate particles
suspended in fluid [46], [47]. Hydrocyclones normally have no
moving parts. They are funnel-shaped devices manufactured in
different dimensions to suit specific operations. A hydrocyclone
is set up in a vertical arrangement with the slurry being fed into
the hydrocyclone through the inlet. The bulk of the flow pat-
tern will follow a downward spiral inside the cyclone along the
wall containing coarse solid particles. The coarse particles leave
the hydrocyclone through the underflow opening known as the
spigot. On the other hand, an upward helical flow containing
fine solid particles is discharged via the vortex finder as over-
flow. For a hydrocyclone of fixed geometry, the performance of
the system depends on a number of parameters. Some of these
parameters are fixed and some are variable. A number of these
parameters are related to the physical size of the system, such as
the internal diameters of the cyclone , inlet pipe , over-
flow pipe and spigot opening . Other parameters are
dependent on the operating conditions, the characteristics of the
slurry, and the rate of feed into the hydrocyclone. The separation
efficiency of particles of a particular size is determined by an
operational parameter known as . This value indicates that
50% of a particular size particle is reported to the overflow and
the other 50% to the underflow streams. The correct estimation
of is important since it is directly related to the efficiency
of operations and it will also enable control of the hydrocyclone.

In this case study, data collected from a Krebs hydrocyclone
modelD6B-120-839hasbeenused.Thereareatotalof70training
data and 69 testing data used in this study. The input parameters
are inlet flow rate , density , vortex finder height , spigot
opening , and temperature of slurries and the output is .
When the set of sparse rules are used to perform control on the
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TABLE II
COMPARISON RESULTS ON HYDROCYCLONE DATA

testing data, 4 input instances cannot find any fuzzy rules to fire
using the conventional fuzzy system. Similar to the previous ap-
plication, from the observation and Euclidean distance measured
on each input variable, the nearest fuzzy rules to the four input
instances are determined for use by fuzzy rule interpolation.

Two tests are then designed similarly to the previous applica-
tion. In the first test, the input instances are input to the Mamdami
type fuzzy inference system [2]. The four inputs instances that
find no fuzzy rules to fire are set to zero by default using the Mam-
dami type fuzzy inference system. In the second test, KH, MACI
and IMUL fuzzy rule interpolation techniques are used for the
four input instances that cannot find fuzzy rules to interpolate the
predicted . Table II shows the comparison average MSE for
the fuzzy systems constructed from the two tests.

From the average mean square errors of the two tests, it can
be observed that the fuzzy hydrocyclone model performs unrea-
sonably when no fuzzy rule interpolation technique is used. In
contrast, when fuzzy rule interpolation techniques are applied,
MSE is significantly better. This is mainly due to the four input
instances that find no rule to fire and generate a default value
of zero. Here, MSE of IMUL is even slightly better than that
of MACI when applying the best defuzzification method for the
given problem. With KH, MACI and IMUL fuzzy rule interpola-
tion techniques, the number of fuzzy rules is not increased, but
the prediction ability has improved. Again this has shown that
IMUL and other fuzzy rule interpolation techniques play an im-
portant role to ensure the usability of a sparse fuzzy rule. IMUL
has the advantage over the other two methods that it gives directly
interpretable crisp output and it generates slightly better MSE.

V. CONCLUSION

This paper has examined the problem of a sparse fuzzy rule
base and insufficient training data that may cause undesirable
prediction outcomes. This is mainly due to input instances that
could not find any rule in the fuzzy rule base. To provide a solu-
tion to this problem, fuzzy rule interpolation techniques can be
used. However, the majority of the fuzzy rule interpolation tech-
niques published only present analysis limited to one input vari-
able. This paper investigates KH, MACI, and an improved fuzzy
interpolation technique for multidimensional input spaces. This
technique can be used to interpolate the gaps between the rules
for engineering problems with multidimensional input spaces.
It also has the advantageous property that it does not require the
application of any defuzzification methods when the observa-
tions are crisp, which is typical for engineering problems. This
ensures that the set of sparse fuzzy rules generated by the fuzzy
rule extraction technique will be usable in a practical system.
This is significant as this will allow the use of a fuzzy system
as an alternative for most engineering problems, at the same

time without increasing the number of fuzzy rules that allows
more human control. Applications in the field of petroleum en-
gineering and mineral processing have also been examined. The
results have shown that this improved fuzzy rule interpolation
technique for multidimensional input spaces can be used in en-
gineering applications efficiently.
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