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Abstract— This paper describes a control strategy to stabi-
lize the position of a Vertical Takeoff and Landing (VTOL)
Unmanned Aerial Vehicle (UAV) in wind gusts. The proposed
approach takes advantage of the cascade structure of the system
to design a hierarchical controller. The idea is to separate the
controller in a High Level Controller devoted to position control
and a Low Level Controller devoted to stabilization and attitude
control. Both controllers are designed by means of backstepping
techniques that allow the stabilization of the vehicle’s position
while on-line estimation of the unknown aerodynamic forces. The
global stability of the connected system is proven, and simulations
as well as experimental results are presented.

I. INTRODUCTION

The design of autonomous navigation strategies for ducted
fan Micro Aerial Vehicles (MAV) has now become a very
challenging research area [1], [2], [3]. These small and discreet
secure platforms, able to perform vertical takeoff and landing
(VTOL) and stationary flight, are of evident interest for civil
and military operations in an urban environment. The Bertin
Technology company is currently working on the development
of such a ducted fan UAV, called HoverEye. A view of the
HoverEye is given Fig. 1. The work presented in this paper has
been developed in the framework of a collaboration between
Bertin Technologies and the laboratories LAAS-CNRS and
I3S. The objective of this collaboration is to model the system
and develop autonomous control strategies. It must be able to
perform hovering flight for surveillance applications despite
possible wind perturbations. The automatic control design
must allow the vehicle to be easily operated by an inexpe-
rienced user. At the end, the vehicle is expected to execute
autonomous flights, defined by sequences of navigation points,
while avoiding encountered obstacles.

In this paper, we take advantage of the pyramidal structure
of the system to design a hierarchical controller made of a
high level position control and a low level attitude control.
This architecture of controller is usual in most of schemes of
Guidance, Navigation and Control algorithms. The difficulty,
when designing control laws for connected systems, is to
ensure the stability of the global system. In linear applications,
the proof is immediate, because of exponential stability of each
subsystem. This property is lost in nonlinear applications.

In [4], the authors proposed a hierarchical controller to
realize path following with a helicopter in hover mode, and
achieved global convergence of the system. However, in their

1: A view of the ducted fan VTOL UAV HoverEye

application, the aerodynamic efforts were neglected, thus
both translational and rotational dynamics were exponentially
stable. Here, the estimation of unknown aerodynamic efforts
leads to an asymptotic stability of the rotational dynamics,
whereas the translational dynamics is exponentially stable. The
main contribution of this paper is to show that it is still possible
to ensure the asymptotic stability of the global system.

The paper is articulated as follows: section II is devoted
to the description of the vehicle dynamics with a focus
on the cascade structure of the system. The control design
is described in section III and a proof of stability of the
proposed strategy is given. Simulation results and experiments
are described in section IV to illustrate the concept. The last
section contains concluding remarks.

II. MODELLING

In this section, we briefly present the kinematic parameters
and the dynamic representation associated to the system. Any
further detail may be found in [5]. We would like to focus
in this section on the representation of the system as two
connected subsystems.

A. Kinematics

Two reference frames are considered (see [6]):

is the inertial frame attached to the earth. It is as-
sumed to be Galilean. It is associated to the vector basis

: points to the North, to the East, and
to the center of Earth. (see Fig. 2)
is the body-fixed frame attached to the vehicle. It is

associated to the vector basis : the roll axis
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2: Inertial and body fixed frames - Aeronautical Euler angles
parameterization of attitude

points forwards, the pitch axis points to the right
and the yaw axis points downwards.

The kinematic parameters used to describe the movement of
this DoF rigid body are :

is the position of the center of gravity with respect to
, expressed in the inertial frame:

is the velocity of the center of gravity with respect to
expressed in the inertial frame:

is the transformation matrix from to
, usually parameterized by the aeronautical Euler angles

, as shown in Fig. 2
is the angular velocity vector of relative

to , expressed in the body fixed frame:

B. Dynamic Representation

The different forces acting on the system are described in
[5]. The resulting representation of the dynamics is12:

sk
sk sk

(1)

In the model (1), and , with
, denote respectively the mass and the inertia matrix of

HoverEye. The thrust and the moment
created by the control surfaces are the control inputs of the
system. The external aerodynamic efforts, , and the lever
arm , are unknown parameters. As the point of application
of is supposed to be on the yaw axis, is a scalar.
An estimation of these parameters will be obtained via the
proposed control strategy. The control surfaces also create the
so-called small body forces , making the system strictly
non minimum phase. One of the main contribution in [5] was
to show that by considering the following variable change:

with

1sk denotes the skew symmetric matrix associated to : ,
sk sk

2 denotes the canonical base of : ,
,

It was possible to use in control design the equivalent model:

sk
sk

(2)

as long as the yaw rate is maintained to zero. Therefore, one
of the main objective in the control strategy will be to regulate

to zero. We will see in section III-B that the structure of the
controller naturally implies this regulation.

