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A Generalized Concept for Fuzzy Rule Interpolation
Péter Baranyi, László T. Kóczy, and Tamás (Tom) D. Gedeon

Abstract—The concept of fuzzy rule interpolation in sparse rule
bases was introduced in 1993. It has become a widely researched
topic in recent years because of its unique merits in the topic
of fuzzy rule base complexity reduction. The first implemented
technique of fuzzy rule interpolation was termed as -cut dis-
tance based fuzzy rule base interpolation. Despite its advantageous
properties in various approximation aspects and in complexity
reduction, it was shown that it has some essential deficiencies, for
instance, it does not always result in immediately interpretable
fuzzy membership functions. This fact inspired researchers to
develop various kinds of fuzzy rule interpolation techniques in
order to alleviate these deficiencies. This paper is an attempt into
this direction. It proposes an interpolation methodology, whose
key idea is based on the interpolation of relations instead of inter-
polating -cut distances, and which offers a way to derive a family
of interpolation methods capable of eliminating some typical
deficiencies of fuzzy rule interpolation techniques. The proposed
concept of interpolating relations is elaborated here using fuzzy-
and semantic-relations. This paper presents numerical examples,
in comparison with former approaches, to show the effectiveness
of the proposed interpolation methodology.

Index Terms—Fuzzy rule interpolation, sparse fuzzy rule-base.

I. INTRODUCTION

THE concept of interpolating in sparse rule bases, termed
as fuzzy rule interpolation, and its first implementation,

termed as -cut distance based fuzzy rule base interpolation
( -cut interpolation shortly), were introduced in 1990/1991
[26]–[30]. Despite the advantages of fuzzy rule interpolation
in different issues of fuzzy theory shown in a number of arti-
cles, it was also proved that the -cut interpolation does not
accommodate some elementary conditions of fuzzy concept in
cases. In this regard, conditions were investigated by Kovács
[31]–[34], Kawase and Chen [25], and Shi and Mizumoto [47].
As a result, three typical problems of interpolation have come
into the focus of the related literature, which are addressed
as abnormal conclusion, nonpreserving linearity, restriction
to convex normalized fuzzy (CNF) sets. Abnormal conclusion

Manuscript received August 22, 2000; revised June 13, 2002 and February
20, 2004. This work was supported by the Hungarian Scientific Research Fund
(OTKA) under Grants T 034233 and F 030056, by FKFP 180/2001 and NKFP-
2/0015/2002, and by the Australian Research Council. The work of P. Baranyi
was supported by the Zoltán Magyary scholarship.

P. Baranyi is with the Computer and Automation Research Institute, the Hun-
garian Academy of Sciences, and also with the Department of Telecommunica-
tion and Media Informatics, Budapest University of Technology and Economics,
and Integrated Engineering Systems Japanese-Hungarian Laboratory, Budapest
H-1117, Hungary (e-mail: baranyi@alpha.ttt.bme.hu).

L. T. Kóczy is with the Department of Telecommunication and Media Infor-
matics, Budapest University of Technology and Economics, and Integrated En-
gineering Systems Japanese-Hungarian Laboratory, Budapest H-1117 (e-mail:
koczy@ttt.bme.hu).

T. D. Gedeon is with the Department of Computer Science, The Australian
National University, Acton ACT 0200, Australia (e-mail: tom@cs.anu.edu.au).

Digital Object Identifier 10.1109/TFUZZ.2004.836085

means that the interpolation yields at least two membership
values over at least one element of the output universe, or
the resulted membership values are not bounded by .
Nonpreserving linearity is addressed when not piece-wise
linear conclusion is inferred from piece-wise linear rules and
observations. Restriction to CNF sets means the interpolation
does not function with arbitrary type of fuzzy sets, but with
CNF sets. Inspired by the purpose of eliminating these typical
deficiencies in certain cases, various interpolation methods
were developed in the 1990s.

A. Brief Overview of Fuzzy Rule Interpolation Techniques

The explicit form of -cut interpolation, called the funda-
mental equation of fuzzy rule interpolation, is actually a fuzzy
extension of the classical linear interpolation of given points.
The -cut interpolation method infers a conclusion based on
carrying the proportion of the fuzzy distances [30] between the
observation and the rule antecedents over the corresponding
consequents and the conclusion [26]–[29]. The fuzzy distance
utilized in the -cut interpolation reflects to some extent of the
ideas of approximate analogical reasoning proposed by Turksen
in 1988 [53], and is actually a family of -cut distances. This
is the reason why we call the first interpolation method -cut
distance based fuzzy rule interpolation [48], [61]. According
to the definition of the fuzzy distance, a class of methods can
be derived in the fashion of -cut interpolation. For instance,
different definitions of distance were proposed by Vass et al.
in [58] and [18]. It is remarkable that the method proposed in
[18] eliminated the problem of abnormal conclusion, however,
it did not function with certain crisp fuzzy sets. Its improved
version was proposed in 1997. These techniques assume that
the fuzzy premises and consequents are CNF sets. Let us group
these approaches as -cut based methods. As a mater of fact,
in the case of arbitrary shaped CNF sets theoretically an infinite
number of -levels should be taken into account, in order, to
yield a proper conclusion. To achieve an acceptable computa-
tional requirement for practical cases one may restrict the com-
putation to a finite number of -levels (usually three or four),
after assuming that the fuzzy sets applied are piecewise linear,
for instance triangular or trapezoidal shaped. Unfortunately, the
aforementioned methods do not preserve linearity, which simply
means that calculating the piecewise linear sets only at certain

-levels and connecting the resulting points of the conclusion
by linear pieces yields an approximation of the accurate conclu-
sion. The deviation of the piecewise linear approximation from
the accurate conclusion is, however, dispensable in the case of

-cut interpolation, as pointed out in [48] and [31]–[34]. An-
other method proposed by Dubois and Prade in [15]–[17] op-
erated with all possible distances among the elements of fuzzy
sets at each -level and computed all corresponding elements
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of the conclusion for the same -level. The membership func-
tion of the conclusion is obtained here by bounding the resulting
elements at each -level. In contrast with the aforementioned
methods, Dubois and Prade’s method was the first one, which
could be applied to rule-bases, which were not restricted to CNF
sets, as stated in [19]. As opposed to this advantage, Dubois
and Prade’s method might yield abnormal conclusion in cer-
tain cases [19]. In view of its essence, this approach is also in-
cluded in the group of -cut based methods. In order to keep the
simplicity of -cut interpolation, but to eliminate the problem
of abnormal conclusion, papers [7] and [8] propose the trans-
formation of the fundamental equation of -cut interpolation
to the space of normal conclusions. This method was termed
modified -cut interpolation. Shortly afterwards, Tikk et al. an-
alyzed its various properties in [48]. It was shown that it also did
not preserve linearity, but the deviation of the piecewise linear
conclusion from the accurate one was less than in the case of

-cut interpolation. Tikk et al. also showed that the modified
method inherited the approximation stability of the -cut inter-
polation [49], [50]. The modified -cut method was extended to
nonconvex fuzzy sets by Tikk et al. in [52]. One of the recent
methods of this narrow topic uses the combination of different
interpolation techniques proposed by Wong et al. [60], [61].

