
Deep Feature Learning for EEG Recording Using Autoencoders

Yue Yao*

Research School of Computer Science

The Australian National University

*yue.yao@anu.edu.au

Abstract. In this era of deep learning and big data, the transformation of biomedical big data into recognizable patterns

is an important research focus and a great challenge in bioinformatics. An important form of biomedical data are

electroencephalography (EEG) signals, which are generally strongly affected by noise and there exist notable individual

and environmental differences. In this paper, we focus on learning discriminative features. Inspired by traditional image

compression techniques to learn a robust representation of an image, we introduce and compare three strategies for

learning features from EEG using three specifically designed autoencoders. Channel-wise autoencoders focus on

features in a certain channel while Image-wise autoencoders instead learn features from the whole trial. The GAN-

based autoencoders are further designed for EEG data filtering. While in this paper we will only focus on elimination

of some information of EEG images using GAN-based autoencoders. We used a UCI EEG dataset. Our results show

that using both Channel-wise and Image-wise autoencoders achieve good performance for discriminating a

classification problem with nearly state of art accuracy. A further experiment using shared weights showed that the

shared weights technique only slightly influenced learning but it reduced training time significantly. The experiment

on GAN-based autoencoders shows it can it can successfully remove the disease information in nearly 70% EEG

images.

Keywords: Deep Learning, Neural Network, Autoencoders, Convolutional Neural Network, EEG, Brain-Computer

Interface, Image Translation, Generative Adversarial Nets

1 Introduction

As an import part of Brain-Computer Interface (BCI), EEG has found a variety of interesting and useful applications for

users and has become increasingly important in various areas. Especially for the medical field, diagnosis of epilepsy for

example, EEG has shown great success [7, 14]. Gathered from the scalp, the EEG is a kind of signal that contains

information about the electrical activity of the brain. It uses electrodes placed on the scalp to get electrical information.

Since it is the overall measurement of human brain electrical activity, it may contain a wealth of information. This is the

reason why EEG can be applied to diverse areas like personal recognition, disease identification [7], sleep stage

classification, rebuild the picture from personal eyes [6], and so on. On the other hand, being full of information also

often means full of noise and interference, making it very hard to extracted readable features from it. Furthermore, full of

information also often means full of personal privacy issues. For example, if we would like to use EEG for personal

recognition task. The only information we would like to upload is personal identity. But since there still not exist a

successful information filtering algorithm, hackers will be able to get our other information like disease information,

emotion information and so on.

For feature filtering and elimination task for EEG, there hasn’t been an applicable method for this. But if with such

feature filtering algorithm realized, many applications using EEG could be finally achieved and change our life. Still

taking personal recognition for example, compared with fingerprint or face recognition, EEG has more advantage on

identifying different people. For instance, if one person’s fingerprint is stolen or one person’s face is reconstructed by

others, it is basically irreparable because the fingerprint and face model are irrevocable. But for EEG data, if it is hacked

by others, users can still reset a new EEG pattern because the EEG recognizer can identify a person by both personal

details and personal brain action.

For feature learning tasks, a wide range of traditional machine learning algorithms have been applied and achieved

success. In some areas, such as for bio-signals like EEG, many well-known algorithms have been applied like support

vector machine, random forests, Bayesian networks, and hidden Markov models [5]. Good performance of conventional

machine learning algorithms relies heavily on features extracted [10]. Traditional learned features are not always as good

as we want. For this reason, we need algorithms that can learn features from big data automatically.

 Deep learning, a neural network based technique, is a new branch of machine learning. It has achieved great success in

computer vision (CV) and natural language processing (NLP) in recent years. Unlike CV and NLP which have many

successful algorithms and datasets using deep learning, bio information areas have no widely accepted learning algorithms

or even a well-known and popular dataset like imagenet in CV. Human brain waves have commonalities and differences,

and it is these commonalities and differences which are exactly the features that we want. We believe that only when all

these features are better understood can we make it possible to design a robust and recognized deep learning method in

this area, because even deep learning approaches need some understanding of the structure of the data to extract features

well.

