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• Abstract. This paper presents an implementation using Back-propagation Neural Network to achieve the 
classification of the MNIST handwritten digit database. Here, we use plot of loss during training and classification 
accuracy to determine the performance of the neural network. The experimental results show that to a certain extent, 
the back-propagation neural network can be used to solve classification problem in the real world. Besides, we try to 
achieve image compression with Autoencoder and determine its effects. It does help to reduce the network size and 
thus increase the speed of the neural network, improving the performance. However, the accuracy rate cannot be 
guaranteed and potential reasons are discussed. Then we try to modify the structure of the original neural network 
into a Convolutional Neural Network (CNN). The results indicate that CNN can be used to improve the performance 
during solving image recognition problem. Besides, we combine CNN with Autoencoder into a Conv_Autoencoder 
structure and some tests are conducted. At last, the results generated by our network system are compared with those 
in another research paper tested the same MNIST handwritten digit database. It seems that the results of our 
experiment are a little bit worse, which means further work is necessary. 

Keywords: MNIST handwritten digit database; Neural Network; Back-propagation; Classification; Autoencoder; 
Convolutional Neural Network.  

1   Introduction 

Handwritten digit recognition is an important problem in optical character recognition, and it can be used as a test case 
for theories of pattern recognition and machine learning algorithms. To promote research of machine learning and pattern 
recognition, several standard databases have emerged. The handwritten digits are preprocessed, including segmentation 
and normalization, so that researchers can compare recognition results of their techniques on a common basis as well as 
reduce the workload (Deng, 2012). 
 
  This paper uses MNIST handwritten digit database on Artificial Neural Network (ANN). MNIST handwritten digit 
database can be taken from the page of Yann LeCun (Yann.lecun.com, n.d.). It has become a standard for fast-testing 
theories of pattern recognition and machine learning algorithms. The MNIST database was constructed out of the original 
NIST database; hence, modified NIST or MNIST. It contains 60,000 handwritten digit images for the classifier training 
and 10,000 handwritten digit images for the classifier testing, both drawn from the same distribution. All these black and 
white digits are size normalized, and centered in a fixed-size image where the center of the intensity lies at the center of 
the image with 28	×	28 pixels. The dimensionality of each image sample vector is 28 * 28 = 784, where each element is 
binary (Deng, 2012).  
 
  The reasons why we choose to use this MNIST handwritten digit database are various. Firstly, as mentioned above it 
is a standard which is a relatively simple database for fast-testing theories and algorithms. And we want to test neural 
networks applied to the practical problems in the real world, the handwritten digits in MNIST database have already been 
preprocessed including segmentation and normalization, so that it could be a good start for us spending minimal efforts 
on preprocessing and formatting. Besides, there are lots of researchers evaluating their theories and algorithms using 
MNIST, which means we can compare our results with the results from a rather comprehensive set of literature.  
 
  The purpose of this paper is to define how neural networks are used to resolve a problem of MNIST handwritten digit 
classification. Our work is to design a neural network model and then implement it to solve the classification problem. 
Besides, some extra experiments have been done to test different methods that may consequently influence the 
performance of our model.  
 
  As we know, Artificial neural networks (ANNs) are inspired by biological central systems in brains and have been 
utilized in a variety of applications ranging from modeling, classification, pattern recognition, and multivariate data 
analysis (Basheer and Hajmeer, 2000). And in practical ANN application, Back-propagation neural network is widely 
applied. Back-propagation algorithm is put forward by D. Rumelhart and J. McCelland in 1986 and they presented the 
neural networks using BP methods are called backpropagation neural networks (BPNN) (Rumelhart, Hinton, and 
McClelland, 1986). In this paper, we use Back-propagation neural network to achieve the classification problem. Back-



propagation neural networks are supervised multi-layer feed forward neural networks, commonly consist of an input layer, 
an output layer, and one or several hidden layers.  
 