In 1995, a conceptually different method was introduced
by the authors [1]–[6]. It was termed “solid cutting method”
and “generalized interpolation method.” Its essential difference
from the former approaches is that this method infers the
conclusion based on the interpolation of relations instead of

-cut distances. It has two main steps. In the first step a rule
is interpolated from the rule-base as “close” to the observation
as possible, based on a spatial solid cutting technique. The
term “close” means here that at least partial overlapping is
ensured between the observation and the interpolated rule,
which implies the firing of the interpolated rule. In the second
step, the conclusion is inferred from the consequent of the fired
rule according to the similarity between the observation and
the interpolated antecedent. The advantage of this method is
that it is applicable to arbitrary shaped sets and does not yield
abnormal conclusion. This method can readily be extended to
fuzzy rule extrapolation as detailed in [5]. The drawback of this
method is its high computational complexity. Some practical
simplifications of this method have been done for piece-wise
linear fuzzy sets [40]–[42]. These simplified methods preserve
linearity. In 1997, the authors replaced the fuzzy interpolation
in the first step by the interpolation algorithm of semantic rela-
tions [6]. Simultaneously, Kawaguchi et al. proposed a B-spline
technique based fuzzy interpolation method in [21]–[24], which
could be viewed as a kind of generalization of the first step.
Kawaguchi’s method functions with fuzzy sets given by a
finite number of characteristic points. Let these algorithms be
included in a group named generalized methods.

In 1997, Yam introduced a vector based approach to represent
membership functions as points in high-dimensional Cartesian
space [54]–[57]. This method transforms the ideas of fuzzy rule
interpolation to the interpolation of vector mapping. A recent
variation was proposed in [54], which we include in the group
of generalized methods since it is constructed by the two steps of
the generalized concept in terms of matrix operations. However,

it is restricted to sets given by a finite number of characteristic
points.

Various further techniques have been proposed in the last
years. For instance Bouchon-Meunier introduced the graduality
based interpolative reasoning [9]–[11]. Kóczy and Hirota and
others published results about the use of -cut interpolation
in hierarchically structured rule-bases [35], [44]. Mizik et al.
compared various interpolation techniques in a uniform descrip-
tion [40]–[42]. In 1996, Kovács et al. proposed an interpola-
tion technique based on the approximation of the vague envi-
ronment of fuzzy rules and applied it in the control of an au-
tomatic guided vehicle system [36]–[38]. Jenei introduced an
axiomatic treatment of linear interpolation and extrapolation as
a new way of interpolation of compact fuzzy quantities and pro-
posed its multi-dimensional extension in [19], [20]. He also in-
vestigated various properties of interpolation techniques. Bou-
chon-Meunier proposed a comparative view of fuzzy interpola-
tion methods in [12].

B. Aim of this Paper

The aim of this paper is to introduce a methodology for fuzzy
rule interpolation. This methodology has already been partially
initialized by the authors in [1]–[6]. Further, this interpolation
methodology is capable of eliminating typical deficiencies
of fuzzy interpolation methods. By the help of the proposed
methodology a class of linear and nonlinear fuzzy interpolation
methods can be developed. The key idea of this interpolation
methodology is based on the interpolation of relations. As an
implementation, two groups of algorithms are developed in this
paper. One is based on the interpolation of fuzzy relation. The
other is based on the interpolation of semantic relation. The
comparison of the resulting interpolation methods to the former
techniques is given in this paper. Various further comparison
have already been published. Detailed comparisons, by Mizik
[40]–[42], Tikk et al. [48] and by the authors, analyze the -cut,
the modified -cut interpolation and solid cutting method in a
uniform coordinate system. Further, [19] compares the -cut
based interpolation, Dubois and Prade’s technique and the
solid cutting method. Consequently, all the results of these
comparisons, done for the preliminary works such as solid
cutting method and the revision principle based technique, can
straightforwardly be carried over the interpolation method-
ology which will be discussed in this paper. Some, numerical
examples are investigated both in this paper and in [1] and [2].

II. DEFINITIONS AND NOTATION

This section introduces some elementary definitions and con-
cepts utilized in the further developments. Before starting with
the definitions, some comments are enumerated on the notation.
To facilitate the distinction between the types of given quanti-
ties, they will be reflected by their representation: scalar values
are denoted by lower-case letters ; fuzzy sets by cap-
ital letters as ; and letter is reserved to denote
fuzzy rule IF , THEN , briefly . Letters ,
and are, respectively, reserved to input–output universes and
to the third dimension of geometrical representation, see later.
In order to enhance the overall readability characters
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are in the meaning of subscripts (counters), and are
reserved to denote the respective upper bounds of the subscripts,
unless stated otherwise. Further, is assigned to the index of
fuzzy rules. The membership functions of the fuzzy sets used
through this paper are continuous with bounded support. An-
tecedent fuzzy sets are denoted by ; consequent sets
by . Notations and are for the observation and
conclusion, respectively. Superscript indicates that the given
quantity being “interpolated”. Notations simply mean the
lower and upper bound of . is an interpolation pa-
rameter.

Definition 1 (Lower and Upper Bound of Fuzzy Set
): Given fuzzy set . The lower and upper bounds

of in are given by support and support .
Definition 2 (Centre Point of Fuzzy Set ): The

center point of a given fuzzy set is:
, where height . denotes the -cut of

.
Definition 3 (Normal Fuzzy Set): A fuzzy set is normal if

it has at least one element whose membership value is one.
Definition 4 (Subnormal Fuzzy Set): A fuzzy set is sub-

normal if it does not have any elements whose membership
value is one.

The next Definition 5 is used to describe the relation between
the elements of two universes. Its idea is actually taken from
the so called revision principle, where the relation is defined as
the revision function or interrelation function (see [13], [14],
[43], [45], and [46]). In this paper, a piecewise linear variant is
utilized.