As a result, deep learning based approaches are utilized in this paper. Two autoencoder-based techniques are used for

feature learning and dimensionality reduction and one other is used for data filtering. They are referred to as Channel-

wise autoencoders, Image-wise autoencoders and GAN-based autoencoders. Channel-wise autoencoders are inspired by

one-dimensional convolutions. For EEG data, the number of channels is often significantly less than the timescale length,

forming an unbalanced matrix input. So, for applying convolutional neural networks based techniques, it is usual to

perform one-dimensional convolution first, then followed by two-dimensional convolution for feature extraction [5]. For

this reason, we design a group of channel-wise autoencoders witch only focus on features from a certain channel using

simple fully connected layers. The Image-wise autoencoders are designed based on fast fourier transform (FFT) and CNN.

Using FFT, we can obtain theta, alpha, beta EEG brain frequency bands, then we use these frequency bands to achieve a

colored picture.Then, a CNN based autoencoder is used to extract features from these colored pictures. GAN-based

autoencoder is inspired by Image-to-Image translation [19]. It is designed to map one image distribution to another image

distribution. In our paper, such translation mechanism can be used for feature filtering.

2 Related work

Convolutional neural network (CNN) is a feature extraction network proposed by Lecun [11], based on the structure

of the mammalian visual cortex – thus providing structural information about the data via the network topology. The

difference between convolution neural networks and the traditional neural networks is the convolution layer. The

convolution layer is a feature extraction layer. In general, a convolutional layer contains multiple convolution kernels.

Each kernel performs convolution operations on each channel of the image in forward propagation. The result is

concatenated along the third dimension to form a new matrix for further calculation. Multiple convolution and pooling

layers and some final fully connected layers form the entire network.

Traditional neural networks treat each pixel in the image as an independent variable ignoring the ‘connection’ between

adjacent pixels. The convolution operation utilizes the association between pixels in neighborhoods, so the result is more

robust and the generalization ability is stronger. During training, the kernels will remember patterns as local features.

During testing, those features will be detected by kernels and do classification according to these features.

We consider the convolution layers as feature extractor. Then, the fully connected layer serves as a ‘classifier’ trying

to find decision boundaries between each class. From another point of view, the role of the fully connected layer is similar

to the kernel method, warping the high-level feature space to make each class approximately linearly separable.

Other than autoencoders, there is other CNN based research. Depending on the type of the kernel, CNN based work

can be divided into normal CNN as well as frequency-based CNN. Normal CNN takes the raw EEG as the input while

the frequency based CNN takes frequency features as the inputs. Examples of normal CNN approaches include Deep4net

[9] and EEGNet [8],the and the SyncNet [4] is the latest example of a frequency based CNN. An interesting commonality

is that one-dimensional convolutions should be applied at the begging of all convolution procedures.

Figure. 1 The Function of Switches and the Structure of DNN [12]

Deconvolution neural network (DNN) was first used for visualization by Zeiler and Fergus [12]. A high-level feature

map with many high dimensional features is difficult to interpret intuitively. A DNN projects the response value of the

specified convolution layer into the input pixel space by reversing the CNN, thus revealing the contribution made by each

pixel of the input image to the response value, thus creating a more comprehensible feature map visualization. These

operations are shown in the right of Fig. 1 The right side is the process of forward propagation, while the left side is the

process of mapping the response value back to the input pixel space.

From the left of Fig. 1, it can be seen that the output size of the DNN is consistent with the input size of the CNN. In

DNN, up-sampling is difficult to implement because only the maximum value in each pooling area is preserved during

the down-sampling process without original coordinates. The solution to this problem is to use a “Switches” structure to

store the coordinates during down-sampling. As shown in the left of Fig. 1, where the right side is down-sampling, the

four locations of the maximum value are saved to the “Switches”. So, on the left, DNN retrieves the “Switches” and

determines the location of the value.

