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Abstract—We consider uplink machine-type communication
(MTC) from energy-constrained devices following the time divi-
sion multiple access (TDMA) protocol. Conventionally, the energy
efficiency performance in TDMA is optimized through multi-user
scheduling, i.e., changing the transmission block length allocated
to different devices. In such a system, the sequence of devices for
transmission, i.e., who transmits first and who transmits second,
etc., has not been considered as it does not have any impact
on the energy efficiency. In this work, we consider that data
compression is performed before transmission and show that the
multi-user sequencing is indeed important. We propose to jointly
optimize both multi-user sequencing and scheduling along with
the compression and transmission rate control. Our results show
that multi-user sequence optimization significantly improves the
energy efficiency performance of the system, and especially the
performance gain is large when the delay bound is stringent.
This is advantageous for lower latency MTC.

I. INTRODUCTION

The Internet of Things (IoT) is largely based on the energy-
intensive uplink communication from energy constrained
machine-type communication (MTC) devices and calls for
effective energy efficient solutions [1]. In this work, the time
division multiple access (TDMA) protocol is considered for
the uplink MTC. The TDMA protocol allows deterministic
scheduling for data transmission and other operations, such as
sensing, signal detection, switching radio off, energy harvest-
ing. Thus, TDMA is preferred for sensor networks [2] and
wirelessly powered communication networks [3]. TDMA is
also adopted for the IEEE 802.11ad standard and mmWave
channel access in 5G networks [4].

The performance of the TDMA protocol is enhanced by
optimizing the multi-user scheduling, i.e., by changing the
transmission time allocated to different devices within a frame,
whilst maximizing a given system objective. For example, a
device allocated with a relatively longer transmission time
can adapt the transmission rate for a given channel gain, to
achieve better energy efficiency and vice versa. The choice of
system objective involves considering the trade-off between
the overall performance and the fairness among devices, e.g.,
in a proportionally-fair manner.

For a wireless power transfer scenario, the TDMA multi-
user scheduling is optimized for the sum and max-min energy
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minimization objectives in [3]. Similarly, the proportional-
fairness objective is considered in [5] to strike a balance be-
tween multi-user fairness and energy minimization. Similarly,
in [6] the trade-off between sum throughput and energy is
controlled through multi-user scheduling. In [7], the multi-user
scheduling is optimized and the sum throughput is maximized
for energy harvesting devices. The system energy efficiency
is maximized in [8] by jointly optimizing the multi-user
scheduling and transmit power subject to individual QoS
requirements. To the best of our knowledge, none of the above
papers investigate multi-user sequencing.

Moreover, for energy-constrained MTC devices, data com-
pression schemes have been proposed in [9] and [10] to reduce
the amount of data to be transmitted and thus alleviate the
overall energy cost. Unlike the transmission energy cost which
linearly increases with the size of data to be transmitted, the
compression energy cost has a non-linear relationship with the
compression ratio [11]. Owing to this non-linearity, blindly
applying too much compression may exceed the energy cost
of transmitting raw data, thereby losing its purpose [12], [13].

Paper Contributions: We consider a TDMA-based multi-
user uplink MTC system, in which each MTC device transmits
data to a base station (BS) within its allocated transmission
block. We consider that the devices apply data compression
before the start of their scheduled transmission block and
transmit the compressed data in the allocated transmission
block. The main novelty of this work lies in the proposed
multi-user sequencing, i.e., the order in which the devices are
scheduled for transmission in the TDMA protocol.

Conventionally, the TDMA performance is only optimized
through multi-user scheduling. In particular, the order or
sequence of devices has no significance, given the channel
statistics do not change from one transmission block to the
other. However, in our proposed system the sequence of
allocating the devices to the transmission blocks affects the
amount of time allowed for applying data compression.

Our investigation leads to the following technical contribu-
tions and observations:

1) We propose an approximation algorithm to solve the chal-
lenging mixed-integer nonlinear program of the multi-
user sequencing and scheduling.

2) The improvement due to multi-user sequence optimiza-
tion is up to 35%.
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3) The energy efficiency gain is most significant when the
delay bound is stringent. Hence, the proposed scheme is
advantageous for lower latency MTC.