Definition 5 (Piecewise Linear Interrelation Func-
tion): , where

, where and ,
and , where and

, subject to . The interrelation
function is a piecewise linear function where the linear pieces
are defined by point-pairs . Fig. 1 depicts an inter-
relation function, where , namely, the vector consists
of four elements.

The interrelation function is used to assign the nonzero mem-
bership valued elements of sets and of a rule .

Definition 6 (Interrelation Area): The interrelation area of
interrelation function is a rectangular area defined by points
which the interrelation function ends in, namely, by points
and ; see Figs. 1, 15, and 16. This can also be implemented
as the area defined by the support of antecedent and conse-
quent of a rule .

Definition 7 (Linear Interpolation of Two Points): Function
, is the linear

interpolation between given and (superscript denotes
“interpolated”).

III. KEY IDEA OF THE GENERAL FUZZY INTERPOLATION

METHODOLOGY

This section is intended to introduce the fundamental con-
cept of the generalized method. To capture the main idea,
first interpolation in a one variable rule-base is discussed in

Fig. 1. Linear interrelation function y = �(x;p ;p ).

Sections IV–VII. Multidimensional extension is treated in
Sections VIII and IX. The discussion of this paper is restricted
to the elementary step of interpolation, namely, to the interpo-
lation between two rules selected from the rule-base. In order
to avoid overlapping with preliminary papers, the way of se-
lecting two rules is not in focus here. For the sake of simplicity,
let us assume that the rule selection is done by the selection
technique proposed for the -cut interpolation. In order to
initialize further discussion, let the following assumptions and
statements be recalled from [29], [30], [48], and [54]. The
variables, including input universe and output universe are
bounded and gradual in the sense of [15]. So, a linear ordering
in each of them exists. In this case, a partial ordering can be
introduced among the elements of and . Having this partial
ordering between , denoted by , if and
are comparable, i.e., , it is possible to define a distance
between these two fuzzy sets that will be denoted by .
Assume that an observation is given, to
which the conclusion is searched for.
Further, assume that two fuzzy rules are selected so that

and

and

where and .
In the following, the main steps of the proposed method are

presented.

A. Generalized Method for Fuzzy Rule Interpolation

1) Generation of an Interpolated Firing Rule: In this step,
an interpolated rule is generated, which is located
between and , in such a way that is as “close” to as
possible, but in any case it has at least partial overlapping with

. For brevity, let this step be denoted by

(1)
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where is a mapping from pairs of - rules
into the set of possible - rules.

. As a matter of fact, this definition
of “closeness” and the degree overlapping can be selected in
a suitable way rather freely, but shall, be used later on consis-
tently.

2) Inference of the Conclusion: Let the newly generated in-
terpolated rule be considered temporarily as if it were one of
the existing rules of the rule-base. The overlapping of the ob-
servation and the interpolated antecedent implies the firing of
the interpolated rule. Let this step be denoted as

Remark 1: Various algorithms introduced in the related lit-
erature can be substituted into the above steps and analyzed in
regards to the three typical deficiencies of the fundamental ver-
sions of interpolation discussed in the first paragraph of the In-
troduction. For instance, Kawaguchi’s B-spline based rule inter-
polation is directly substitutable into the first step. Its immediate
consequence is that the method obtained in this way inherits
restriction to piecewise fuzzy sets given by a finite number of
pieces. In the case of the second step, single rule reasoning tech-
niques have prominent roles. For instance, the use of the revision
principle introduced by Shen et al. are detailed in this paper.

B. Further Characterization

This section introduces further characterizations for the
overall view of fuzzy interpolation. In [7], [8], [40]–[42], and
[48], a technique is presented that is capable of comparing
different interpolation methods in a uniform coordinate system.
This technique implicitly determines a generable usable refer-
ence point for the fuzzy sets in the rules. Let a reference point
of a fuzzy set be defined by Definition 8 as follows.

Definition 8 (Reference Point : is a point of
assigned to fuzzy set , so that expresses the “most

typical“ location of fuzzy set . in every
case. It could be, for instance, some kind of defuzzified value of

.
The use of the idea of reference point helps with examining

the global feature of the interpolations via simplified explicit
forms. A global feature of the interpolation can, hence, be de-
scribed by the function of the reference points of the inferred
conclusions with respect to the reference points of the observa-
tions; see Figs. 9 and 10. Let this function be termed as follows.

Definition 9 (Interpolation Generatrix): Let the interpola-
tion generatrix be the function of the observation in re-
spect to conclusion , such that and ,
whenever and
being the rule base interpolation function.

For example, if fuzzy numbers are used in -cut interpola-
tion and is fixed for all sets, then the interpola-
tion generatrix between two neighboring rules is a straight line
showing the linear feature of the -cut interpolation. In this case,
the set of points defined by the cut of all the possible ob-
servations and conclusions equals the interpolation generatrix.

One of the aims of this paper is to propose various algorithms
for the implementation of the interpolation method. Before

dealing with the algorithms in detail a brief digression needs to
be taken here to define a concept of “closeness” by introducing
a simple distance between two fuzzy sets that will be used later
on in this paper. Let

which is a crisp distance in contrast with -cut distance-based
methods. Without the loss of generality let in this paper the ref-
erence point be fixed to the center point, so that

(2)

is used from now on. Therefore, if then
and will be comparable, i.e., we write . Let the
interpolated rule be determined subject to

(3)

which ensures an overlapping between and . Again the
restrictions in (2) and (3), are not necessary for the interpolation
method in general, it can be set in various ways rather freely.
Equations (2) and (3) have been chosen for the implementations,
detailed in the next sections, of the interpolation method.

IV. RULE INTERPOLATION

Two groups of algorithms are introduced in this section as
possible implementations of the first step of the proposed in-
terpolation method. The first group is based on fuzzy relation
interpolation, the second one is based on semantic relation in-
terpolation.

A. Fuzzy Relation Interpolation

The first algorithm in this group is the detailed version of
the solid cutting method proposed by the authors in [1]–[5].
The second and the third algorithms respectively apply the fixed
point law (FPL) and the fixed value law (FVL) theory, intro-
duced by Shen et al. [13], [14], [43], [45], [46], to fuzzy set
interpolation. The essential difference between FPL and FVL
algorithms is that the FPL method considers the membership
values, while the FVL operates with the “fuzziness” of the sets,
see later. Fuzzy relation interpolation is computed here via in-
terpolating the fuzzy sets

and

where

where . First, the fuzzy set interpolation tech-
niques will be proposed and then the fuzzy relation interpola-
tion algorithm will be introduced.

