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Abstract
Many PGAS languages and libraries rely on high performance
transport layers such as GASNet and MPI to achieve low commu-
nication latency, portability and scalability. As systems increase in
scale, failures are expected to become normal events rather than
exceptions. Unfortunately, GASNet and standard MPI do not pro-
vide fault tolerance capabilities. This limitation hinders PGAS lan-
guages and other high-level programming models from supporting
resilience at scale. For this reason, Resilient X10 has previously
been supported over sockets only, not over MPI.

This paper describes the use of a fault tolerant MPI implemen-
tation, called ULFM (User Level Failure Mitigation), as a transport
layer for Resilient X10. By providing fault tolerant collective and
agreement algorithms, on demand failure propagation, and support
for InfiniBand, ULFM provides the required infrastructure to create
a high performance transport layer for Resilient X10.

We show that replacing X10’s emulated collectives with ULFM’s
blocking collectives results in significant performance improve-
ments. For three iterative SPMD-style applications running on 1000
X10 places, the improvement ranged between 30% and 51%. The
per-step overhead for resilience was less than 9%.

A proposal for adding ULFM to the coming MPI-4 standard is
currently under assessment by the MPI Forum. Our results show
that adding user-level fault tolerance support in MPI makes it a
suitable base for resilience in high-level programming models.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: [Distributed programming]; D.4.5 [Reliability]: [Fault-
tolerance]

Keywords X10, Resilience, MPI, User Level Failure Mitigation

1. Introduction
The Asynchronous Partitioned Global Address Space (APGAS)
programming model [20] has been demonstrated to enable both
scalable high performance [16, 21] and high productivity [19] on
a variety of High Performance Computing (HPC) systems and ap-
plications. Although originally developed in the context of the X10
language [10], APGAS programming model concepts also underlie
a variety of other HPC programming systems including Chapel [3],
Habanero [9, 14], Co-Array Fortran 2.0 [22], and UPC++ [23].
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Most of these languages delegate process communication to
high performance networking layers such as GASNet and MPI. To
adapt to a wide variety of systems the X10 runtime uses a network
abstraction layer called X10RT. Implementations of X10RT over
TCP/IP sockets, MPI, or IBM’s PAMI transport are available.

As HPC systems are fairly reliable, it was reasonable for AP-
GAS programming systems to mostly ignore issues related to fault-
tolerance and application recovery. However, since projections in-
dicate high failure rates on future systems [8], fault tolerance is
growing in importance. Recently, X10 has developed a resilience
extension that enables applications to recover from process fail-
ures [11, 12]. The initial development of Resilient X10 was primar-
ily concerned with bringing X10 to cloud computing environments.
Therefore it only made resilient the portions of the X10 runtime
stack that were appropriate for a cloud computing environment. In
particular, the X10RT sockets transport was used for communica-
tion and experimental evaluations of Resilient X10 scaled to only a
few hundred X10 places.

To address the growing need for a standard fault tolerance se-
mantics in MPI, a fault tolerance working group was formed by the
MPI forum to assess MPI fault tolerance proposals. MPI-ULFM
(User Level Failure Mitigation) is currently the only active proposal
for adding fault tolerance to the MPI-4 standard. Since 2012, an
OpenMPI implementation of ULFM has been available, and used
in a variety of resilient systems [4, 5, 15, 18].

This paper describes the implementation of a resilient MPI
transport for X10 using MPI-ULFM. Both Resilient X10 and
ULFM adopt a flexible user level fault tolerance approach, resulting
in a straightforward integration of the two systems. By providing
fault tolerant collective and agreement algorithms, on demand fail-
ure propagation, and support for InfiniBand, ULFM provides the
required infrastructure to create a high performance transport layer
for Resilient X10. For X10 applications that use collective opera-
tions, our results show that replacing X10 emulated collectives with
native MPI blocking collectives results in significant performance
improvement in resilient mode, ranging between 30% and 51%.

