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Abstract. MNIST is a well known dataset for benchmarking, but it is almost 20 years old. Some within the deep 

learning community have called for MNIST to be put to bed, and Fashion-MNIST has been proposed as a structurally 

similar but more difficult alternative. Our objectives here are twofold. Firstly, we provide a benchmark for currently 

missing multilayer non-convolutional feed-forward neural networks on Fashion-MNIST. Secondly, we test the 

effectiveness of modern activation functions (comparing ELU [Exponential Linear Units], ReLUs, and sigmoid 

functions). Both objectives are novel, since Fashion-MNIST has a large number of benchmarks but none with non-

convolutional deep architectures, and ELUs are rarely used outside of convolutional networks. Our performance is 

substantially worse than the convolutional benchmarks, and we did observe some benefits of ELUs and ReLUs, when 

the network had been partially trained.  
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1. Introduction and Dataset Choice 

The perennial overuse of MNIST has attracted ire from many machine learning experts. There are three common 

reasons for this: 
1. “MNIST is too easy. Convolutional nets can achieve 99.7% on MNIST. Classic machine learning algorithms 

can also achieve 97% easily. Check out our side-by-side benchmark for Fashion-MNIST vs. MNIST, and read 

"Most pairs of MNIST digits can be distinguished pretty well by just one pixel." 

2. MNIST is overused. In this April 2017 Twitter thread, Google Brain research scientist and deep learning 

expert Ian Goodfellow calls for people to move away from MNIST. 

3. MNIST can not represent modern CV tasks, as noted in this April 2017 Twitter thread, deep learning 

expert/Keras author François Chollet.” (Xiao, Rasul, Vollgraf, 2017; Zalandoresearch, 2017) 

 
A suggested replacement for MNIST is entitled Fashion-MNIST, which is a demonstrably harder classification problem 

that is nevertheless similar to MNIST in its structure. Like the original MNIST, the task is to classify black and white 

images into ten classes. Fashion-MNIST images are taken from amazon.com . However, most classifiers perform 

substantially worse on Fashion-MNIST, with 5-10% less accuracy. While Fashion-MNIST is extensively benchmarked, 

the benchmarks use either convolutional neural networks or non-neural network machine learning models, and this is a 

gap we aim to fill. 
 

In 2017 Xiao, Rasul and Vollgraf published some benchmarks for this dataset. Additional benchmarks can be found at 

https://github.com/zalandoresearch/fashion-mnist . We will be revisiting this paper and trying to add to its results. We 

do not expect to beat the results in this paper, given that some classifiers such as RandomForest are competitive with 

shallow convolutional networks that may outperform ordinary multilayer networks on MNIST. We will also be testing 

whether or not the recently invented ELU or the ReLU activation functions outperform the contemporary sigmoid 

function. Importantly, Fashion-MNIST does not have benchmarks for performance on non-convolutional deep 

architectures for any of these activation functions, and this is particularly reflective of a lack of information on the 

literature on how ELUs perform outside of convolutional neural networks, where they were invented (Clevert et al, 

2016). The (non-NN) classifiers in the original paper have performance ranging from 51% to 86.8%, while the deep 

convolutional classifiers submitted by others have accuracy up to 94.9% (with ResNet18). 

 

https://github.com/zalandoresearch/fashion-mnist


Investigation Aims 

Our aims are twofold. We aim to add to the extensive benchmarks on Fashion-MNIST, and also to test out modern 

activation functions (ELUs and ReLUs) in comparison to sigmoid functions commonly used on MNIST. 
 

2   Method 

Summary of parameter choices 

Dependent Variables: 
 

Activation Functions - ELUs (Exponential Linear Units), ReLUs (Rectified Linear Unit), Sigmoid function. 
 

Parameters taken from Fashion-MNIST: 
 

We haven’t used cross-validation, as the dataset is sufficiently large and cross-validation does not seem to have been 

used in any of the other benchmarks. Most benchmarks with a specified number of epochs have 2 epochs, so that is our 

upper limit (although there is nothing to say that the network will not perform better with more than two epochs). 

Normalisation did not improve initial results on any of the architectures, and many of the other benchmarks did not 

normalise the data (see Zalandoresearch, 2017) so we have not used it. 
 

Other parameters and performance measurements 
After some brief testing, we determined that a learning rate of 0.01 would be appropriate for all three activation 

functions as applied. We picked a batch size of 100 because for a 10-class problem there is sufficient information for 

the network to learn. We chose the RPROP optimizer for its speed and lack of sensitivity to the size of the gradient. For 

our final activation and loss function we chose softmax / CrossEntropyLoss, which are well suited to classification 

problems with multiple classification. 
 

Model Design Principles 

The dataset is our dependent variables, while we are changing the activation function (our independent variable). We 

normalised the data to its mean and standard deviation. Though many benchmarks have transformed and normalised the 

data, many have not, and because we are trying to take a new (if somewhat antiquated) approach to this dataset we can 

make an independent choice. 
 

We used PyTorch, to compare RELUs, ELUs, and sigmoid activation functions. 
To make comparison at the early stages of training easier, we believe batch learning (with a batch size of 100) with 

equal samples of each class is appropriate. 
 

Understanding ReLUs and ELUs; and their benefits over Sigmoid/tanh functions 
ReLUs were invented in the late 1990s as a solution to the problems caused by the Sigmoid/tanh functions (Hahnloser 

et al, 2000). They have been found to be useful in larger networks because they mitigate the “vanishing gradient 

problem”, in which the gradient of sigmoid and tanh is disproportionately low at some inputs. Here, we are testing on a 

four-layer network, so the “vanishing gradient problem” may be present and observable - but it may also be the case 

that the disproportionately uninformative gradients of sigmoid may lead to less efficient training. 
 