II. SYSTEM MODEL

We consider a system consisting of N MTC devices
transmitting data packets to a BS. The devices are energy-
constrained, whereas the BS has no energy constraint. Each
device has a data packet of a specific length which need to
be transmitted within a frame of length Tframe (in seconds)
following the TDMA protocol as shown in Fig. 1. We assume
perfect synchronization among the devices [3], [5].

The BS determines the TDMA sequence and schedule
and allocates frame segments (referred to as the transmission
blocks) to individual devices before the start of the frame. Each
device applies data compression before the start of its sched-
uled transmission block and then transmits the compressed
data in the allocated transmission block, as shown in Fig. 1.
The device allocated with the first transmission block in the
frame performs both the data compression and transmission
operations within its allocated transmission block. The devices
switch to a power saving state when they are neither compress-
ing nor transmitting data and consume negligible energy.

Channel model: The BS and all the devices are each
equipped with an omnidirectional antenna. The distance be-
tween the ith device and the BS is di meters. The channel
between each device and the BS is composed of a large-
scale path loss, with path loss exponent α, and a small-scale
quasi-static frequency-flat Rayleigh fading channel. The fading
channel coefficient for the ith device is denoted as hi. All the
fading channel coefficients remain unchanged over a frame
and are perfectly estimated by the BS [3], [14]. The noise is
assumed to be additive white Gaussian noise (AWGN) with
zero mean and variance σ2.

MTC device sequencing and scheduling: Before each
frame, the BS broadcasts a control packet which contains
the sequence and schedule and the optimal compression and
transmission parameters for each device. The frame duration,
Tframe, is divided into N transmission blocks as

Tframe =
∑N

n=1
Tn, (1)

where Tn is the duration of nth transmission block. A device
allocated with a later transmission block in the frame has
more time to perform data compression. Thus, the position
of the transmission block, which depends upon the multi-user
sequence, affects its overall energy cost. Let us define

xn,i =

{
1, if nth block is allocated to ith device,
0, otherwise. (2)

Each transmission block is allocated to only one device, i.e.,∑N

i=1
xn,i = 1, ∀n. (3)

Each device is allocated only one transmission block, i.e.,∑N

n=1
xn,i = 1, ∀ i. (4)
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Fig. 1: Timing diagram for the compression and transmission
processes within a frame of uplink MTC. For simplicity, this
figure only shows the scenario with the same block length.

Compression: Before the start of transmission, each device
applies data compression on its raw data. For the ith device,
the Di bits of raw data is compressed into Dcp,i bits, resulting
in a compression ratio of Dcp,i

Di
. The compression time, Tcp,i, is

defined as the time required by the ith device to compress the
raw data, Di, into the compressed data, Dcp,i. We employ
a generic non-linear compression cost model as proposed
in [11]. The parameters of this compression model can be
determined off-line for a given compression algorithm using
data fitting. The compression time, Tcp,i, is given as

Tcp,i = τDn

((
Dβ

i D
−β
cp,i

)
− 1

)
, (5)

where τ is the per-bit processing time and β is a compression
algorithm dependent parameter that is proportional to the com-
pression algorithm’s complexity. τ depends upon the MCU
processing resources and the number of program instructions
executed to process one bit of data. Let Pcp be the power
consumed by a device during the data compression process.
Pcp is predefined for a given MTC device hardware.

Transmission: Once the compression process is complete,
each device needs to transmit its compressed data within the
allocated transmission block. The transmission time for the ith
device, Ttx,i, depends upon its compressed data size, Dcp,i, and
its link transmission rate, Ri, as

Ttx,i =
Dcp,i

Ri
. (6)

Here, the transmission rate, Ri, is given as

Ri = B log2

(
1 +

κPi|hi|2

Γσ2dαi

)
, (7)

where B is the bandwidth of the considered system, Γ
characterizes the gap between the achievable rate and the
channel capacity [3], κ =

(
λ
4π

)2
is the path loss factor, λ

is the wavelength and Pi is the transmit power for the ith
device. We consider the transmission power cost is composed
of two components: (i) the transmit power Pi and (ii) the static
communication module circuitry power Po, which accounts



for the operation of the digital-to-analog converter, frequency
synthesizer, mixer, transmit filter, antenna circuits, etc. The
transmission power cost Ptx,i for the ith device is given as

Ptx,i = Piµ
−1 + Po, (8)

where µ ∈ (0, 1] is the drain efficiency of the power amplifier.