We begin by reviewing Resilient X10 in Section 2 and MPI-
ULFM in Section 3. The major contributions of the paper are
the integration of X10 and MPI-ULFM described in Section 4
and the empirical evaluation of the resulting system in Section 5.
Section 6 discusses related work and Section 7 concludes and
describes future work.

2. Resilient X10
The X10 programming language [10] has been developed as a
simple, clean, but powerful and practical programming system
for scale-out computation. Its underlying APGAS programming
model [20] is organized around the two notions of places and asyn-
chrony.



Asynchrony is provided through a single block-structured con-
trol construct, async S. If S is a statement, then async S executes S in
a separate task (logical thread of control). Dually, finish S executes
S, and waits for all tasks spawned (recursively) during the execu-
tion of S to terminate, before continuing. Exceptions escaping from
S or tasks spawned by S are combined in a MultipleExceptions

instance that is thrown by finish upon termination.
A place is an abstraction of shared, mutable data and worker

threads operating on the data, typically realized as an operating
system process. A single APGAS computation may consist of hun-
dreds or potentially tens of thousands of places. The at (p) S per-
mits the current task to change its place of execution to p, execute
S at p and return, leaving behind tasks that may have been spawned
during the execution of S. The termination of these tasks is detected
by the finish within which the at statement is executing.

2.1 Failure Model
Resilient X10 [11, 12] builds on X10 by exploiting the strong
separation provided by places to provide a coherent semantics for
execution in the presence of failures. It assumes a fail-stop failure
model where the unit of failure is the place. A place p may fail at
any time, with the instantaneous loss of its heap and tasks. A failed
place cannot affect the execution of the non-failed places. Any at (

p) S that was launched from place q throws a DeadPlaceException

(DPE). Any future attempt to launch an at (p) S from place q will
also throw a DPE. However, any at (q) S that was initiated at place
p before the failure executes to completion. Global refs pointing to
objects hosted at p now “dangle”, but they cannot be dereferenced
since an at (p) S will throw a DPE. The failure of place zero is
considered catastrophic, and causes the application to terminate.

2.2 Resilient Finish
When a place p fails it may be in the middle of running at (

q) S statements at other (non-failed) places q. The key design
decision in Resilient X10 is defining how to track the termination of
these “orphan” statements. While S has lost its parent place, it still
belongs to an enclosing finish. Resilient X10 provides a resilient
implementation of the finish construct that allows orphan tasks to
be adopted by the nearest enclosing finish.

To maintain the state of finish constructs and their enclosing
tasks beyond the failure of places, an in-memory resilient store is
used. The creation and termination of remote tasks require interac-
tions with this store resulting in a performance overhead. Currently,
place zero is used as a finish resilient store in Native X10, since
it is assumed to never fail. Managed X10 uses a distributed java
based resilient store for finish. The rationale for the design and
implementation of Resilient X10 is discussed in [11, 12].

2.3 Resilient X10RT
X10RT is responsible for inter-place communication. The Re-
silient X10 runtime assumes that a resilient X10RT: 1) detects
place failures, and provides several APIs to inform the runtime
about them, propagating place failure information to other places
is not required; 2) returns an error when trying to communicate
synchronously with known failed places; and 3) preserves the abil-
ity for two non-failed places to communicate irrespective of other
places failures.

3. MPI User Level Failure Mitigation
ULFM [1] extends the MPI-3 standard by adding fault tolerance se-
mantics to existing operations assuming a fail-stop failure model.
It also adds a small set of new interfaces for failure propagation,
process agreement and communicator recovery, that can be used to
implement a variety of application specific fault tolerance strate-
gies. Table 1 describes the main new interfaces of ULFM.