 
Figure 1: Back-propagation neural network structure with three layers 

 
  Here is a basic model of the three-layer neural network shown in Figure 1. There are three layers in the network called 
input layer, hidden layer, and output layer respectively. Layers are fully interconnected with each other but there are no 
interconnections in the units of the same layer. The nodes represent computational units and need to obtain inputs which 
should be processed in neurons to produce the outputs. The functions to process inputs might be summing the figures. A 
basic neuron contains several elements: input, weights, activation function, threshold, and output. Weights are multiplied 
with inputs and then added in summing function and the sum is processed in activation function and finally, the model 
gives an output.  
 

2   Method 

As mentioned above, in this paper we use MNIST handwritten digit database in which the handwritten digits have been 
preprocessed including segmentation and normalization. There are 60,000 training images and 10,000 test images, and 
the dimensionality of each image sample vector is 28 * 28 = 784, where each element is binary. 

2.1   Back-propagation neural network setting up 

As discussed in the section above, Back-propagation neural networks are supervised multi-layer feed forward neural 
networks, commonly consist of an input layer, an output layer, and one or several hidden layers. Here we build a neural 
network with only one hidden layer. Input layer contains 28 * 28 = 784 neurons, representing the features; Hidden layer 
contains 300 neurons, using Sigmoid as activation function; And output layer contains 10 neurons representing the digits 
from 0 to 9.  
  
  Besides, we use cross-entropy error function as network loss function. It seems that cross-entropy error function is 
more suitable for classification problems than mean squared error (MSE) function. And it is convenient to use 
CrossEntropyLoss () to achieve it. As for the optimizer, here we choose to use Adam optimizer implementing the Adam 
algorithm which can be achieved by using Adam (). 
 
  After defining the neural network, we train the model by batch. In order to set the appropriate parameters such as 
batch_size, number_of_epochs and learning rate, we conducted several tests to evaluate. Honestly, it is really difficult to 
decide. There should be a balance among these parameters, contributing to the performance of the neural network together. 
Finally, the system parameters are given as number_of_epochs = 6, learning rate = 0.005 and batch_size = 100.  

2.2   Evaluation methods 

In order to determine the performance of the neural network and predictions and report the results produced by our neural 
network, we choose to calculate the training accuracy and testing accuracy. Plotting historical loss from “all losses” during 
network learning is also a visualized representation. 



2.3   Modify original model with Autoencoder 

T.D. Gedeon and D. Harris put forward that the major disadvantages of the back-propagation method are that it can be 
slow to train networks. If the new units end up duplicating the functionality of existing units, the speed of the network by 
increasing its size have decreased (Gedeon and Harris, 1992). They try to progressively reduce the size of the compression 
layer for the desired level of image quality.  

 
Figure 2: Auto-associative network topology [6] 

 
  Here is a standard auto-associative network put forward by T.D. Gedeon and D. Harris (Gedeon et al). The architecture 
is a n input, m unit hidden layer, and n output network, each of the pixels of the image being a single input, and output. 
The input value to A is the same as the output value at C, and so on. The first layer of weights from the inputs to the 
hidden units can be seen as implementing a compression function on the input pattern. The second layer of weights from 
the hidden units to the outputs implement a decompression function on the compressed data. That is, the hidden unit 
activations are mapped to recreate an approximation of the original data. The significance of training an auto-associative 
network for image compression is that the hidden neurons learn a compressed representation for the input patterns. Ideally, 
the data produced from the hidden layer can be regarded as a substitution representing the main information of the original 
input data. It can be used to reduce the network size and thus increase the speed of the neural network, improving the 
performance. 
 
  This technique inspires us that we can also use autoencoder to compress the image dataset. An autoencoder is a neural 
network that is designed to learn a representation of its input by attempting to copy its input to output. It can be thought 
of as two separate functions, an encoder, and a decoder. 
 
  We try to modify and test autoencoder on MNIST handwritten digit database, looking for whether it helps or not. The 
architecture we used is a 28 * 28 input, 6 unit hidden layer, and 28 * 28 output network, each of the pixels in the 28 by 
28 parts of the image being a single input, and output. Actually, we add some layers between the input layer and hidden 
layer as well as between hidden layer and output layer for better effects. 