Figure. 2 Structure of Autoencoder

Autoencoder is a sort of compression algorithm, or dimension reduction algorithm, which is similar to Principal

Components Analysis (PCA). But compared with PCA, the autoencoder has no linear constraints. The autoencoder

structure has been widely used for image compression, for example [1], which inspired us to try an autoencoder based

learning algorithm. From Fig. 2, an autoencoder can be divided into two parts, an encoder and a decoder. The number of

nodes in the hidden layer is generally less than the nodes in the input layer and the output layer. That is, the original input

is compressed to a smaller feature vector. In equation 1 below, ϕ and ψ stand for encoder and decoder, respectively,

and L means squared loss. The objective of the autoencoder is to minimize the difference between the input and the

generated output. A CNN based autoencoder uses convolution operations as the encoder and deconvolution operations

for the decoder, making it possible to operate on image data.

 ϕ, ψ = argminϕ,ψ𝐿 (𝑋, (ϕ ∘ ψ)𝑋) (1)

 One of the major purpose of our work it to help advance the state of art in feature abstraction of signal analysis for

biosignals like EEG. Prior to our work, a number of autoencoder related deep learning methods have been applied to EEG

signals. For autoencoders, Sebastian and Avital use convolutional autoencoders with custom constraints to learn features

and improve generalization across subjects and trials [2]. Hajinoroozi uses fully connected stacked autoencoders on the

output of a supervised trained CNN [13]. They all achieved commendable results but all use CNN autoencoders directly

on the raw whole trial EEG signal without effort on preprocessing to reduce the high inherent noise in EEG signals.

 Generative adversarial networks (GAN) is a system of two neural networks contesting with each other in a minimax

game framework [21]. It achieves a great success in image generation area [22]. It mainly includes two parts, namely

generator and discriminator. The generator is mainly used to learn the distribution of the real image in order to fool the

discriminator and the discriminator needs to accept the real image while rejecting the generated image. Throughout this

process, the generator strives to make the generated image more realistic, while the discriminator strives to identify the

real image. The key part of GAN is the adversarial loss [20]. For image generation task, the adversarial loss is very

powerful for images in one domain transformed to the other domain. The co-operation and confrontation between neural

networks have become a hot topic since the breakthrough of GAN related work. From the bio-inspired point of view,

human beings are living in an environment full of co-operation and competition. As a result, there should be also a good

option for a neural network system to do the same thing in order to learn robust features.

 Figure. 3 CycleGAN Structrue Figure. 4 Image Translation Example [20]

 Image-to-image translation is a kind of system that can learn the mapping between input image distribution and

output image distribution using two separate images domains [19]. Shown in Fig. 3, given a source distribution X, we are

aiming to use a generation model G to map our source distribution X to target distribution Y. An example is shown in

Fig. 4, though it is not perfect, the translation system has successfully transferred the most important features between

zebra and horses like the skin color. In this translation system, we do not explicitly tell the neural network to change some

features. Instead, we have the prior knowledge of two separated image distribution. As a result, it is possible for us to

extract the stylistic difference between two image distribution and then directly translate them from one domain to the

other domain.

 Cycle-Consistent Adversarial Networks (CycleGAN) is a well-known image-to-image translation for unpaired

images [20]. It overcomes the difficulty of getting the paired image and form an autoencoder like structure to achieve

image translation. In Figure. 3, G is such generator that generates a domain Y image from domain X while F is the

generator that generates a domain X image from the domain Y. Dx and Dy are two discriminators that used to justify

whether the coming image really belongs to domain X and domain Y respectively. The training procedure could be

separated into two symmetric part. One is 𝑋 → 𝐺(𝑋) → 𝐹(𝐺(𝑋)). In this autoencoder-like loop, the training loss come

from two part, One is the discriminator loss comes from Dy to judge whether G(X) is really from domain Y and another

https://en.wikipedia.org/wiki/Neural_network
https://en.wikipedia.org/wiki/Zero-sum_game
https://en.wikipedia.org/wiki/Zero-sum_game

one is the reconstruction loss to judge whether F(G(X)) is the same as X or not. The other loop 𝑌 → 𝐹(𝑌) → 𝐺(𝐹(𝑌))

is in the same principle.