Table 1: Main ULFM new interfaces

Operation Description

MPI Comm revoke invalidates the communicator

MPI Comm failure get acked
retrieves the local list

of known failed processes

MPI Comm failure ack
acknowledges the discovery of

current failed processes

MPI Comm shrink

creates a new communicator

by excluding dead processes

from a given communicator

MPI Comm agree a resilient consensus algorithm

3.1 Failure notification
ULFM applications need to change the default MPI error handler
from MPI_ERRORS_ARE_FATAL to MPI_ERRORS_RETURN, or to a user
specified error handler. After that, ULFM is able to report process
failure on a per operation basis using special error codes. A process
is notified of a failure once it attempts to communicate with a dead
process.

3.2 Failure propagation
By default, ULFM does not perform global notification of process
failure, which agrees with Resilient X10 requirements. However,
it provides the new operation MPI_Comm_revoke that can be used
for global propagation if required by an application. After one
process revokes a communicator, all other processes sharing the
same communicator will receive errors when they call any non-
local MPI operation, except MPI_Comm_shrink and MPI_Comm_agree

. To resume the application afterward, a new communicator must be
constructed using one of the following recovery mechanisms.

3.3 Communicator Recovery
Communicator recovery strategies are generally classified as shrink-
ing or non-shrinking [15]. In shrinking recovery, a new communi-
cator is created by excluding the dead processes in a given com-
municator. ULFM provides the new interface MPI_Comm_shrink

for this purpose. Non-shrinking recovery requires replacing dead
processes with new ones, so that the application can restore its
state using the same number of processes. The ULFM specification
is based on the MPI-3 standard, which supports dynamic process
creation. Thus ULFM applications can also apply non-shrinking
recovery, although the procedure is complicated as shown in [4].

3.4 Non Blocking Communication Operations
X10 uses non-blocking two sided communication operations for
transferring data and active messages between places. Initiat-
ing a non-blocking send or receive is done using MPI_Isend

or MPI_Irecv respectively. Checking the completion of a non-
blocking operation is done periodically by calling MPI_Test.
ULFM does not report process failure through initiation calls
of non-blocking operations. Instead, failure reporting is post-
poned until the corresponding completion operation is invoked (i.e.
MPI_Test or MPI_Wait). The same semantics hold for non-blocking
collectives.

3.5 Global Failure Detection using MPI_ANY_SOURCE

The operation MPI_Iprobe (source, ...) is used for checking for
incoming messages from a certain source. When the failure of
the source is detected, MPI_Iprobe returns an error code. A call
to MPI_Iprobe with the special source parameter MPI_ANY_SOURCE
returns an error when it detects a failure of any process in the



communicator that is not acknowledged by the application. This
feature is used by X10 for global failure detection without the need
for revoking the communicator.

3.6 Collective and Agreement Operations
ULFM provides non-uniform failure reporting for the collective op-
erations [6]. Depending on the collective implementation, when a
process dies, some processes may report the collective as success-
ful, while others may report it as failed. The same behavior occurs
in X10’s emulated collectives (§ 4.3).

When such disagreement scenarios happen, a consensus algo-
rithm can be used to reach a consistent view between processes
about a certain state. ULFM adds the interface MPI_Comm_agree to
provide a failure aware consensus algorithm.

4. X10 ULFM Integration
From the previous sections, we can list a number of agreements
between Resilient X10 and ULFM: both assume fail-stop process
failure, support user level fault tolerance, and do not require global
failure notification by default. That is why we found MPI-ULFM
a suitable transport layer for Resilient X10. This section describes
the implementation details of the X10 ULFM transport1.

4.1 OpenMPI ULFM Limitations
Until recently, there has been only one reference implementation
for ULFM based on OpenMPI 1.7 [2]. Another implementation
over MPICH is currently under development [7]. We used the
OpenMPI reference implementation, and found that it has the fol-
lowing limitations: 1) it does not target full node failure; 2) it does
not support thread safety; 3) it does not provide non-blocking col-
lectives; and 4) it does not provide one sided RDMA operations.
For the first limitation, we performed our experiments by killing
MPI processes rather than killing a whole node. For the second
limitation, we configured MPI to use the MPI_THREAD_SERIALIZED

mode, and manually serialized the access to MPI between X10
threads using a shared mutex. The third limitation did not impact
X10, because X10’s collectives API Team can use blocking MPI
collectives (see §4.3). The fourth limitation also did not impact
X10, because X10 can perform remote memory operations using
two sided communication operations.