C. Cascade Structure of the System

We rewrite the system as two connected subsystems. The
first one describes the translational dynamics: the magnitude

and the direction of the thrust represent its control
inputs. The second subsystem describes the dynamics of the
direction of the thrust along with the vector is the
control input. The equivalent inter-connection scheme appears
in the block ’HoverEye Dynamics’ in Fig. 3.

Lemma 1: Let be the unit direction of the thrust,
the components of the angular velocity in the inertial

frame, and . The model
(2) is equivalent to:

(3)

(4)

. The time derivative of is given by3:

sk sk

Introducing , one has finally: sk . The time
derivative of is given by:

sk sk

One will notice that sk sk . It yields:

sk sk

III. CONTROL DESIGN

In this section, we design a controller in two parts: the High
Level Controller is dedicated to position control in which the
magnitude and the direction of the thrust are considered
as control inputs. The Low-Level controller is designed to
stabilize the attitude of the vehicle to the required by the
High Level Controller. Figure 3 represents the resulting block
diagram in closed loop. The global stability of the system with
both controllers in cascade is proven in section III-C.

3keep in mind a basic property of skew symmetric matrices:
sk sk
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3: Block diagram of the architecture of the controller

A. Position Control Design

Let be a constant desired position for the control point .
In this section, a control law is designed to ensure hovering
flight at point despite quasi constant wind. Aerodynamic
forces are supposed to be unknown, but constant (their fluctu-
ations are slow compared to the vehicle dynamics: ).
The controller will provide an estimation of . The
control law must define magnitude and orientation of the thrust
in order to counteract perturbing wind forces.

Lemma 2: Let . Define
as:

We assume that the discriminant is positive.
Define the gains as:

(5)

And the following error terms:

Position error
Velocity error
Estimation error

(6)

The system (3) is exponentially stabilizable with the control
law on the thrust vector:

(7)

and the following adaptive filter on :

(8)

Moreover, the adaptive filter converges to the real value of
. More precisely, and .

. Let us define . The idea of the
proof is to write with the matrix Hurwitz. First,
when differentiating , it yields, using (6) and (2):

The first term in the expression of corresponds to a desired
velocity that would mean an exponential convergence of to
zero. represents the gap between this virtual control and the
actual velocity of the vehicle. Differentiating , it comes,
using (6) and (2):

In the expression of , the unknown term and the control
input vector are written as follows:

Using the definition of given by (7), the following
expression of is obtained:

Finally, differentiating the term , using (8), it yields:

As far as the translational dynamics are concerned, we assume
that . The following linear state space representation
of the translational dynamics is then obtained:

Now, let us verify that the set of gains ensures
that is Hurwitz:

Using (5) and proceeding by identification, it yields:

And therefore the matrix is Hurwitz. It yields that and
converge exponentially to zero.

Note that is not really a control input so we cannot impose
. We design in next section an attitude control to ensure

asymptotic convergence of the error term and then
we ensure the global stability of the connected systems.

B. Attitude Control Design

In this section, we suppose in the control design that the
desired thrust is constant, that is to say . This
hypothesis is acceptable because the rotational dynamics is
tuned up to be much faster than the translational dynamics.
Rigorously, the expression of given by the controller

should be derived and added to the command on .
This approach was taken in [5]. The hypothesis made here
simplifies the resulting control law.

Lemma 3: Let be a constant desired orientation of
the thrust. Let , , be positive constants. Define the
following error terms:

Angular error
Estimation error

The system (4) is asymptotically stabilizable with the control
law on the moment created at by the control surfaces:

(9)
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and the estimation filter on :

(10)

Moreover, the yaw rate is maintained to zero. More precisely,
and .

. Proof is achieved by mean of backstepping procedure:
Consider the following candidate function:

and being two unit vectors, one may verify that for any
, is positive and vanishes iff . Using (4) and the

basic property of triple scalar product4, we get:

If the angular velocity was a control input of system ( ), the
command , with , would ensure the
non positivity of :

and therefore the convergence of to 5. However, as is
not a control input, we define the gap .
At the end of the first step of Backstepping, one has:

(11)

. In order to ensure the convergence to zero of , we
add this gap in a candidate Lyapunov function . In the
expression of , the unknown aerodynamic moment will
appear. In order to counteract this perturbation, we introduce
an estimation of . The estimation error is
included in the expression of :

The time derivative of is given by:

is supposed to be constant, thus .
Moreover using (11) and (4), it comes:

At this stage, using the control law (9) and the expression of
given by (11), expresses as:

Once again, using the properties of the triple scalar product,
one has . Therefore, the adaptive

4Recall that, IR , the triple scalar product is defined as:

5If we denote by the angle , then one has . The
virtual control leads to , which ensures , and
therefore .

filter defined in (10) ensures the non positivity of the Lyapunov
function time derivative :

This expression of guarantees the convergence of
and of to zero. The component of along the yaw axis
being , the convergence of to zero
maintains to zero, as required to cancel the term .