 
 

Recent improvements on ReLUs include ELUs, which are the activation function we are using which most closely 

models the biological activation function. ELUs avoid circumstances where the ReLU fails to ever fire: “For example, a 

large gradient flowing through a ReLU neuron could cause the weights to update in such a way that the neuron will 

never activate on any datapoint again ” (Karpathy, 2017; for more detail see Hochreiter, 1998). As ELUs avoid zero-

derivative outputs, as shown on the graph above, this is unlikely to happen. ELUs have been shown to be highly 

successful in deep learning contexts, and we have found they have some benefits in training on Fashion-MNIST with 

our architecture as well.  
 

Data Pre-processing: 
 

We normalised the data, but otherwise were able to use the PyTorch Fashion-MNIST loader which divides it into 

50,000 training samples and 10,000 test samples. The data can also be found at 

https://github.com/zalandoresearch/fashion-mnist , and the paper makes clear that the original images were converted to 

PNG, trimmed, resized, sharpened, extended, partially negated, and converted to 8-bit grayscale pixels. 
 

Model Design: 
We have chosen a learning rate of 0.01, on the basis that the problem is not overwhelmingly large and more time can be 

taken on ensuring optimal learning, provided that 0.01 is not too low for the activation functions to learn. Our model is 

built in PyTorch, using the inbuilt training set (80% of the data) and test set (20% of the data). 
 

Our architecture takes a 28x28 image as an input layer, progressively decreasing over three intermediate/hidden layers 

(outputs 200, 200, 10) before an output layer of 10. The relevant activation function is the same for all layers (chosen 

from ELU, ReLU, or Sigmoid). 
 

We train the model in batches of 100, being 50 randomly selected data points without conflict and 50 randomly selected 

data points with conflict. We selected the optimizer (RPROP), and final activation and loss function (softmax / 

CrossEntropyLoss) as well-trodden choices in batch-learning and classification problems respectively. Fortunately, 

ELU, ReLU, and sigmoid activation functions (our independent variables) are built into PyTorch. 
 

Because there is so much data, we did not expect epochs would be necessary, but in light of a lower risk of overfitting 

from batch training we used two epochs each corresponding to the size of the test set. 

Performance Measure: 

In an earlier version of this paper, we used ROC curves to determine overall performance, but this is not possible here 

because it is a multi-class problem. Hence we will be graphing overall accuracy progressively at each batch as a way to 

compare the learning different activation functions as they cycle through the data. This will give us some insight into 

the amount of data the different activation functions can learn from. As a final benchmark, we will submit the accuracy 

after 2 epochs for the best activation function.  

3  Results 

In summary, while we did not determine that ELU or RELU led to superior results on a fully trained network, we found 

better performance by ELU, followed by RELU, over the sigmoid function, when the network was fully trained. Once 

https://github.com/zalandoresearch/fashion-mnist


the networks were trained over two epochs, the results were as follows (averaged over 8 iterations). The difference is, in 

our view, not significant.  

Sigmoid ELU ReLU 

0.66233 0.67362 0.65889 

Hence, once fully trained, we do not see a substantial difference between the information preserved by the different 

activation functions. However, following the network through its’ early training steps suggests that ELUs are superior 

to ReLUs, which are in turn superior to sigmoid curves, when data is limited. 

 

Considering that each batch represents 100 samples, ELUs achieved almost triple the performance of sigmoid curves 

once 2,000 samples had been seen, while ReLUs achieved almost double the performance of sigmoid curves until 3,500 

samples had been seen. It is clear from our final results that the sigmoid curve catches up to the ELU and ReLU curves.  

4   Discussion 

In this paper we had two objectives - to add a missing benchmark to the Fashion-MNIST dataset; and to compare 

sigmoid functions, ELUs, and ReLUs. We have achieved both objectives. But what is interesting about the Fashion-

MNIST dataset is that the relatively large amount of data would have obscured the difference between the performance 

of the different activation functions. Only when we look at very early on in the training does a difference emerge. The 

difference between ELUs, ReLUs and sigmoid function’ performance could be better demonstrated on datasets with 

relatively small amounts of labelled data. Additionally, the fact that our network is outperformed by state-of-the-art 

non-NN models such as a range of SVMs as well as deeper convolutional networks suggests that our benchmark is not 

of particular use besides contributing to a better understanding of Fashion-MNIST by adding a currently missing 

benchmark. We were surprised by the relatively poor performance of this NN on the dataset, given that performances of 

similar architectures on MNIST are much higher, but we are confident in our parameter choice and ultimately believe 

this reflects substantially on the difficulty of Fashion-MNIST. 

4   Conclusion and future work 



We have achieved both of our aims and can officially submit our benchmark to Fashion-MNIST as well as conclude 

that on this dataset ELUs will outperform ReLUs which will outperform sigmoid curves at the start of training; while 

performance will level out as more batches are learned. This corresponds with earlier work by the author using ANNs 

for prediction. 
 

In terms of future work, Fashion-MNIST is already well benchmarked in most respects. However, it would be 

interesting to have a similar comparison of activation functions on this or other datasets using convolutional nets, or 

using a wider range of algorithms (for example including SELUs and parametric ReLUs).  
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