4.2 Detecting Dead Places
To detect dead places, we registered the error handler in Figure 1
to the default communicator MPI_COMM_WORLD. The error handler
uses local ULFM operations to acknowledge and query the list
of dead places (Lines 4-8). This list is stored in the transport’s
global state (Lines 10-11) to be used for answering the runtime
queries about the status of places. The error handler does not revoke
MPI_COMM_WORLD. However, each place is guaranteed to eventually
detect the failure of any other place due to periodically calling
MPI_Iprobe(MPI_ANY_SOURCE, ...) to check for incoming mes-
sages from other places (see § 3.5).

4.3 Team Collectives
X10 contains a collective API similar to MPI, located in x10.util

.Team, offering collective operations such as barrier, broadcast, all-
to-all, etc. Team attempts to make use of any collective capabilities
available in the underlying transport. For transports that provide
native collectives, Team maps its operations to the transport collec-
tive implementations. For transports that do not provide collectives,
such as TCP/IP sockets, Team provides emulated collective imple-
mentations.

1 Our implementation is included in X10 version 2.6, available for download
at https://github.com/x10-lang/x10.

1 void mpiCustomErrorHandler(MPI_Comm* comm ,
int *errorCode , ...) {

2 MPI_Group f_group; int f_size;
3 // Acknowledge & query failed processes
4 MPI_Comm_failure_ack (*comm);
5 MPI_Comm_failure_get_acked (*comm ,

&f_group);
6 MPI_Group_size(f_group , &f_size);
7 int* f_ranks = malloc (...);
8 MPI_Group_translate_ranks(f_group ,... ,

f_ranks);
9 // Update global state

10 global_state.deadPlaces = f_ranks;
11 global_state.deadPlacesSize = f_size;
12 }

Figure 1: X10-ULFM custom error handler

An interesting combination arises when the underlying transport
supports some, but not all, of the functionality needed by X10. The
X10 thread model requires non-blocking operations from the net-
work transport, because there may be runnable tasks in the thread’s
work queue, and a blocking network call will prevent that runnable
work from completing, leading to possible deadlock. MPI-3 offers
non-blocking collectives, but other than barrier these are optional,
and MPI-2 only supports blocking collectives.For best performance
we still want to make use of these, so our implementation calls an
emulated barrier immediately before issuing the blocking collec-
tive. This allows us to line up all places so that when they reach
the blocking operation, they are all in a position to pass through the
collective immediately.

Team operations are exposed to the applications as blocking
collectives. When a non-blocking MPI collective is used, Team
internally uses a finish construct to block the calling thread until
the completion of the transport’s non-blocking collective.

Our experiments show that, in resilient mode, the emulated bar-
rier incurs less performance overhead than finish. That is why it is
preferable to map Team operations to blocking MPI collectives in
resilient mode. In the ULFM transport of X10, all team operations
are mapped to blocking MPI collectives.

Team Creation. The collective operation MPI_Comm_create is
used to create a sub communicator for each team object from the
parent communicator MPI_COMM_WORLD. Since X10 does not revoke
or recover the default communicator after process failure, collective
operations over MPI_COMM_WORLD will fail if any of the processes is
dead. That is why in resilient mode, we use MPI_Comm_shrink to
avoid accessing dead places while creating a new team communi-
cator, as follows:

1 MPI_Comm team_comm , shrunken;
2 MPI_Comm_shrink(MPI_COMM_WORLD ,& shrunken);
3 MPI_Comm_create(shrunken ,group ,& team_comm);

Measurements of team creation performance are presented in § 5.4.