Algorithm 1 (Solid Cutting (SC) Fuzzy Set Interpolation):

Let (dimension is orthogonal on
on Figs. 2 and 3), be the function (see

Figs. 2 and 3) that is obtained by rotating the membership func-
tion by 90 around the axis that is positioned
at . Let a solid
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Fig. 2. Interpolating fuzzy sets by solid cutting.

be constructed by fitting a surface on generatrices . Let
be the cross-section of this imagined solid at position

, where . Turning
back into its original position the interpolated fuzzy set

is obtained.
Great variety of algorithms capable of fitting a surface to the

generatrices can be defined according to specific de-
sired properties. Regarding the length of this paper only one al-
gorithm is discussed here as a possible solution. Let such an
algorithm be developed here which holds the following proper-
ties.

Property 1 (Compatibility With the Rule Base): The intersec-
tion of the solid at points and must, respectively,
be equivalent to and . This means
that if , then and if , then .

Property 2 (Avoiding Abnormal Fuzzy Set): The intersec-
tion of the solid at any points is a function and bounded by [0,
1]. This simply means that all intersections are interpretable as
fuzzy sets.

Property 3 (Normalization): If and are normalized
fuzzy sets (Definition 3) then the interpolated fuzzy set is a
normalized fuzzy set.

Property 4 (Preserving Linearity): If and are given
by the same number of linear pieces then the interpolated set is
also a piecewise linear set.

The surface of the imagined solid is created by simple conical
and cylindrical line surfaces in the next part of this section. In
order to facilitate further discussion first the key steps are illus-
trated on a simple example.

Step 1) Let the generatrices be divided into pieces
by characteristic points. These pieces will determine
the bound of the conical and the cylindrical line sur-
faces. As an example, Fig. 3 shows that function

and are divided by five
and three points, respectively.

Step 2) Let the characteristic points be assigned between
generatrices . Following the example on
Fig. 3 let the characteristic points be assigned as

and
.

Step 3) Those characteristic points, which are assigned to
one, determine a conical surface and other pairs of
points determine the bound of a cylindrical surface.
For example points and surround a
conical surface. Similarly, points and

Fig. 3. Assigning the characteristic points.

also determine a conical surface. Cylindrical sur-
faces are bounded by points and

.
The following proposes possible solutions for the above three

steps. Let the characteristic points, discussed in Step 1), be de-
fined by the following conditions

i) Let and , namely, the first and the last
characteristic points be those ones, which are corre-
sponding to the lower and the upper bound of .
Therefore, and

.
ii) Those elements of the generatrices, which corre-

spond to the minimum and the maximum elements
of , where , are chosen to be
characteristic points as:

and .
iii) Let also be included among the character-

istic points.
iv) Let and the end points of the linear

pieces in the rotated membership function also be
selected for characteristic points.

v) Those points where the function has
break points (where function
is not continuous) are also defined as characteristic
points.

vi) Local minimum and maximum points of
, like on Fig. 3, can also be con-

sidered as characteristic points.
vii) Inflexion points of the generatrix are also taken into

account as characteristic points.
Among the characteristic points of a generatrix there are

four distinguished ones, defined under points i) and ii), such
as and . According to these points let
the characteristic points of the th generatrix be divided into
three groups. Group consists of points ,
where . Similarly: let ,
where and , where

(note that points and
are included in two groups). Let the process of Step 2) be
started by assigning the distinguished characteristic points as

and , which
ensures Property 3, because the assigned points will be con-
nected by straight lines contained in the surface of the solid,
see later. Therefore, if both rotated antecedents are normalized
then at least one of these lines is parallel with the plane
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Fig. 4. Topology of the characteristic points.

and lies at level . This implies that any intersection
of the solid has at least one point which coordinate equals
one, the interpolated set, hence, is normalized. The remaining
characteristic points are assigned between the same numbered
groups, namely the points of are assigned to the points
of . The point pairs between the groups are defined in
the same way for all . Fig. 4 shows an example
where group of the generatrices are depicted. Assume
that the number of points in is less than in . The
point pairs are simultaneously determined from the left and
from the right side (see Fig. 4(a)) where points
and are assigned first. Then the next two points
are assigned from left and right, see points
and . This is repeated until there is no more
point or only one point remains in [Fig. 4(b)]. If there
is no more point in then the points connected last in the
right and the left side are connected to the remaining points
in . Namely, simultaneously one remaining point from
right side in connected to right point in and the left
remaining point in is connected to the left point in ,
see Fig. 4(a) and (b). If the number of points in is odd
then the last point in is connected with the both points
connected last in as shown in Fig. 4(c). If the number of
point in is odd, namely, one point is remained then this
point is connected with all remaining point in as depicted

Fig. 5. Cylindrical surface.

Fig. 6. Conical surface.

on Fig. 4(c). Fig. 4 shows that the topology of the connections
yields triangular and quadrangular forms. The triangular forms
are covered by simple conical surfaces and the quadrangular
forms are covered by cylindrical surfaces. The cylindrical
surface is a line surface fit to two generatrices, where all points
of the generatrices are connected by lines. Fig. 5 shows an
example, where point and
are connected. Let the relation between and be defined as:

. In the case
of a conical surface, all points of the generatrix are connected
to one point; see Fig. 6.

The previously outlined technique holds Properties 1–4. Ad-
ditionally, Property 5 can also be observed.

Property 5 (Continuity): For there exists
such that if , then for the in-
tersections of the solid at and we have

. Therefore,
if then
, where and

.
Property 5 comes from the fact that the solid is constructed by

continuous line surfaces. As a matter of fact, the characteristic
points can be assigned in various ways. All assigning may result
in different solids. All solids have restrictions and advantages
on their own. Our future work is to investigate the features of
various kinds of techniques capable of generating a solid based
on the given generatrices.
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Fig. 7. Fixed point law set interpolation.

Algorithm 2 (Fixed Point Law Fuzzy Set Interpolation
(FPLI)):

According to the theory of FPL technique, this algorithm gives
the convex combination of the membership functions. Assume
that the elements of fuzzy sets are assigned by a piecewise
linear interrelation function , where

then the membership values of the fixed
elements and are interpolated as

(4)

(for see Definition 7) which is the membership value over the
interpolated element .