III. OPTIMAL MULTI-USER SEQUENCING AND
SCHEDULING SCHEME

The MTC devices perform two main operations (i) compres-
sion and (ii) transmission, each having individual completion
time and energy cost. Recall that the device allocated with the
first transmission block performs both these operations within
its allocated transmission block, i.e.,

x1,iTcp,i + x1,iTtx,i 6 T1, ∀ i. (9)

For all other devices that are allocated the remaining trans-
mission blocks, they can apply data compression on the raw
data during the period between the start of the frame and the
start of its allocated transmission block. This implies that∑N

n=2
xn,iTcp,i 6

∑N

n=2

∑n−1

k=1
xn,iTk, ∀ i. (10)

After compression, each device transmits the compressed data
within its allocated transmission block. This implies that∑N

n=2
xn,iTtx,i 6

∑N

n=2
xn,iTn, ∀ i. (11)

The main problem we address is to determine the opti-
mal length of transmission blocks allocated to devices (i.e.,
scheduling), the sequence of allocated transmission blocks,
the compression and transmission policies for all devices. The
aim is to minimize the energy consumption of the devices,
under given delay and power constraints. Each device needs to
know the following parameters for its operation: (i) the starting
time for its compression and transmission processes, (ii) the
processing time allowed for its compression and transmission
processes, (iii) the optimal compression ratio, and (iv) the
optimal transmission rate.

The energy cost of the ith device is given as Ei = PcpTcp,i+
Ptx,iTtx,i. Substituting the values for Tcp,i, Ptx,i and Ttx,i from
(5), (6), (8) here yields

Ei=Pcpτ
(Dβ+1

i

Dβ
cp,i

−Di

)
+

B−1Dcp,i

log2
(
1+κPi|hi|2

Γσ2dα
i

)(Pi

µ
+Po

)
. (12)

Proportionally-fair energy minimization: In the litera-
ture, there are three popular system objectives for energy
minimization, which differ in terms of the overall system
performance and fairness among the MTC devices. These sys-
tem objectives are (i) sum energy minimization, (ii) min-max
energy minimization, and (iii) proportionally-fairness energy
minimization. The motivation behind the proportionally-fair
energy minimization objective is to strike a balance between
the system energy efficiency and the energy-fairness among
the MTC devices.

The proportionally-fair objective achieves some level of
fairness among devices by providing each device with a

performance that is proportional to its signal power attenuation
conditions. This is achieved by reducing the opportunity of
the devices with low signal power attenuation, getting more
share of system resources to the weak devices. More system
resources are allocated to the devices when their instantaneous
signal power attenuation is low relative to their own sig-
nal power attenuation statistics. Thereby, proportional-fairness
is achieved without compromising much energy efficiency
performance. Since the signal power attenuation fluctuates
independently for different devices, this strategy effectively ex-
ploits multi-user diversity. This can be achieved by minimizing
the sum of logarithmic energy cost function of the individual
devices [14], i.e.,

∑N
i=1 log(Ei), where Ei is defined in (12).

Optimization problem: The optimization problem for the
proposed scheme is formulated as follows

minimize
Pi, Dcp,i, Tn,
xn,i, ∀n,i

∑N

i=1
log

(
Ei

(
Pi, Dcp,i

))
(13a)

subject to
∑N

n=1
Tn = Tframe, (13b)

x1,iτ
(Dβ+1

i

Dβ
cp,i

−Di

)
+

x1,iB
−1Dcp,i

log2
(
1+κPi|hi|2

Γσ2dα
i

) 6 T1, ∀ i, (13c)

N∑
n=2

xn,iτ
(Dβ+1

i

Dβ
cp,i

−Di

)
6

N∑
n=2

n−1∑
k=1

xn,iTk, ∀ i, (13d)

N∑
n=2

xn,i
B−1Dcp,i

log2
(
1+κPi|hi|2

Γσ2dα
i

) 6
N∑

n=2

xn,iTn, ∀ i, (13e)

∑N

i=1
xn,i = 1, ∀n, (13f)∑N

n=1
xn,i = 1, ∀ i, (13g)

0 6 Pi 6 Pmax, ∀ i, (13h)
Dmin,i 6 Dcp,i 6 Di, ∀ i, (13i)
0 6 Tn 6 Tframe, ∀n, (13j)
xn,i ∈ {0, 1}, ∀n, i, (13k)

where (13d) and (13e) are obtained by substituting the values
of compression and transmission time from (5) and (6), in
to inequalities (9), (10) and (11), respectively. Pmax is the
maximum transmit power constraint for each device. Dmin,i
is the lower bound on the compressed data size for the ith
device. Thus, the maximum compression that can be applied is
given by the minimum compression ratio defined as Dmin,i

Di
∀ i.