4.4 Resilient Iterative Framework
X10 provides a high level checkpoint/restart framework for de-
veloping resilient iterative algorithms. The framework provides
a resilient executor (Figure 2), and an interface of five methods
to be implemented by the target application: step, isFinished,
checkpoint, remake, and restore.

Previously, checkpoint coordination was centralized and relied
heavily on finish: a coordinator place started a new finish block
that initiated an activity at each place to execute checkpoint (a fan-
out finish). When these activities terminated successfully, a new
fan-out finish was created to execute the next application steps.
Coordinating restoration was performed in the same way: when a
place failed, a coordinator place first invoked the remake method to

https://github.com/x10-lang/x10


1 do {
2 try {
3 if (restoreRequired ())
4 app.remake (...);
5
6 finish for(p in places) at (p) async {
7 while (!app.isFinished ()) {
8 // restore
9 if (restoreRequired ()) {

10 val status = app.restore (...);
11 setRestoreRequired(false);
12 if (!team.agree(status))
13 throw new Exception("Err :...");
14 }
15 // checkpoint
16 if (is_checkpoint_iteration ()) {
17 val status = app.checkpoint (...);
18 if (!team.agree(status))
19 throw new Exception("Err :...");
20 else
21 commit_checkpoint ();
22 }
23 // execute a step
24 app.step();
25 }// while ! isFinished
26 }// finish
27 } catch (ex:Exception) {
28 setRestoreRequired(true);
29 }
30 } while(restoreRequired ());

Figure 2: SPMD-style resilient iterative executor

reconstruct the application’s distributed objects over a new set of
places, then created a fan-out finish to invoke restore.

The availability of a distributed consensus algorithm in ULFM
allows us to avoid the centralized coordination and the repeated
fan-outs with every checkpoint and restore. The success of check-
pointing or restoration at all places is validated using Team.agree

which maps to ULFM’s MPI_Comm_agree.

5. Performance Evaluation
To evaluate the performance of resilient X10 applications over
ULFM, we measured: 1) the overhead of ULFM’s fault tolerance
extensions, 2) Team performance improvement by replacing em-
ulated collectives with MPI collectives, 3) the overhead of place
zero resilient finish at different scales, and 4) the performance of
failure detection, agreement and recovery at different scales.

Applications. Three applications were used in the experiments:
LULESH shock hydrodynamics proxy application with domain
size 303 [16], in addition to two machine learning benchmark
programs, PageRank and Linear Regression, from X10’s Global
Matrix Library [13]. PageRank was initialized using a graph of 1 M
vertices per place stored in a sparse matrix with density of 0.001.
Linear Regression used a randomly initialized dense matrix of 50 K
records per place, each record contained 100 classification features.
The three applications were modified to use the iterative framework
presented in §4.4. All the applications ran for 50 iterations.

Experiment Setup. The experiments were conducted on the Rai-
jin supercomputer at NCI, the Australian National Computing
Infrastructure. Each compute node has a dual 8-core Intel Xeon
(Sandy Bridge 2.6 GHz) processors, and uses an Infiniband FDR
network. We allocated 10 GiB of memory per node, and statically
bound each place to a separate core. ULFM was built from source
revision ea08943, which includes bug fixes to ULFM 1.1. X10 was
built from source revision bcd8f5b, using GCC 4.4.7 for post com-
pilation. The X10 Global Matrix Library used OpenBLAS 0.2.15

configured to use one thread per process (OPENBLAS_NUM_THREADS
=1). X10 places were configured to use one worker thread per
place (X10_NTHREADS=1). Resilient X10 mode was enabled in some
experiments by setting X10_RESILIENT_MODE=1. We also used the
environment variable X10_RESILIENT_FINISH_SMALL_ASYNC_SIZE

=1024, to provide lower finish overhead for messages smaller than
1024 bytes.