A substantial point of this algorithm is the definition of the
interrelation function. Vectors and , respectively, contain
the characteristic points of the fuzzy sets and . The length
of the vectors must agree, see Definition 3. This implies, that
the fuzzy sets must be divided by the same number of char-
acteristic points. These points can, for instance, be defined by
the above proposed conditions i)–vi). As an example, a par-
ticular algorithm is discussed in the following, which is pro-
posed to frequent practical cases, when the shapes of the an-
tecedents are “rather nice” like on Fig. 7. Let the membership
function of be divided into pieces by characteristic points

and (notation is de-
fined in Definition 1). and are the maximum and minimum
elements of , where , like the characteristic
points in the case of trapezoidal sets. Therefore, the interrelation
is , (this function is defined in Definition
5) and the interpolated member-
ship values are determined by (4).

Note that the proposed FPLI algorithm can be viewed as a
special case of the previously outlined SC technique.

Algorithm 3 (Fixed Value Law Fuzzy Set Interpolation
FVLI):

According to the theory of FVL technique, the membership
value is fixed first, then the fuzziness is interpolated at the fixed

-level, see Fig. 8. In order to be applicable to subnormal sets
as well let the first step be the normalization of the given sets.
Let the normalization be understood as

height

Fig. 8. Fixed value law set interpolation.

For further notation, let fuzzy set denote the normalized
fuzzy set . Interpolation of the fuzziness at level

Finally, the interpolated is renormalized from in such a
way that the renormalized height of the interpolated set is

height

Note that this algorithm is restricted to convex fuzzy (CF) sets.
As mentioned at the beginning of this section, the rule inter-

polation is done via fuzzy set interpolation executed on both the
input and output universe .

Algorithm 4 (Fuzzy Relation Based Rule Interpola-
tion): This step summarizes the aforementioned algorithms

where

(5)

Formula (5) is performed as

and

(6)

Remark 2: An important issue of choosing and
should be addressed here. When defining , (3) should

be taken into account, that leads to

Remark 3: In order to master the use of the previous algo-
rithms in the proposed general concept let the simplest choice

be briefly discussed.
Lemma (Linear Interpolation Generatrix): The set of points

defined by (6) where deter-
mine a straight line which consists of points
and . With (2) the interpolation generatrix ex-
hibits the linear feature of the rule interpolation.

As an example, see Fig. 9. Defining different proper functions
for a family of nonlinear interpolations can be de-
rived. For instance, generatrix depicted on Fig. 10 is
achieved by defining a weighted combination of the rules such
as

where and are the weights of the consequent sets.
Remark 4: Algorithms SC, FPLI, and FVLI hold Properties

1–5, which implies that the rule interpolation defined in (1) in-
herits these properties.
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Fig. 9. Linear interpolation.

Fig. 10. Nonlinear interpolation.

B. Semantic Relation Interpolation

This section uses the ideas of semantic revision principle
techniques to describe the relation between antecedents and
consequent sets via semantic interpretation. Analogously to
the revision principle methods FPL and FVL, two kinds of
semantic revision methods (SRM) have been introduced by
Shen et al. [13], [14], [43], [45], [46]. They are termed as
SRM-I and SRM-II. Both techniques define an interrelation
between the elements of fuzzy sets and a semantic relation
function to capture the similarities of the membership values.
In the case of SRM-I the element pairs, whose membership
values are recorded into a semantic function, are predefined by
interrelation function, which implies that the idea of the FPL is
followed. As opposed to this in the case of the SRM-II, first the
membership values are assigned by semantic function and then,
according to this assignment, the interrelation function records
the fuzziness of the sets. This idea emerges in the FVL methods.
Consequently, it can be concluded that the SRM methods are
the extensions of the FPL and the FVL in this sense. For more
details, see [13], [14], [43], [45], and [46]. In order to facilitate
the undersatnding of the semantic relation based interpolation,
first the basics of SRM methods is recalled.

Definition 10 (Semantics and Interrelation for SRM-I):

a) Interrelation:

Fig. 11. Interrelation and semantic relation of SMR-I.

Fig. 12. Interrelation and semantic relation of SMR-II.

b) Semantic relation:

For an illustration, see Fig. 11.
Definition 11 (Semantics and Interrelation for SRM-II):

a) Semantic relation:

(7)

b) Interrelation:

For an illustration, see Fig. 12.
In the next part, one more interpolation technique is proposed.

Its aim is to compute the interpolated semantic and interrelation
functions to the observation as

(8)

Notations “-I” and “-II” utilized in the next algorithms are re-
served to indicate that the concept of SRM-I or SRM-II is ap-
plied.
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Algorithm 5 (Interpolation of Semantic Relation, IS-I):

a) Interrelation:

b) Semantic relation:

Algorithm 6 (Interpolation of Semantic Relation,
IS-II): Along the same line as in the case of FVL interpolation
let the semantic relations be normalized first. Therefore, let

(9)

where (I/II) means that the equation applicable for both IS-I and
IS-II, and denotes normalized , which is in

fact means the same as the of the normalized sets
and . Note that, if the sets are normalized, then their semantic
relations equal the set of points defined by , see (7) and
(9). This implies that the semantic relations become equivalent
for all the rules in the case of IS-II.

a) Semantic relation

b) Interrelation
In order to give graphical interpretation of the interpola-
tion let the interpretation of SRM-II be particularly mod-
ified here. Let the points of and be de-
fined in three dimensional space spanned by , and
as

An illustration is given in Fig. 13.
The interpolation can easily be defined in the three-dimen-

sional space as

Fig. 14 shows the interpolation of the interrelation fuctions.

Fig. 13. Illutsration of three dimensional IR .

Fig. 14. Interpolation of the interrelation function.

Similar to the case of FVLI algorithm, the final step is to
renormalize the interpolated sets, namely, to renormalize the se-
mantic relation function based on (8)

In order to use the semantic interpolation techniques in the pro-
posed general concept the determination of and will be
addressed. The same conclusions can be drawn here as at the
discussion of fuzzy relation based interpolation algorithms. Let

according to (3). In the case of
globally linear featured interpolation, is chosen. Again,
like in the case of fuzzy relation-based interpolation, the equa-
tion

(10)

determines the global feature of the interpolation, where (10) is
defined according to a desired interpolation generatrix.