 But all these GAN methods is based on two hypothesis. One is that it is possible to build a strong classifier that can

discriminate such feature and the other one is to use a reliable generator that can filter out original feature and rebuild

target feature. For the first hypothesis, if we cannot train a strong classifier in normal labeled training, it will be almost

impossible for us get a strong discriminator in adversarial training because adversarial training itself is not designed to

help training with discriminator. That should be one of the reasons why GAN base method has achieved great success in

CV area because the current most popular datasets like mnist [23] and cifar-10 [24] have already achieved more than 90%

accuracy using different CNN. In contrast to CV, since NLP area has not own a universally recognized text classification

method, current GAN method for NLP like Seqgan [25] and Leakgan [26] does not have a strong discriminator to guide

the generator. For the hypothesis two, building a strong generator is strongly related the given type of data. For the image

translation area, convolution and deconvolution-based method is often used and the further U-net [27] based method

achieve the state of art [19].

 Furthermore, the evaluation method for GAN is still remained to be solved. From the long time after the original GAN

paper published, the generated result in CV area is still be judged by manual selection [28]. But after the critical job from

the google brain [28]. FID and F1 score is introduced to judge the generation quality of a GAN. But since the FID and F1

score requires a strong pre-trained classifier on other datasets, making to become very difficult to implement on other

areas like NLP or bio-signal.

 EEG2Image is a work which provides a method which transfers EEG signal to images and they further applied

recurrent-convolutional network for the image features [3]. It forms part of the base of our approach so it will be discussed

later.

3 Methodology

Figure. 5 Structure of General Procedure for Learning Discriminative Feature

The block diagram shows the general procedure for Channel-wise Autoencoders and Image-wise Autoencoders, as

depicted in Fig. 5. We first pre-process the raw EEG data into a useable form. Then feature extraction and dimensionality

reduction are done by using autoencoders. Finally, two fully connected layers are utilized to do classification and

evaluation. We extract features prior to applying the classification. To achieve this, two kinds of autoencoders are used

to enhance features. That is, Channel-wise autoencoders and Image-wise autoencoders.

3.1 Dataset
This dataset we use is from UCI, the EEG dataset from Neurodynamics Laboratory at the State University of New York.

It has a total of 122 subjects with 77 diagnosed with alcoholism and 45 control subjects [4,15]. Each subject has 120

separate trials. If this subject is labeled with alcoholism, all 120 trails belong to that subject will be labeled as alcoholism.

The stimuli they use are several pictures selected from the Snodgrass and Vanderwart picture set. One trail of EEG signal

is of one second length and is sampled at 256Hz with 64 electrodes. Models are evaluated using data within subjects,

which is randomly split as 7:3 for training and testing for one person [8]. The classification task is to recover whether the

subject has been diagnosed with alcoholism or is a control subject. Also, we noticed that this dataset is not a balanced

dataset. It is a two-task classification but alcoholism trials account for more than 70% of the data.

The usual challenges of handling EEG make it more difficult to apply deep learning methods compared with computer

vision data or natural language processing data. The UCI EEG dataset is not an exception. First, a label is usually applied

to one trial. But as one trial contains 64 channels and 256 time serious data, making it become a 64 × 256 large matrix.

In other words, a signal EEG trial has 64 × 256 attributes, making it become impossible to be directly fed into a neural

network. Otherwise, it will be too large to compute efficiently. Second, EEG is a kind of time-series data but it lacks

recognizable patterns in single time slices (1/sampling rate) compared with natural language processing. Third, as

previous work has shown, if we consider an EEG signal as a picture and directly use a convolution neural network, there

is always a serious problem to determine the size of the kernels at each stage [5]. That is because the original features

could be distributed with different time differences in a single trial depending on the scenario (different classification task

for example). To address these difficulties, we used two kinds of autoencoders as described in the following.

3.2 Channel-wise Autoencoders

Figure. 6 Structure of Channel-wise Autoencoders

The key idea of applying channel-wise autoencoder is to separate the feature extraction procedure into two parts, the

channel-wise autoencoder only focuses on features in one channel while the final fully connected layer will combine

features across channels to make a final prediction. As shown in Fig. 6. An EEG trial with the 64 × 256 dimensions will

be separated into 64 1×256 signals, then each signal will be input for one autoencoder only designed for that channel.