The maximum compression ratio depends on the nature of the
data and the system application. Note that a device may not
fully utilize its allocated transmission block, depending upon
its optimal compressed data size and/or the transmission rate.

IV. SOLUTION APPROACH

The optimization problem in (13) is a mixed-integer non-
linear program which is non-convex in its natural form.
Therefore, it is very challenging to determine the globally
optimal solution or even to determine if the globally optimal
solution exists [15].



Lemma 1. For each multi-user sequence, the optimization
problem in (13) can be transformed into an equivalent convex
sub-problem. The globally optimal solution for one of these
equivalent sub-problems which minimizes the objective func-
tion in (13) is the globally optimal solution of problem (13).

Proof: For brevity we omit the details of the proof. Please
see [16] for the proof.

Approximation approach: Let us now propose an al-
ternative problem modelling approach to handle the binary
constraints, which targets a more computationally feasible
implementation. Note that for a real variable xn,i ∈ [0, 1],
we have xn,i > x2

n,i, ∀n, i. To this end, we can write

xn,i ∈ {0, 1} ⇔ xn,i − x2
n,i = 0

⇔
(
xn,i ∈ [0, 1] & xn,i − x2

n,i 6 0
)
, ∀n, i, (14)

and adopt the approach of [17–20] to rewrite (13k) as∑N

n=1

∑N

i=1

(
xn,i − x2

n,i

)
6 0, (15)

0 6 xn,i 6 1, ∀n, i. (16)

In this way, we relax the binary variables xn,i ∈ {0, 1}, ∀n, i,
in (13) to real variables xn,i ∈ [0, 1], ∀n, i, and introduce a
cost function that penalizes the objective in (13) to impose
xn,i = x2

n,i, ∀n, i [18]. Therefore, the binary to real variable
transformation leads to the following equivalent problem

minimize
Pi, Dcp,i, Tn,
xn,i, ∀n,i,

N∑
i=1

log
(
Ei

)
+ Λ

N∑
n=1

N∑
i=1

(
xn,i−x2

n,i

)
subject to (13b) – (13e), (13h) – (13j), (16),

(17)

where Λ > 0 is a constant penalty factor. The term∑N
n=1

∑N
i=1

(
xn,i−x2

n,i

)
in (17) is the penalizing function on

violation of the binary constraints over the energy minimiza-
tion objective. Its magnitude quantifies the degree of violation
from the binary constraints. Λ embodies the cost of this
violation from the binary values xn,i, ∀n, i. The minimizer of
(17) will satisfy the binary constraints, xn,i ∈ {0, 1}, ∀n, i,
for a finite value of Λ, i.e., the penalization is exact [15].
Thus, the optimization problems defined in (13) and (17) are
equivalent, and the same optimal solution minimizes both the
objective functions for a suitable value of Λ [18].

The non-negative term
∑N

n=1

∑N
i=1

(
xn,i − x2

n,i

)
in (17)

decreases to 0 as Λ → +∞. Ideally, we need this term to
be zero, and for that we would have to derive the optimal
value of the penalty factor, Λ∗. For practical computational
feasibility, let us introduce a numerical tolerance level such
that it is acceptable to have

∑N
n=1

∑N
i=1

(
xn,i − x2

n,i

)
< ϵ,

where ϵ is very small and Λ is sufficiently large. Following
[17] and [18], in our numerical experiments we found Λ > 200
is large enough to satisfy a tolerance level of ϵ = 10−6 such
that

∑N
n=1

∑N
i=1

(
xn,i − x2

n,i

)
6 ϵ.