All timing results are the average of 30 runs. The 99% confi-
dence intervals for the reported average step times are less than
3.5% of the computed averages.

5.1 ULFM Fault Tolerance Overhead
In order to measure the performance overhead of ULFM’s fault tol-
erance extensions, we installed two configurations of UFLM, one
with fault tolerance features, and one without. ULFM with FT was
built with the configuration parameters --enable-mpi-ext=ftmpi
--with-ft=mpi, and executed using the runtime parameters2

-am

ft-enable-mpi --mca errmgr_rts_hnp_proc_fail_xcast_delay

0. ULFM without FT was built without these parameters, and
thus it is expected to behave like a standard MPI implementa-
tion with similar performance to OpenMPI 1.7. The fault tolerant
configuration adds extra conditions to validate the communicator
status before performing MPI operations. It also adds code seg-
ments related to ULFM’s new interfaces, which are not invoked
in this experiment. Table 2 compares the average step time for the
three applications using the two configurations, both running in
non-resilient X10 mode. The results show that the used reference
implementation adds no overhead to the application performance
in a failure free scenario.

Table 2: ULFM’s fault tolerance overhead over 1000 places

Avg. step time

X10 transport LULESH PageRank LinReg

ULFM without FT 127 ms 83 ms 39 ms

ULFM with FT 127 ms 83 ms 39 ms

Overhead 0% 0% 0%

5.2 X10 Emulated Collectives versus MPI Collectives
Resilient X10 over sockets can use only emulated Team collec-
tives. In this section, we measure the performance improvement
when emulated collectives are replaced with MPI blocking or
non-blocking collectives. Because ULFM does not provide non-
blocking collectives, Table 3 compares only two Team implemen-
tations for ULFM (Emulated and MPI blocking). To measure the
performance of non-blocking collectives, we had to use another
OpenMPI implementation that supports non-blocking collectives.
We used OpenMPI 1.10.2 configured to use the same thread level as
ULFM MPI_THREAD_SERIALIZED. Remember from section § 4.3 that
Team adds an emulated barrier before calling a blocking collective,
and a finish construct before calling a non-blocking collective.

We conclude the following from Table 3:

• In non-resilient mode, non-blocking collectives provide better
performance than blocking collectives. However, non-blocking
collectives result in higher overhead in resilient mode. The
internal use of finish by Team to wait for the completion of
non-blocking collectives is the source of the overhead.

• In non-resilient mode, blocking and emulated collectives have a
comparable performance. However, in resilient mode, blocking

2 The parameter –mca errmgr rts hnp proc fail xcast delay 0 was recom-
mended by ULFM team to reduce the failure detection time.



Table 3: Resilient finish overhead using different Team implementations and different transports over 1000 places

LULESH avg. step time PageRank avg. step time LinReg avg. step time

X10 transport Collective Impl. non-resilient resilient overhead non-resilient resilient overhead non-resilient resilient overhead

OpenMPI 1.10.2 Emulated 131 ms 200 ms 52.7% 84 ms 148 ms 76.2% 39 ms 78 ms 100%

MPI Blocking 133 ms 142 ms 6.8% 92 ms 92 ms 0% 39 ms 39 ms 0%

MPI Non-blocking 72 ms 205 ms 184.7% 77 ms 128 ms 66.2% 18 ms 48 ms 166.7%

ULFM with FT Emulated 127 ms 198 ms 55.9% 76 ms 147 ms 93.4% 39 ms 80 ms 105.1%

MPI Blocking 127 ms 138 ms 8.7% 83 ms 83 ms 0% 39 ms 39 ms 0%

Improvement 0% 30.3% – -9.2% 43.5% – 0% 51.3% –

collectives result in 30% to 51% performance improvement
compared to emulated collectives.

• Finally, the emulated barrier called before a blocking MPI col-
lective does not add a significant overhead for resilience.