2.4   Modify original model with Convolutional Neural Network (CNN) 

Convolutional Neural Networks are a special kind of multi-layer neural networks. They are also trained with the back-
propagation algorithm but with the different architecture from other neural networks. As Y. LeCun introduced, 
Convolutional Neural Networks are designed to recognize visual patterns directly from pixel images with minimal 
preprocessing and they can recognize patterns with extreme variability such as handwritten characters even digits 
(Yann.lecun.com, n.d.). Here is the LeNet architecture for image processing shown in Figure 3. The LeNet architecture 
is arguably the first prominent “deep” convolutional architecture. Introduced in 1988, it was used to perform optical 
character recognition for documents (O’Reilly | Safari, 2018).  
 
 



 
Figure 3: The LeNet architecture for image processing [8] 

 
 

 
Figure 4: Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition [9] 

 
  In 1998, Y. LeCun et al put forward the LeNet-5 architecture which is the latest convolutional network designed for 
handwritten and machine-printed character or digit recognition. Here is the architecture of LeNet-5 shown in Figure 4. 
As Y. LeCun introduced, LeNet-5 comprises 7 layers, not counting the input, all of which contain trainable parameters 
(weights). Layer C1 is a convolutional layer with 6 feature maps. Each unit in each feature map is connected to a 5 × 5 
neighborhood in the input. Layer S2 is a sub-sampling layer with 6 feature maps of size 14 × 14. Each unit in each 
feature map is connected to a 2 × 2 neighborhood in the corresponding feature map in C1. Layer C3 is a convolutional 
layer with 16 feature maps. Each unit in each feature map is connected to several 5 × 5 neighborhood at identical 
locations in a subset of S2’s feature maps. Layer S4 is a sub-sampling layer with 16 feature maps of size 5 × 5. Each 
unit in each feature map is connected to a 2 × 2 neighborhood in the corresponding feature map in C3, in a similar way 
as C1 and S2. Layer C5 is a convolutional layer with 120 feature maps. Each unit is connected to a 5 × 5 neighborhood 
on all 16 of S4’s feature maps. Layer F6 contains 84 units and is fully connected to C5. Finally, the output layer contains 
10 units with 84 inputs each, one for each class (LeCun, Y et al, 1998). 
 
  In this paper, we design the convolutional neural network inspired by the LeNet architecture and test on the MNIST 
handwritten digit database. 

3   Results and Discussion 

For analysis purpose, we present the results comparison by tables and figures. Due to the random bias that happens on a 
single result, testing accuracy that we use to compare is the average among 10 runs. 

3.1   Results of the original model, Autoencoder model, and CNN model 

Here show the results after several tests on the original model, Autoencoder model, and CNN model. All the system 
parameters are given as number_of_epochs = 6, learning rate = 0.005 and batch_size = 100. And there is a certain degree 
of randomness in the results 
 



Table 1.  Tests on the original model, Autoencoder model, and CNN model. 

batch_size          learning rate             number_of_epochs       Model accuracy 
 
100                  0.005 

       
      6               Original 

 
97.65% 

100                  0.005       6             Autoencoder 74.38% 

100                  0.005       6                CNN 98.84% 
   

 
  The results in Table 1 shows that as for the MNIST handwritten digit database, our original neural network model 
performs well achieving the accuracy rate 97.65%. The modified model using Autoencoder doesn’t perform well since 
its accuracy rate is only 74.38% while the modified model using CNN achieves 98.84%, performing a little better than 
our original neural network. 
 

 
Figure 5: Loss plot of the original model 

 

 
Figure 6: Loss plot of the Autoencoder model 

 

 
Figure 7: Loss plot of the CNN model 

 
 



  Besides, historical loss from “all losses” during network learning are plotted for each model and they are shown above. 
Figure 5 shows the loss plot of the original model, Figure 6 is the loss plot of the Autoencoder model, and Figure 7 
indicates the loss of the CNN model. It can be easily observed that the loss plot of the CNN model is smoother than others. 
And we can also see the great amount of loss during the training process of the Autoencoder model since its plot is more 
twisted. 
 