Note that the penalty function in (17) is non-convex in
xn,i, ∀n, i,. Consider a non-convex quadratic function g(x) ,
x − x2, where x ∈ [0, 1]. If we apply the first-order Taylor
series expansion at a given point x(j) ∈ [0, 1], we can obtain

Algorithm 1 Iterative Approach for Multi-User Sequencing
and Scheduling Optimization

1: Initialization: Set iteration count j = 0. Set initial point
for x

(j)
n,i = 0.5, ∀n, i. Select a reasonably high penalty

value Λ = 200 and low tolerance value ϵ = 10−6.
2: while

∑N
n=1

∑N
i=1

(
x
(j)
n,i −

(
x
(j)
n,i

)2) > ϵ do
3: Solve (19) using point x

(j)
n,i, ∀n, i and get solution

parameters Z∗
i , D

∗
cp,i, T

∗
n , x

∗
n,i, ∀n, i.

4: Update point x(j+1)
n,i = x∗

n,i, ∀n, i
5: Update iteration count j = j + 1
6: end while

the convex lower bound on g(x) as [20]

x
(
1− 2x(j)

)
+

(
x(j)

)2 6 x− x2. (18)

Similarly, the convex lower bound on the penalty function can
also be given as

N∑
n=1

N∑
i=1

(
xn,i

(
1−2x

(j)
n,i

)
+
(
x
(j)
n,i

)2) 6
N∑

n=1

N∑
i=1

(
xn,i−x2

n,i

)
.

Moreover, substitute Zi= ln
(
1+κPi|hi|2

Γσ2dα
i

)
, Vi= ln

(
Dcp,i

)
,

and Zmax= ln
(
1+κPmax|hi|2

Γσ2dα
i

)
in (17). Accordingly, for a given

point x(j)
n,i ∈ [0, 1], the global upper bound minimization for

problem (17) is given as

minimize
Zi, Vi, Tn,
xn,i, ∀n,i,

N∑
i=1

log
(
Ei

)
+Λ

N∑
n=1

N∑
i=1

(
xn,i

(
1−2x

(j)
n,i

)
+
(
x
(j)
n,i

)2)
(19a)

subject to (13b), (13j), (16),

x1,i

(
τDβ+1

i

exp
(
βVi

)−τDi

)
+
x1,iB

−1 ln(2)

Zi exp
(
−Vi

) 6 T1, ∀ i, (19b)

N∑
n=2

xn,i

(
τDβ+1

i

exp
(
βVi

)−τDi

)
6

N∑
n=2

n−1∑
k=1

xn,iTk, ∀ i, (19c)

N∑
n=2

xn,i

exp
(
Vi

)
ln(2)

BZi
6

N∑
n=2

xn,iTn, ∀ i, (19d)

0 6 Zi 6 Zmax, ∀ i, (19e)
ln(Dmin,i) 6 Vi 6 ln(Di), ∀ i, (19f)

where bi=
Γσ2dα

i ln(2)
µBκ|hi|2 , ci=

µκ|hi|2Po
Γσ2dα

i
−1. It can be shown that

(19) is jointly convex in Zi, Vi, Tn, xn,i, ∀ n, i.
Implementation: Algorithm 1 outlines the steps to find the

solution to the nonconvex problem (13) by iteratively solving
the convex problem (19). In the first iteration, j = 1, problem
(19) is solved using the initially guessed points, x(j)

n,i, ∀n, i.
The solution for the jth iteration x∗

n,i, ∀n, i is used as an
initial point for next iteration j + 1. This process is repeated
until convergence is achieved. The final solution yields the
optimal parameters for multi-user sequencing and scheduling
and compression and transmission rates for problem (13) due
to its equivalence to problem (19).



TABLE I: System Parameter Values.

Name Sym. Value Name Sym. Value
Amplifier’s drain efficiency µ 0.35 Max. transmit power Pmax 0 dB
Scale parameter for channel gain ς 1 Wavelength λ 0.333 m
Compression processing power Pcp 24 mW No. of devices N 5
Comm. module circuitry power Po 82.5 mW Bandwidth B 1 MHz
Practical modulation power gap Γ 9.8 dB Packet size Di {310,500,100,80,200} kbits
Minimum compression ratio

Dmin,i
Di

0.4 Distance di {40,15,31,49,22} m
Per-bit processing time τ 7.5 ns/b Noise spectral density N0 −174 dBm
Compression cost parameter β 5 Pathloss exponent α 4

V. NUMERICAL RESULTS

The values for the parameters shown in Table I are adopted
for numerical results, unless specified otherwise. Algorithm 1
is implemented in AMPL, which is popular for modelling
scheduling problems. A model for the proposed problem is
developed in the AMPL environment and the Couenne (convex
over and under envelopes for nonlinear estimation) solver
[21], [22] is used to solve the problem. The Couenne solver
guarantees the globally optimal solution if such a solution
exists and we have this condition fulfilled from Lemma 1.