V. SINGLE RULE INFERENCE

The objective of this section is to propose three kinds of tech-
niques capable of firing the interpolated rule with the obser-
vation and inferring the conclusion. These algorithms are for
the second step of the generalized interpolation method pro-
posed in Section III. Single rule reasoning approaches, hence,
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have prominent roles in this section. The proposed inference al-
gorithms of this section are originated from the FPL, SRM-I,
and SRM-II single rule inference methods [13], [14], [43], [45],
[46], which have been developed for such cases when the sup-
port of the observation consists of all elements and only those
elements, which are contained in the interrelation function of
the fired rule. Namely, the interrelation area (Definition 6) of
the interpolated rule should agree with the support of the obser-
vation. The interpolated relation (fuzzy or semantic), however,
may not fulfill this condition. Therefore, this section introduces
how to expand the interpolated relation, in order, to match the re-
quired area defined by the observation. This fitting ensures the
proper matching of the interpolated relation with the observa-
tion. First, an algorithm is proposed capable of transforming the
interrelation area of the interpolated relation to the observation.
Then two algorithms, a fuzzy and a semantic relation-based,
are discussed which transform the interpolated relation to the
transformed interrelation area. The use of these transformations
means that the interpolated relation is expanded in the “near”
neighborhood of the observation. This is based on the assump-
tion that the resulting relation is an acceptable approximation of
the relation of this area.

Definition 12 [Spanning the Interrelation Area
]: Assume that a fuzzy rule is given.

Its rectangular interrelated area is defined by intervals
and . The new area, which is proportionally spanned to
a given interval is defined by intervals and as

and

Fig. 15 gives an illustration how the interrelation area is trans-
formed.

The fuzzy and the semantic relation defined over the interre-
lation area can be proportionally transformed accordingly to the
spanning of the interrelation area. First, a fuzzy relation then a
semantic relation based transformation are proposed.

A. Transformation of Fuzzy Relation

The fuzzy relation is transformed via set transformations on
both the input and the output universe.

Transformation 1 [Transformation of the Fuzzy Relation to
a Given Interrelation Area ]: Assume
fuzzy rule . Let fuzzy rule
be a transformed fuzzy rule whose interrelation area is
defined by and . Superscript means that “trans-
formed.” The transformed antecedent set is determined as

, where
and . As a result and

. The consequent set is calculated in the same way
as: , where
and , which leads to and .

An illustration of the transformation is given in Fig. 16.

B. Transformation of Semantic Relation

The following transformation technique is applicable to the
semantic relation and results in a proportionally enlarged se-

Fig. 15. Spanned interrelation area.

Fig. 16. How A and B are defined according to the new interrelation area.

mantic relation which fits the new interrelation area. In this case
only the transformation of the interrelation is of interest, since
the semantic relation is independent on the size of the interre-
lation area. This also implies that, the same transformation can
be proposed for methods I and II.

Transformation 2 (Transformation of the Semantic Rela-
tion to a Given Interrelation Area): Assume that

and (let and respectively be
used for brevity) are given. Let be the trans-
formed interrelation function to a given interrelation area
defined by and as

, where

and . The semantic relation is not changed
by the transformation, so, .

Note that both Transformations 1 and 2 hold Properties 1–5.
For instance, if the interpolated antecedent equals to the obser-
vation, then the transformed set equals the interpolated set. The
transformations conserve piecewise linearity and normality. The
transformation is continuous.

According to the previous section, the relations are interpo-
lated to the observation in such a way that (3) is held. Again,
in the second step the interrelation area and the interpolated
relation is transformed to the observation. Finally, the conclu-
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sion is generated from the transformed relation and the obser-
vation after the transformed relation is assumed to be a good
approximation of the interpolated relation. Having the trans-
formed fuzzy and semantic relation immediately leads to the use
of the revision principle methods, namely the FPL, SRM-I, and
II single rule inference techniques. These methods are slightly
specialized here according to (3). For further discussion let us
assume that is transformed to the support of , namely,

has already been calculated from .
In order to facilitate the notation “ ” (transformed) and “ ” (in-
terpolated) is not used in the next part, the interpolated and trans-
formed single rule to be fired is simply denoted as .
The conclusion is generated by the following methods.

C. Inference by Fuzzy Relation

Algorithm (Inference of the Conclusion by FPL,
): This algorithm fires the transformed fuzzy

relation. Performing the ideas of FPL, the membership func-
tions are compared over each interrelated element of the sets.
The deviation between the transformed antecedent and the
observation over a fixed element is carried to the interrelated
element on the output universe to yield the deviation of the
conclusion from the consequent. Considering all elements of
the sets results in the membership function of the conclusion

and

Elements and are assigned by the transformed interrelation
function.

D. Inference by Semantic Relation

Two semantic revision based methods are discussed in the
next part, namely, the concepts of SRM-I and II-based inference
techniques, which are capable of concluding in respect to
based on the transformed semantic relation. These algorithms
have originally been developed for CNF sets and are slightly
specialised here to . One more important con-
dition of the SRM methods should be taken into account here.
The inference by SRM methods assumes that height
height which is, as a matter of fact, not ensured by any of
the previous steps for all cases. Because of this let the semantic
relations be normalized in the same way as in the case of IS-II
[see (9)].

Algorithm 7 (Inference by SRM-I,

, from [45]): The essential point is to carry the se-
mantic and interrelation of the fired rule over the observation
and the conclusion.

a) and .

Then, for all , the following holds.
b) The conclusion is found by simply solving the following

equation for :

where and
or .

Algorithm 8 (Inference by SRM-II,

, from [45]): Following the same idea as before,
let

a) .
The next two steps are solved for all .

b) , and .
c) .

If the fired relation is normalized, then the above obtained con-
clusion should be renormalized to the height of

height height

where height and

height

Note that these inference techniques keep Properties 1–3 and 5.
Property 4 is guaranteed in the case of triangular shaped inter-
polated rules.