C. Stability of the Connected Systems

In this section, we demonstrate the asymptotic stability of
the connected systems. When connecting both controllers, a
perturbing term appears in the translational
dynamics. The controller makes this term converge to
zero. The system ( ), stabilized by the control (7), may
express as:

with

Where and . Let
, then is:

Theorem 1: The feedback control on (7) and the control
law (9) on the control surfaces makes the system (2) asymp-
totically stable. The adaptive filters (8) and (10) provide an
estimation of the aerodynamic forces and the lever arm
. More precisely, introducing:

One has: , and .

. The proof is achieved in three steps:

First, we show that the system cannot escape in finite
time, which means that is defined .
Then, we show that there exists a time such that

, the time derivative of the Lyapunov function
is negative, ensuring the convergence of the connected
systems.
Finally, the theorem of Lasalle allows to demonstrate the
convergence of the different terms.

The proof is inspired by the more general results on cascade
systems proposed in [7]. The matrix A is Hurwitz, yielding:

s.t.

Let us consider the following candidate Lyapunov :

Let us deal with the perturbing term . Let be the
second column of the matrix . It yields:

In the expression of , we put apart the term linear with respect
to from the rest of the perturbing term. It yields:
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Introducing:

It comes:

Introducing the matrix:

(12)

the time derivative of can be bounded from above as
follows:

(13)

At this stage, we cannot ensure that the matrix is definite
positive. However, it is clear, in the expression (12), that for
small enough, the matrix will become preponderant, leading
to positive definiteness of the matrix . As tends to zero,
it exists a time for which the matrix will become positive
definite. However, we have to ensure first that the state of the
system is well defined , that is to say a finite time
escape cannot occur.

Denoting by the smallest eigenvalue of
matrix , and introducing defined by:

and

it yields:

Now, proceed by contradiction to prove that a finite time
escape cannot occur. Let us suppose there exists a time
such that means . Then we can build
a sequence that tends to It yields:

Therefore, when integrating along the interval , one has:

When tends to infinity, it yields:

However, as the integral in the left member is infinite over the
interval while the right term is finite, this leads
to a contradiction. Therefore, the system may not diverge in
finite time and is defined .

. As , such that:

Using the definition of given by (12), it yields ,
the matrix is definite positive. Therefore, it can be written
using the Cholesky decomposition:

I: parameters of the vehicle

Name Value Unit

Where is an upper triangular matrix. Using the above
decomposition, the inequality (13) is equivalent to:

Such a bounding ensures that the system converges to a com-
pact domain around the point of radius .
As tends to zero, this domain tends asymptotically to the
equilibrium point .

The theorem of Lasalle implies and
. The direction of the thrust converges to a constant

direction verifying: .
The convergence of system (4) yields . Using (9),

expresses as:

Therefore, one has , meaning
. Taking in the expression of yields:

As and , it yields .

IV. SIMULATIONS AND EXPERIMENTS

A. Simulations

In this section, we present simulation results to illustrate the
efficiency of the method. First, a simulation was performed
on the ideal model (2) used for control design, in order to
illustrate the convergence properties shown in Theorem 1. We
chose in Table I parameters representative of this kind of
vehicle. The controller has been run with the following gains:

The vehicle, initially at position is required
to reach final position , while a constant wind
generates an effort . Results are presented
in Figure 4. The vehicle reaches the desired position while the
parameters and are correctly estimated.

In another simulation, we tested the robustness of the
proposed controller on a simulator highly representative of
the behavior of the vehicle, which includes a dynamic model
of the actuators, an error model of imperfect sensors, and
a model of the aerodynamical efforts determined by wind
tunnel tests. The vehicle is required to reach the same position.
At , a step of wind reaching m/s is simulated
along . Figure 5 shows the response of the vehicle, as
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4: hovering flight in constant wind on the model (2)

5: hovering flight in constant wind

well as the estimation of the unknown parameters. Adaptive
control is usually sensitive to sensor noise and unmodelled
dynamics. However, even though the estimated parameters
only converge to a neighborhood of the real ones due to
unmodelled dynamics, the vehicle stabilizes its position to the
desired one.

B. Flight tests

The hierarchical controller has been implemented on the
vehicle to demonstrate the autonomous waypoint navigation
capability. To perform usual proportional navigation, we mod-
ify the definition of in the position control:

sat sat

where is the desired cruise speed between two waypoints.
When the vehicle is near enough to the current waypoint, it
takes as desired point the next waypoint programmed by
the operator on the ground control station. Figure 6 shows the
resulting trajectory in the horizontal plane.

V. CONCLUSION

We have proposed a decoupled strategy to perform po-
sition control of a ducted fan UAV operating in constant

6: Flight test demonstrating the waypoint navigation capability

wind. The method takes advantage of the connected structure
of the system to design a controller dedicated to position
control and another one dedicated to attitude stabilization.
Global stability of the connected system has been proved,
even though only asymptotic stability can be achieved on the
rotational dynamics. Both controllers structure can be easily
implemented in real time. Flight tests have been performed
to demonstrate the waypoint navigation capability. In further
work, the authors plan to reuse this framework to on-line local
obstacle avoidance algorithms.
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