Let us define system energy cost as the total energy cost of
all the devices, i.e.,

∑N
i=1 Ei. Moreover, the energy efficiency

gain, Gee, provided by a given scheme A over scheme B be
defined as the percentage decrease in the system energy cost
of scheme B,

∑N
i=1 Ei,B , in comparison to the system energy

cost of scheme A,
∑N

i=1 Ei,A, and it is given as

Gee =

∑N
i=1 Ei,B −

∑N
i=1 Ei,A∑N

i=1 Ei,B

. (20)

We compare the performance of the proposed optimal
scheme with the following systems:

1) State-of-the-art which we label as the benchmark
scheme. To the best of our knowledge, the recent works [3],
[5], [8], [14] are the most relevant to our proposed scheme. We
adopt the multi-user scheduling and transmission rate design
policies proposed by these schemes for our considered system
model except that data compression and multi-user sequencing
are not employed. Thus, in the benchmark scheme the multi-
user sequence is fixed but the transmission block length of any
device is flexible and can be optimized. This scheme does not
include data compression and multi-user sequencing optimiza-
tion. The transmission rate and the transmission block length
(scheduling) are jointly optimized for the given proportionally-
fair energy minimization objective for a fixed sequence and
without employing data compression. The strategy followed
to optimize the multi-user scheduling and transmission rate
policies for this benchmark scheme is essentially the same as
in the state of the art [3], [5], [8], [14].
2) Sub-optimal Scheme: In this scheme compression is

employed but, unlike the optimal scheme, does not consider
multi-user sequencing. For the sub-optimal scheme, the multi-
user sequence is fixed and unchanged from one frame to
the next. However, the transmission block length of any
device is flexible, and hence is optimized. In this scheme,
the transmission rate, compression ratio, and the transmission
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Fig. 2: System energy cost under given power constraints.

block length (multi-user scheduling) are jointly optimized for
the proportionally-fair energy minimization objective for a
fixed multi-user sequence

(
i.e., {xn,i, ∀n, i} is known

)
.

The optimization problems of both the benchmark and the
sub-optimal scheme can be formulated and solved in similar
ways as done for the optimal scheme. We do not present the
details here, but they can be found in [16].

Validation: Let us first carry out a comparative analysis of
the proposed scheme with the benchmark scheme (which rep-
resents existing state-of-the-art work). Fig. 2 plots the system
energy cost,

∑N
i=1 Ei, versus the frame duration, Tframe, for the

system parameters in Table I. The system energy cost is plotted
with the proposed optimal scheme and benchmark scheme
in Fig. 2. When compared with the benchmark scheme, the
proposed optimal scheme exhibits significant performance su-
periority. This shows that employing both multi-user sequence
and compression optimization provides notable gains in the
energy efficiency, especially in the lower latency regime.

The energy efficiency gain, Gee, provided by the proposed
optimal scheme over benchmark scheme is plotted in Fig. 3.
It is shown that the gain is comparatively significant (between
27% to 95%), for the considered range of delay when the
system is feasible for benchmark scheme (between 80 ms to
150 ms). For the benchmark scheme, the device energy cost
is reduced by adapting the minimum required transmit power
level under given channel conditions. However, reducing trans-
mission rate through transmit power only helps up to a certain
level and any further reduction does not improve the energy
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Fig. 3: Energy efficiency gain performance for the optimal
scheme over the sub-optimal scheme and benchmark scheme.

efficiency. Hence, in general, it is not optimal to transmit at the
lowest transmission rate. Note that for the proposed optimal
scheme the lower bound delay has a much smaller value as
compared to the benchmark scheme.

Impact of Multi-User Sequencing: Let us now illustrate
the advantage of the multi-user sequencing. In both optimal
scheme and sub-optimal schemes, the multi-user scheduling
and compression are optimized. However, they differ in an
important aspect that the multi-sequencing is employed by
the proposed optimal scheme and not by sub-optimal scheme,
which uses a fixed multi-user sequence.