VI. DISCUSSION OF THE PROPOSED ALGORITHMS

The previous sections proposed a generalized fuzzy rule in-
terpolation method, and few techniques as examples for possible
implementation. Let the generalized fuzzy rule interpolation be
denoted as

where indicates which
interpolation technique is used and

defines the single rule inference technique applied
in the second step of the method. This section is intended to
investigate some properties of the interpolation methods imple-
mented by the proposed algorithms. Special attention is paid on
the three typical deficiencies of interpolation methods discussed
in the first paragraph of the Introduction. First of all, let the
main steps be summarized and simply demonstrated via the
SC interpolation method, namely, .
Fig. 17 demonstrates the essential points of the concept.
Assume that fuzzy rules , and obser-
vation are given. In the first step a fuzzy rule
is interpolated in such a way that , namely,

(see (3), and note that
is set in (2)). In other words, the rule-base is interpolated at
the observation. The SC interpolation algorithm is actually ex-
ecuted on the fuzzy sets. Both the interpolated antecedent and
consequent sets are generated by the solid cutting technique,
see Fig. 17. The interpolated rule overlapping with is con-
sidered temporalily like any rules of the rule base and is fired
by in the second step of the proposed generalized concept
(see Fig. 17). The interpolated rule is depicted by dotted line in
the column of STEP II. The key idea of the inference is to keep
the interpolated fuzzy relation of between and . Then
the fuzzy relation of is transformed to , see the sets with
superscript and drawn by thin line in the column of STEP II.
Finally, the conclusion is inferred by the FPL method.

Let some properties of the fuzzy interpolation techniques im-
plemented by the proposed algorithms be investigated in the fol-
lowing.
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Fig. 17. Main steps of the proposed method.

Property 6 (Avoiding Abnormal Fuzzy Conclu-
sion): Interpolation algorithms

always result in a normal conclusion (Property 2 is
held in all steps).

Property 7 (No Restriction to CNF Sets): Interpolations
and are not

restricted to CNF sets, but are applicable to arbitrary shaped
sets. Interpolations and

are not restricted to normal, but to
arbitrary convex fuzzy sets.

Property 8 (Preserving Linearity): Interpolations
and

conserve the piece-wise linearity
in the case of triangular fuzzy sets (Property 4 is held for
triangular sets in all steps).

Property 9 (Compatibility With the Rule Base): This prop-
erty is the modus ponens in logic. For and it follows
from that . All techniques proposed in this
paper fulfill this condition (Property 1 is held in all steps) since
if then and , which simply implies
that . The discussed single rule reasoning techniques
keep the nondeviation property, namely, they infer if

. This immediately leads to if .
Property 10 (Preserving Normality): The resulting con-

clusion by
and is normal if the

sets in the rules and the observation are normal (Property 3 is
held in all steps).

Property 11 (Monotonicity): If is more spe-
cific than , then is more specific than

, i.e., for all inequality
implies .

In addition to the basic properties listed previously, the
“smoothness” Property 12 (see later) of the mapping is of
high interest as well, because in many applications “similar”
observations are expected to induce “similar” conclusions. In
order to make this property more precise, adequate concepts
like “continuity” for mappings, which map fuzzy subsets to

Fig. 18. Numerical example.

fuzzy subsets, are required. Let and be a deviation metrics
on and , respectively.

Property 12 (Continuity): In the case of the all proposed
techniques, for arbitrary there exists such that
if , and then for the corre-
sponding conclusions hold.

It is worth noticing here that interpolation
eliminates three typical deficien-

cies (while Property 8 is held only for triangular sets) of
interpolation techniques discussed in the first paragraph of
Section I.

VII. NUMERICAL EXAMPLES

This section is intended to show some examples computed
by . The fuzzy sets used in the examples
are not restricted to CNF sets. The results of the first example
are depicted in Fig. 18(a)–(d). Each figure contains two coordi-
nate systems. The observations are depicted in the upper ones,
while the conclusions can be seen in the lower ones. The sets
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Fig. 19. Numerical comparison.

drawn by thin line are the sets of the interpolated rule. Fig. (a)
shows a simple case, where one can observe the similarity of
the conclusion to the observation. In Fig. (b), it can be seen that
the elements belonging mostly to the conclusion and the inter-
polated consequent are the same, similarly to elements of the
observation and the interpolated antecedent. Fig. (c) presents a
similar case. Fig. (d) shows a case, where the functions of the
conclusion can be hardly determined by using only human com-
prehension.

The next example focuses on practical cases when simple tri-
angular or trapezoidal shaped sets are used. In Fig. 19, several
examples of sets and observation defined on can be
seen in the first column. The fuzzy sets, depicted by thin line,
in the first and last columns are contained in the interpolated
rules. Figures of columns 2–4 compare three different interpola-
tion methods. The second column treats the results obtained by
the first technique, namely, by the -cut interpolation, and the
third column contains results obtained by its improved version
proposed by Vass et al. [58]. The last column shows the result
computed by . In the first row, the fuzzy
terms are rather “nice,” and so every method results in a normal
fuzzy set conclusion. It can be observed that, if all methods infer
normal fuzzy set conclusion and only triangular fuzzy sets are
used, the results are almost identical. The second line shows an
example, with trapezoidal fuzzy sets, where the results in the
second and third columns are significantly different. The results
in the second and fourth columns are more in accordance with
the features of the observation. Comparing these three different
methods it can be said that the -cut interpolation usually gives
an almost identical conclusion (if it is a normal fuzzy set) with
the . In order to see one of the advantages
of the proposed generalized interpolation method, the third and
fourth rows present examples where the specialized method re-
sults in normal fuzzy set conclusions while the others do not.
It is worth mentioning here that various nonlinear interpolation
techniques can be defined easily via the proposed generalized
interpolation method which always infer a normal conclusion
fuzzy set.

VIII. EXTENSION TO MULTIVARIABLE RULE BASE

In order to propose some implementation algorithms to the
generalized method on multi variable rule bases, let all fuzzy
and semantic relation based techniques discussed in the pre-
vious sections be extended to multivariable rules. Assume that
an -variable rule-base is given which consists of rules

where is the th fuzzy set on input
universe . Assume that two rules are selected to
observations subject to

The conclusion is searched subject to . The
first step of the generalized concept is to find

subject to (3) which could look in multidimensional case as

(11)

Since all proposed techniques use the interrelation function, let
us define its multidimensional extension.

Definition 13 (Multidimensional Piecewise Linear Interrela-
tion Function): , where vector

consists of elements , further,
and

subject to
, and . The interrelation function assigns

one element of each universe to one element of the output
universe . Consequently, it can be defined by number of
univariable interrelation function as the elements of are deter-
mined by .

In the next section, the algorithms of the previous sections are
extended to multi-variable rules.
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A. Interpolation of Fuzzy Relation

The fuzzy relation based rule interpolation algorithms, intro-
duced in Section IV, can easily be extended to multivariable
cases, since the interpolation is done via set interpolation
executed on the input and output universes separately. In
the multidimensional case the interpolation can be done in
the same fashion. Consequently, with the help of the set
interpolation techniques SC, FPL, and FVL, a fuzzy rule

is computed as:
, and

, where
according to (11). is a

function of as

depending on a desired interpolation generatrix.
For example, a globally linear interpolation, namely, a linear

interpolation generatrix can be achieved if the following is ap-
plied: .