These 64 autoencoders are just 2 layers of a fully connected neural network with 16 hidden units in the middle. The input

of autoencoders will be normalized to [-1, 1] and there is tanh activation function for the output layer to match the output

to [-1,1] as well. The shared weight technique derived from image compression [1] is also used for signal compression,

which takes the transpose of encoder weights for the decoder weights.

3.3 Image-wise Autoencoders

Figure. 7 Structure of Image-wise Autoencoder

The image-wise autoencoders take the images as input while using convolution neural network to extract features. The

whole procedure is shown in Fig. 7 and below is some further explanation.

A. EEG to Image:

 Figure. 8 EEG Signal to Image Example Figure. 9 Transform 3-D Coordinate to 2-D Coordinate [3]

The EEG to image method is derived from the Bashivan’s work [3]. As illustrated in Fig. 8, it is a method that combines

the time-series information and spatial channel locations information over the cortex in a trial of EEG signal. A fast fourier

transform is performed on the time series to estimate the power spectrum of the signal for each trial (64×256). Then,

three frequency bands of theta (4-7Hz), alpha (8-13Hz), and beta (13-30Hz) are extracted and the sum of squared absolute

values in these frequency bands are used, forming a 64×3 map. To form an RGB EEG image, the theta frequency will be

the red channel, Alpha is the green channel and the Beta is the blue channel. For each frequency band (64×1), shown in

Fig. 9, Azimuthal Equidistant Projection (AEP) also known as Polar Projection is used to map the three dimensional 64

channel position into two dimensional positions on a flat surface. That is, all EEG electrodes positions are mapped into a

consistent 2-D space because the original EEG electrodes are distributed over the scalp is in a three dimensional fashion.

In this way, each 64×1 frequency band can be mapped to a 32×32 mesh, forming 32×32×3 data. The CloughTocher

scheme is used for estimating the values in-between the electrodes over the 32 × 32 mesh. Finally, a trial of 64×256 EEG

signal is transformed to a 32×32×3 color pictures.

B. Autoencoder design:

Encoder Decoder

Input 32×32×3 Color Image Input 16×8×8 Matrix

3×3 conv, 2×2 max-pooling

ReLU, 0.25 dropout

3×3 conv, 2×2 max-pooling

ReLU, 0.25 dropout

3×3 conv, ReLU

3×3 deconv, 2×2 max-un-pooling

ReLU, 0.25 dropout

3×3 deconv, 2×2 max-un-pooling

ReLU, 0.25 dropout

3×3 deconv

Table. 1 The Detailed Encoder and Decoder Structure

The design of this CNN based autoencoder is inspired by the CNN for cifar-10 [16]. The CIFAR-10 dataset consists of

60,000 32x32 color images in 10 classes, with 6,000 images per class, and has the same input dimension as our generated

EEG pictures. Our encoder takes one input layer, three convolution layers, three activation layers as well as two pooling

layers. For our decoder, it takes one output layer, three deconvolution layers, three activation layers as well as two pooling

layers. Our shared weight CNN Autoencoder is in the same structure as the normal CNN autoencoder but the weight of

the three deconvolution layers is fixed and derived from encoder’s convolution layer. The Rectified Linear Unit (ReLU)

is used for activation layers to speed up the training process while dropout is performed after every activation layer to

make the model more robust, since it forces all the layers before the dropout to extract redundant representations. In

principle, we do not impose a particular order for pooling layers and ReLU since they are known to be the same as

expressed in equation 2.

 max(ReLU(x1), ReLU(x2)) = ReLU(max(x1, x2)) (2)

3.4 Classification Task

The features extracted from channel-wise autoencoder and image-wise autoencoder will be flattened into a long vector,

composed of 16 hidden unit representations x 64 autoencoders in the channel-wise case. Then we use a feedforward

network with two hidden layers. Before the output layer, a dropout layer with 0.5 dropout rate is added. Also, a ReLU

layer is added after the first fully connected layer.