  The reason why the Autoencoder model doesn’t work well may be that in the Autoencoder network topology, the data 
produced from the hidden layer may lose information related to the categories. Regarding it as a substitution of the original 
input data is possible to cause an error. 
 
  The reason why the CNN model performs better may be as follow: firstly, the CNN structure is inspired by the visual 
pathway which could help to perform optical recognition tasks; secondly, CNNs make use of convolutional layers instead 
of densely connected neurons; thirdly, convolutional layers perform convolutions rather than general matrix 
multiplication.  

3.2   Results of the original Autoencoder model and the Conv_Autoencoder model 

Except implementing the Autoencoder model and the CNN model separately, we also try to combine Autoencoder 
structure with CNN structure. In the Autoencoder, we replace layers in the encoder and the decoder with convolutional 
layers. And we call this structure Conv_Autoencoder model. 

Table 2.  Tests on the original model, Autoencoder model, and CNN model. 

batch_size          learning rate             number_of_epochs         Model        loss 
 
128                  0.005 

       
      20         Original Autoencoder  

 
      0.1398 

128                  0.005       20          Conv_Autoencoder       0.1129 
   

 

 
Figure 8: original Autoencoder results 

 

 
Figure 9: Conv_Autoencoder results 

 



  The results of the original Autoencoder, as well as the Conv_Autoencoder, are presented above in Figure 8 and 
Figure 9. And the results in Table 2 shows that the loss of the original model as well as the Conv_Autoencoder model. 
The loss of the Conv_Autoencoder is a little less than the loss of the original Autoencoder model so that we can 
conclude that the Conv_Autoencoder performs better than the original Autoencoder as for image compression. 

3.3   Results compared with other results in a published research paper 

Besides, we search in the Google Scholar to find other researchers who also research on the MNIST handwritten digit 
database. And we compare our results with their results.   
 
  The paper written by D. Ciresan et al suggests that the performance, about 0.27% error rate or 27 errors in the full 
10,000 test set, is achieved by a committee of convolutional nets (with elastic distortion in augmenting the training set) 
(Ciresan et al, 2011). The accuracy of the MNIST handwritten digit database in their experiment is a little bit better than 
the results in our CNN model. However, the modified model using Autoencoder in our experiment gains the relatively 
worse results, which need to study and improve further. 

4   Conclusion and Future Work    

In this paper, we conduct an experiment implementing Back-propagation Neural Network to achieve the classification of 
the MNIST handwritten digit database. In the experimental model, 28 * 28 = 784 pixels are regarded as input and 10 
different classes of digits from 0 to 9 as output. Besides, we use classification accuracy and loss plot to determine the 
performance of the neural network. After testing on various parameters of the model, we set the system parameters as 
follow: number_of_epochs = 6, learning rate = 0.005 and batch_size = 100. The experimental results show that to a certain 
extent, the back-propagation neural network can be used to solve classification problem in the real world.  
 
  Besides, we try to achieve image compression with Autoencoder and determine its effects. It does help to reduce the 
network size and thus increase the speed of the neural network. However, the accuracy rate cannot be guaranteed. Then 
we try to modify the structure of the original neural network into a Convolutional Neural Network (CNN). The results 
indicate that CNN can be used to improve the performance during solving image recognition problem. Besides, we 
combine CNN with Autoencoder into a Conv_Autoencoder structure and tests conducted suggest that he 
Conv_Autoencoder performs better than the original Autoencoder during image compression.  
 
  It seems that the results of our Autoencoder model are a little bit worse, which means further work is necessary. In the 
future, we will go further with our modified model using Autoencoder and try to improve its performance. Besides, our 
CNN model should be studied and improved as well since there can be better performance from the related literature. 
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