In PageRank and LinReg, inter-place communication occurs only
through Team collective operations. When blocking collectives are
used, there is no significant resilience overhead. LULESH is a
stencil simulation; in addition to communicating through collec-
tives, each place periodically communicates with its 26 neighbor-
ing places to exchange ghost cells. The result is more interactions
with place zero resilient store, and higher resilience overhead.

5.3 Resilient Finish Overhead
Figure 3 shows weak scaling results for our three applications using
resilient and non-resilient finish. Team used ULFM blocking col-
lectives. PageRank and LinReg were executed using multiples of
250 places. LULESH was executed using 343, 512, 729 and 1000
places, because it requires a perfect cube number of places. As the
applications scale to larger number of places, the overhead remains
almost constant.
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Figure 3: Place zero resilient finish overhead

5.4 Recovery Performance
Figures 4 to 6 show the performance of our applications while re-
covering from one place failure. A spare place was used to replace
the failed one. Application data were checkpointed every 10 steps
in a double in-memory resilient store. The store keeps a local copy
of the data at the owner place, and another copy at a backup place.

Place(P/2) was forced to fail by issuing a SIGKILL signal at the be-
ginning of the 16th step. When a place fails, all places restore their
latest checkpoint from the data copy stored locally; only the spare
place copies remote data from the victim’s backup place. The fig-
ures show the following measurements:

• Failure detection: the time between killing a place and receiving
an Exception at the root place (Figure 2, Line 27). The use
of finish at Line 6 postpones throwing an exception until all
activities in all places detect the failure and terminate. Thus
the overhead here is not only from ULFM, but also from the
termination detection protocol of finish.

• Team reconstruction: the time to reconstruct the Team object
over a new set of places.

• Remake: the time to reconstruct the distributed objects over a
new set of places.

• Data restoration: the time to reinitialize the application state
from the latest checkpoint.

• Restore agreement: the time taken to reach a consensus between
places on the success or failure of restoring their data.

The figures show that the time for failure detection and team
reconstruction scale linearly with the number of places. The com-
pletion of a restore agreement depends on the completion of data
restoration at all places. That is why when data restoration is slow,
the agreement time increases. The times to remake PageRank and
LinReg distributed vectors and matrices have better scalability than
LULESH. LULESH’s remake routine is currently not optimized
and suffers low scalability. Each place in LULESH needs to main-
tain global pointers to ghost cell buffers in all neighboring places.
When places die, some of these pointers will dangle and require
updating. During remake, each place interacts with all its 26 neigh-
bors to update its global pointers. All these remote operations result
in interactions with place zero resilient store, and cause high per-
formance overhead.

6. Related Work
ULFM has been used in a variety of resilient MPI applications with
different recovery strategies. Pauli et al. [18] used ULFM for re-
silient Monte Carlo simulations. Ali et al. [4, 5] implemented ex-
act and approximate recovery methods for 2D and 3D PDE solvers
over ULFM. Laguna et al. [15] provided a programmability eval-
uation for ULFM in the context of a resilient molecular dynamics
application. To the best of our knowledge, our work is the first to
evaluate ULFM in the context of a high level language.

Panagiotopoulou and Loidl [17] presented a prototype for sup-
porting transparent fault tolerance for Chapel over GASNet. Be-
cause GASNet cannot tolerate failures, process failure was simu-
lated using signals without actually killing the transport layer.
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Figure 6: LinReg recovery times

7. Conclusion and Future Work
The MPI-ULFM specification provides a minimalistic user level
fault tolerance support to MPI, which makes it a flexible base for
resilient high level languages. We used ULFM to provide a re-
silient high performance transport for X10. Using ULFM, Resilient
X10 applications can scale to larger problem sizes on error-prone
environments. X10 provides elasticity support over its Managed
backend. In the future, we plan to use ULFM’s support for non-
shrinking recovery to add elasticity support for Native X10.
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