B. Interpolation of Semantic Relation

In order to extend the interpolation technique of semantic and
interrelation functions let multidimensional inter- and semantic
relation functions be defined in such a way that each antecedent
function has its own inter and semantic relation function to the
consequent.

Definition 14 (Multivariables Semantic and Interrelation for
SRM-I): Assume fuzzy rule .

a) Interrelation:

and

b) Semantic relation:

Definition 15 (Multivariable Semantic and Interrelation for
SRM-II):

a) Semantic relation:

height
height

height

b) Interrelation:

The interpolated relations are determined by

as introduced in Section IV. Again, the definition of the interpo-
lation parameters and determines the global interpolation
feature, namely the interpolation generatrix.

The interpolation in the first step is responsible to determine
the location of the conclusion by the interpolated rule, but the in-
ference technique, in the second step, yields the shape, namely,
the fuzziness of the conclusion that is originated from the inter-
polated consequent and is modified according to the differences
between the observations and the interpolated antecedents. The
fundamental idea in the following multi dimensional inference
techniques is that the conclusion is modified according to the
average of the differences between the observations and the in-
terpolated antecedents after assuming that the inputs are equally
considered e.g., they have the same contribution to the output.
Of course, in special cases the averaging operator could be re-
placed by any kinds of convex combinations emphasizing the
different contribution weights of the inputs to the output.

C. Inference of the Conclusion

In the univariable case, the interrelation space is defined by
the support of the interpolated antecedents. The interpolated in-
terrelation function is transformed to the interrelation space of
the observations. The same technique is applied in multivariable
case.

Definition 16 (Spanning the Interrelation Space,
): Vector and , respectively,

consist of elements and . Assume that a fuzzy rule
is given. Its interrelation space

is defined by intervals and . The new space,
which is spanned to a given interval on each input
universe is defined by intervals and as

and

The difference from the univariable case is that the interval on
the output universe is determined based on the average of the
intervals in full accordance with the assumption that each input
has equal contribution to the output. Along the same line the
transformation of the fuzzy relation to the new space is done
by fuzzy set transformation executed on all universes, like in
the univariable case. In the input universes, the antecedents are
transformed to intervals and the consequent is trans-
formed to interval .

Transformation 3 (Transformation of Multivariable Fuzzy
Relation to a Given Interrelation Space,

): Assume fuzzy rule .
Let fuzzy rule be a
transformed fuzzy rule whose interrelation space is defined
by and . The transformed antecedent sets are
determined as , where

and . As a
result, and . The consequent set is calculated
in the same way as: where

and , which leads to
and .

Authorized licensed use limited to: UNIVERSITY OF TOKYO. Downloaded on March 20, 2009 at 07:13 from IEEE Xplore.  Restrictions apply.



834 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 12, NO. 6, DECEMBER 2004

Fig. 20. Results of the proposed method.

Let the relation transformation used in methods SRM-I and
II be extended in the same way. The semantic relation is not
changing by expanding the interrelation area like in the univari-
able case.

Transformation 4 (Transformation of the Multivariable Se-
mantic Relation to a Given Interrelation Space): Assume that

and are given. Let be the transformed
interrelation function to a given interrelation area defined by

and as

where
and . Finally, let

.
Having the transformed relations techniques FPL, SRM-I,

and SRM-II methods can be executed to generate the conclu-
sion . These methods can be executed to each input universes
like to an univariable rule as in respect to
and yield conclusion on the output universe. The obtained
sets share a common support ( ,
see Transformation 4) ensured by the transformation of the in-
terrelation space. Taking the previous assumption into account,
namely, if the shape of all observations and antecedents are
equally considered in each input universe, the membership func-
tion of the final conclusion is the average of the membership
functions of as

As a matter of fact, depending on the actual purposes in mind the
averaging operator can be replaced by any convex combination
techniques as outlined above.

The determination of the conclusion by the multidimensional
interpolation can essentially be viewed as computing the av-
erage of the conclusions resulted by the univariable interpola-
tion executed to each input–output pair. Consequently, all the
properties investigated in Section VI can be stated for the mul-
tivariable algorithms introduced in this section as well.

IX. NUMERICAL EXAMPLES FOR MULTI-VARIBALE CASE

In Fig. 20, the results obtained by are
tested for two-dimensional cases. There are three coordinate
systems in Fig. 20(a)–(d). The first and second coordinate sys-
tems represent the input universes and , while the third
one shows the output . The computer simulation allowed the
use of fuzzy sets drawn by hand, permitting observation of all
the particularities in the process. Fig. (c) shows a case, where
the conclusion set can be determined difficultly if only human
comprehension is used. Fig. (d) shows an example with crisp
sets. The consequents of the rules are defined by the AND op-
eration of the antecedents: equals AND .
One can observe that the resulting conclusion also equals
AND .

Fig. 21 shows examples when triangular or trapezoidal
sets are used in a two variable fuzzy rule base. This ex-
ample compares the results of -cut, Vass, and the proposed

interpolation techniques. In Fig. 21(a),
every method results in a normal fuzzy set conclusion. Com-
paring the results it can be said that the -cut interpolation
method usually gives similar conclusion with the proposed
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Fig. 21. Comparison of three differnt methods.

method. Fig. 21 (b) and (c) present examples, where the pro-
posed interpolation method yields normal fuzzy sets while the
others do not.

X. CONCLUSION

In this paper, a family of interpolation methods is proposed.
These methods offer a structure to derive a family of fuzzy

rule interpolation techniques capable of avoiding the three typ-
ical deficiencies of interpolation techniques addressed as ab-
normal conclusion, preserving linearity, restriction to CNF sets.
Some of the derived interpolation techniques are not restricted to
convex fuzzy sets and always result in a fuzzy set unlike former
interpolation techniques. The method is introduced as a relation
interpolation in general sense in Section III, and is performed
to fuzzy and semantic relations via some algorithms as possible
implementations in Sections IV and V. Another contribution of
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this paper to the topic of fuzzy rule interpolation is that the linear
or nonlinear type of the interpolation can easily be changed by
the help of interpolation generatrix without loosing the above
advantages. Based on the concept of -cut distance based tech-
niques, developing a nonlinear interpolation which always re-
sults in a normal fuzzy set leads to a rather hard problem.
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