3.5 GAN-Based Autoencoder

Figure. 10 Structure of GAN-based Autoencoder

The GAN-Based Autoencoder is mainly used for data filtering. The GAN-Based Autoencoder is in the same structure as

CycleGAN structure. We call it GAN-based Autoencoder mainly because it principally still in a data->latent

representation->original data structure and use reconstruction loss. So in this autoencoder design, we take this latent

representation as our filter result. As introduced before. The training procure can be split into two separate training loop

and each loop has two separate loss. The detailed loss definition is as follows.

A. Adversarial Loss:

 The adversarial loss is mainly designed to judge whether the coming image really belongs to a certain distribution. So

take loop 𝑋 → 𝐺(𝑋) → 𝐹(𝐺(𝑋)) for example, it is designed to map distribution X to distribution Y using generator G.

The adversarial loss for this loop is defined as:

LGAN(G, DY, X, Y) = Ey~pdata(y)[log DY(y)] + Ex~pdata(x)[log (1 − DY(G(x)))] (3)

 It is just common GAN loss where G(x) is trying to fool the discriminator 𝐷𝑌 to make the generated image become

more similar to image distribution Y. The similar adversarial loss is introduced for loop 𝑌 → 𝐹(𝑌) → 𝐺(𝐹(𝑌)).

B. Autoencoder Loss:

 The autoencoder loss (reconstruction loss) is mainly used as a regulation term to make sure the generated image is not

from random selection because the target distribution could have multiple choice. The autoencoder loss will help the

generator to choose a target image which also maintains some feature from the original image in order to help reduce the

reconstruction loss. Also, take loop 𝑋 → 𝐺(𝑋) → 𝐹(𝐺(𝑋)) for example, It is defined as:

LAL(G, F) = Ex~pdata(x)[||F(G(x)) − x||1] (4)

 The Autoencoder Loss is just the same as common autoencoder mean squared loss to judge whether F(G(x)) is really

like x or not. Similar autoencoder loss is introduced for loop 𝑌 → 𝐹(𝑌) → 𝐺(𝐹(𝑌)) as well.

 Shown in Fig. 10, in this paper, we are trying to use EEG images with alcoholism condition and then map it to an EEG

image with the control condition. By doing this way, we hope we can get rid of alcoholism information from an EEG

image while still maintaining its personal identity. Since our input image is still 32x32 colorful image, we are still using

convolution and deconvolution as our generator and convolution with 1 fully connected layer as our discriminator.

4 Results and Discussion

Our experiment was to compare the classification accuracy using normal channel-wise autoencoders, shared weight

channel-wise autoencoders, normal Image-wise autoencoders and shared weight Image-wise autoencoders. The code is

written in python and pytorch. All experiments were done on an i5-7500 CPU, Nvidia GTX1050Ti, 8g RAM and

Windows environment. Both autoencoders’ versions are manually selected by the least test loss. Here is classification

result after 1,000 epoch training for the classification task.

Method Accuracy Final Loss Training Time

Shared weight Image-wise Autoencoders 0.897 0.00026 132.99s

Normal Image-wise Autoencoders 0.904 0.00019 150.68s

Table. 2 Comparison between Two Image-wise Autoencoders

Method Accuracy

Normal Channel-wise Autoencoders 0.864

Shared weight Channel-wise Autoencoders 0.858

Normal Image-wise Autoencoders 0.908

Shared weight Image-wise Autoencoders 0.897

EEGNet [8] 0.878

SyncNet [4] 0.918

DE [17] 0.821

PSD [17] 0.816

rEED [18] 0.702

Table. 3 Classification Accuracy Comparison between Different Methods in Within-Subject Test

Figure. 11 Image-wise Autoencoders Performance

The accuracy of prediction on UCI EEG datasets, from a variety of methods, is given in Table 3. The accuracy of other

methods is derived from Li’s paper [4]. From the result above, we can see that the accuracy of our autoencoder based

method is better than most of the past method except SyncNet [4] published last year. Image-wise autoencoders perform

better than Channel-wise autoencoders while the normal autoencoders perform slightly better than shared weight

autoencoders. From the Table 2, we can see the normal Image-wise autoencoder has better accuracy and less final test

loss than the shared weight Image-wise autoencoders. Also from Fig. 11, the picture generated by normal Image-wise

autoencoder is slightly clearer and more similar to the original image. But on the other hand, shared weight Image-wise

autoencoders have less training time. This is an advantage of shared weight technique because it cuts half of the parameters.