From Fig. 2, the proposed optimal multi-user sequencing
and scheduling scheme clearly outperforms the sub-optimal
scheme. Intuitively, it was expected that the multi-user se-
quencing will always provide non-negative gains. However, the
gains are notable for a wide range of delay when the system is
feasible for the sub-optimal scheme as shown in Fig. 3. Also,
in the lower latency regime the gains are significantly high,
between 12% to 35% for the delay range from 55 ms to 85
ms. On the other hand, for a less stringent delay constraint,
employing the multi-user sequencing will not pay off. At the
same time, it can be concluded that the data compression
provides significant gains for all types of delay constraints.

VI. CONCLUSION

In this paper, we have investigated the joint optimization
of sequencing and scheduling in a multi-user uplink MTC
scenario, considering adaptive compression and transmission
rate control design. Our results have showed that the proposed
optimal scheme outperforms the schemes without multi-user
sequencing and improves energy efficiency by up to 35% under
the given maximum transmit power and delay constraints. The
energy efficiency gain of multi-user sequence optimization
is paramount under a stringent delay bound. Thus, multi-
user sequence optimization makes the TDMA-based multi-user
transmissions more likely to be feasible in the lower latency
regime subject to the given power constraints.
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[2] V. Cionca, T. Newe, and V. Dadârlat, “TDMA protocol requirements for
wireless sensor networks,” in Proc. IEEE SENSORCOMM, Aug. 2008,
pp. 30–35.

[3] H. Ju and R. Zhang, “Throughput maximization in wireless powered
communication networks,” IEEE Trans. Wireless Commun., vol. 13,
no. 1, pp. 418–428, Jan. 2014.

[4] J. Qiao, X. S. Shen, J. W. Mark, Q. Shen, Y. He, and L. Lei, “En-
abling device-to-device communications in millimeter-wave 5G cellular
networks,” IEEE Trans. Mobile Comput., vol. 53, no. 1, pp. 209–215,
Jan. 2015.

[5] C. Guo, B. Liao, L. Huang, Q. Li, and X. Lin, “Convexity of fairness-
aware resource allocation in wireless powered communication net-
works,” IEEE Commun. Lett., vol. 20, no. 3, pp. 474–477, Mar. 2016.

[6] D. Niyato, P. Wang, and D. I. Kim, “Performance analysis and opti-
mization of TDMA network with wireless energy transfer,” IEEE Trans.
Wireless Commun., vol. 13, no. 8, pp. 4205–4219, Aug. 2014.

[7] X. Kang, C. K. Ho, and S. Sun, “Optimal time allocation for dynamic-
TDMA-based wireless powered communication networks,” in Proc.
IEEE GLOBECOM, Dec. 2014, pp. 3157–3161.

[8] Q. Wu, W. Chen, and J. Li, “Wireless powered communications with
initial energy: QoS guaranteed energy-efficient resource allocation,”
IEEE Commun. Lett., vol. 19, no. 12, pp. 2278–2281, Dec. 2015.

[9] T. Srisooksai, K. Keamarungsi, P. Lamsrichan, and K. Araki, “Practical
data compression in wireless sensor networks: A survey,” Journal of
Network and Computer Applications, vol. 35, no. 1, pp. 37 – 59, Jan.
2012.

[10] Y. Wang, D. Wang, X. Zhang, J. Chen, and Y. Li, “Energy-efficient
image compressive transmission for wireless camera networks,” IEEE
Sensors J., vol. 16, no. 10, pp. 3875–3886, May 2016.

[11] M. Tahir and R. Farrell, “A cross-layer framework for optimal delay-
margin, network lifetime and utility tradeoff in wireless visual sensor
networks,” Ad Hoc Networks, vol. 11, no. 2, pp. 701–711, Mar. 2013.

[12] C. M. Sadler and M. Martonosi, “Data compression algorithms for
energy-constrained devices in delay tolerant networks,” in Proc. SEN-
SYS, ACM, Nov. 2006, pp. 265–278.

[13] S. A. Alvi, X. Zhou, and S. Durrani, “Optimal compression and
transmission rate control for node-lifetime maximization,” IEEE Trans.
Wireless Commun., vol. 17, no. 11, pp. 7774–7788, Nov. 2018.

[14] P. D. Diamantoulakis and G. K. Karagiannidis, “Maximizing propor-
tional fairness in wireless powered communications,” IEEE Wireless
Commun. Lett., vol. 6, no. 2, pp. 202–205, Apr. 2017.

[15] J. F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. Sagastizábal,
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