From all these results above we can see that the Image-wise autoencoders get the best discriminative features in our

methods. We think this is because frequency-based feature learning method can obtain more discriminative information

since both Image-wise Autoencoders and SyncNet are frequency based and they achieved the best performance. Also, all

our autoencoder method achieve quite a high test accuracy. I think that because autoencoder can encourage feature

extracted is not overfitting and it will prevent the model perform badly in the coming data.

Figure. 11 GAN-based Autoencoders Performance

The picture generated by GAN-based autoencoder is shown in Fig. 11. These are six generation example randomly

selected from all generation pairs. We can see our GAN works some slight modification to them but the fact that we

cannot find interpretable features from these transformations so generated result from GAN cannot be manually checked.

So we turn our eyes to digital indicators. So in here, we only evaluate whether our generated image is really getting rid

of feature we don’t want using the normal Image-wise autoencoder with a classification net. Form the Fig. 5. We can see

that 96.1% original image is classified as alcoholism but after our GAN-based autoencoder only 29.8% image is classified

as alcoholism. That is nearly 70% of images have their alcoholism information filtered out. Also, from the figure above,

it seems that our GAN-based autoencoder do not change our EEG images too much but it is already filtered out one

feature of the original EEG image. That is a part very interesting and further study is needed to figure out reasons. As a

conclusion, It turns out our GAN-based autoencoder can filter out alcoholism information to some extent.

But the limitation of using alcoholism accuracy only is also very obvious because there could be various ways to make

accuracy down like adding random noise. One potential solution to this is to check whether our autoencoder is still

maintaining our desired information when doing filtering operation. But since we cannot get strong classifier designed

for other features. It is not reliable to apply them for GAN evaluation. We have tried using our model to discriminate

personal identity (120 classification problem). But it get quite low accuracy (nearly 10%) so it cannot be used to evaluate

our GAN model.

5 Conclusion

Feature extraction for EEG data is very challenging because EEG signals contain a lot of noise. This report introduces

three types of autoencoders. Two types of autoencoders is test for feature extraction and both of them achieve more than

85% accuracy. The experiment result demonstrates the autoencoder based feature learning is discriminative. Also, the

shared weight technique can significantly reduce the training time but it may lead to a tiny discriminative information

loss. GAN-based autoencoder is designed for feature filtering and it turns out that it can successfully filter out unwanted

features. Limited by time, the potential of these models are not fully revealed, with further adjustment and fine-tuning,

the accuracy will be higher.

6 Limitation and Future Work

Many further experiments can be done. First of all, the UCI dataset also contains other labels that can be classified. We

should further test our extracted features on that to ensure our extracted features are discriminative for multiple task

classification. Second, as mentioned before, we just test whether our GAN-based autoencoder can filter our unwanted

information or not. We should also test when doing such filter operation, whether our desired information is really

maintained or not. But all of this if based on whether we can get a strong classifiers on other labels or not. For the generator

of GAN-based autoencoder, we can test U-net since it is the current state of art method for image translation. Then we

can apply PCA for each channel to compare the result with our Channel-wise autoencoders. The objective of using PCA

is to justify whether the linear transformation of features is worse for EEG feature extraction task or not. Then we can

turn our attention to more frequency based methods, since both Image-wise Autoencoders and SyncNet are frequency

based. Finally, we may try LSTM based work because there also exists many RNN feature extractors for EEG data. If we

have realized all these feature extraction methods, we will try to do more visualization procedures. Unlike pictures, the

features of EEG signal are not obvious, so visualization will be a good choice for understanding EEG features. Our

ultimate goal is to get a deep understanding of the EEG features and make it possible to design stronger feature extractors

and classifiers.

7 References

[1] Gedeon, T. D., Catalan, J. A., & Jin, J. Image Compression using Shared Weights and Bidirectional Networks. In Proceedings 2nd

International ICSC Symposium on Soft Computing (SOCO'97) (pp. 374-381).

[2] Stober, S., Sternin, A., Owen, A. M., & Grahn, J. A. (2015). Deep feature learning for EEG recordings. arXiv preprint

arXiv:1511.04306.

[3] Bashivan, P., Rish, I., Yeasin, M., & Codella, N. (2015). Learning representations from EEG with deep recurrent-convolutional

neural networks. arXiv preprint arXiv:1511.06448.

[4] Li, Y., Dzirasa, K., Carin, L., & Carlson, D. E. (2017). Targeting EEG/LFP Synchrony with Neural Nets. In Advances in Neural

Information Processing Systems (pp. 4623-4633).

[5] Min, S., Lee, B., & Yoon, S. (2017). Deep learning in bioinformatics. Briefings in bioinformatics, 18(5), 851-869.

[6] Palazzo, S., Spampinato, C., Kavasidis, I., Giordano, D., & Shah, M. (2017, October). Generative Adversarial Networks

Conditioned by Brain Signals. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3410-

3418).

[7] Truong, N. D., Nguyen, A. D., Kuhlmann, L., Bonyadi, M. R., Yang, J., & Kavehei, O. (2017). A Generalised Seizure Prediction

with Convolutional Neural Networks for Intracranial and Scalp Electroencephalogram Data Analysis. arXiv preprint

arXiv:1707.01976.

[8] Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., & Lance, B. J. (2016). Eegnet: A compact convolutional

network for eeg-based brain-computer interfaces. arXiv preprint arXiv:1611.08024.

[9] Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M., Eggensperger, K., Tangermann, M., ... & Ball, T. (2017).

Deep learning with convolutional neural networks for EEG decoding and visualization. Human brain mapping, 38(11), 5391-5420.

[10] Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1). Cambridge: MIT press.

[11] LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The handbook of brain theory and

neural networks, 3361(10), 1995.

[12] Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference

on computer vision (pp. 818-833). Springer, Cham.

[13] Hajinoroozi, M., Mao, Z., Jung, T. P., Lin, C. T., & Huang, Y. (2016). EEG-based prediction of driver's cognitive performance

by deep convolutional neural network. Signal Processing: Image Communication, 47, 549-555.

[14] Thodoroff, P., Pineau, J., & Lim, A. (2016, December). Learning robust features using deep learning for automatic seizure

detection. In Machine Learning for Healthcare Conference (pp. 178-190).

[15] Sykacek, P., & Roberts, S. J. (2003). Adaptive classification by variational Kalman filtering. In Advances in Neural Information

Processing Systems (pp. 753-760).

[16] Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images.

[17] Zheng, W. L., & Lu, B. L. (2015). Investigating critical frequency bands and channels for EEG-based emotion recognition with

deep neural networks. IEEE Transactions on Autonomous Mental Development, 7(3), 162-175.

[18] O’Reilly, D., Navakatikyan, M. A., Filip, M., Greene, D., & Van Marter, L. J. (2012). Peak-to-peak amplitude in neonatal brain

monitoring of premature infants. Clinical Neurophysiology, 123(11), 2139-2153.

[19] Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional adversarial networks. arXiv

preprint.

[20] Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial

networks. arXiv preprint arXiv:1703.10593.

[21] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial

nets. In Advances in neural information processing systems (pp. 2672-2680).

[22] Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial

networks. arXiv preprint arXiv:1511.06434.

[23] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings

of the IEEE, 86(11), 2278-2324.

[24] Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images.

[25] Yu, L., Zhang, W., Wang, J., & Yu, Y. (2017, March). SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient.

In AAAI (pp. 2852-2858).

[26] Guo, J., Lu, S., Cai, H., Zhang, W., Yu, Y., & Wang, J. (2017). Long Text Generation via Adversarial Training with Leaked

Information. arXiv preprint arXiv:1709.08624.

[27] Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation.

In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.

[28] Lucic, M., Kurach, K., Michalski, M., Gelly, S., & Bousquet, O. (2017). Are GANs Created Equal? A Large-Scale Study. arXiv

preprint arXiv:1711.10337.

