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Adaptive Compensation of Aerodynamic Effects during Takeoff
and Landing Manoeuvres for a Scale Model
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Control of a scale model autonomous helicopter during
takeoff and landing manoeuvres has proved to be an
extremely difficult problem. This is a consequence of
the slowly time-varying and environment dependent
nature of the aerodynamic forces encountered along
with the high sensitivity of the helicopter to collective
pitch changes during these manoeuvres. In this paper
we propose a novel approach to the control problem for
such manoeuvres. The proposed control design uses the
motor torque rather than collective pitch as the principal
control input and takes advantage of its reduced sensi-
tivity to aerodynamic effects and structural properties
to develop a parametric adaptive control algorithm that
estimates the principal aerodynamic effects on-line.

Keywords: Autonomous helicopter; Extended
matching; Nonlinear adaptive control

1. Introduction

There has been a growth of interest recently in the con-
struction and control of scale model autonomous heli-
copters. The potential applications for such `robotic'
flying vehicles includes search and rescue missions,
surveillance tasks, regular checks on the state of power
lines, gas lines and fences over long distances and mili-
tary applications, tomention just a few. A good under-
standing of the dynamic control problem for full scale

helicopters has been available for some time (cf. Prouty
[22] based on linear control concepts. Some linear stra-
tegies for integrated control of scale model helicopters
have been proposed [1,18,23,30,32] and have had a
certain practical success. However, the high actuation
to inertia ratios and highly nonlinear dynamics excited
along desired flight trajectories for scale model auton-
omous helicopters have lead to the study of integrated
nonlinear dynamic models for a scale model helicopter
(cf. conference papers [2,3,14,16,25,26,31] and more
recently the journal papers [24,27]). Much of the work
done in this direction draws from earlier work on an
idealised model of a VTOL aircraft [5,6,17,19,28].
However, to the authors knowledge, none of the
existing work done using modern nonlinear control
techniques for the helicopter or the VTOL deals with
the changing aerodynamic effects that occur when
an UAV approaches the ground. Coupled with the
extreme sensitivity of a scale model helicopter to
changes in collective pitch during such manoeuvres,
the lack of aerodynamic modelling appears to have
prevented the development of a robust control algo-
rithm able to regulate takeoff and landing manoeuvres
for a scale model autonomous helicopter. It is no sim-
ple matter to model a priori the aerodynamic effect
that occur due to ground effects since they depend
on the nature of the environment in which the helicop-
ter is flying as well as ambient properties of the air. The
authors know of no prior robust nonlinear control
algorithm that deals with takeoff and landing man-
oeuvres for a scale model helicopter.
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In this paper a novel approach to the control of a
scale model helicopter for manoeuvres close to the
ground is proposed. The nonlinear model popular in
recent literature [2,3,14,25,26] is augmented by a sim-
ple aerodynamic model of thrust generated by the
main rotor. This process introduces an additional
dynamic state representing the rotor velocity and an
additional input for the engine torque. The proposed
control design uses the engine torque rather than the
collective pitch as the principal input to control the
main rotor thrust. Though this approach is unsuitable
for other flight conditions it has several important
advantages during landing and takeoff manoeuvres.
Firstly, it overcomes the problems associated with
the sensitivity of a scale model helicopter to collective
pitch inputs during such manoeuvres. Secondly, the
input required for takeoff and landing manoeuvres
matches the final and initial phases of typical spin up
and spin down phases for the main rotor for operation
of a scale model autonomous helicopter. Lastly, and
most importantly, the approach taken leads to a linear
parametric representation of the unknown and time-
varying main rotor lift coefficient that varies due to
aerodynamic ground effects. To compensate for the
varying lift coefficient encountered during the man-
oeuvres considered, an adaptive backstepping control
design is proposed. The approach taken is equivalent
to the tuning function approach proposed in [11]. It
is simpler, however, to think of the design in terms of
the extended matching techniques proposed in [21]
coupled with the classical trick used in adaptive con-
trol to deal with unknown input gains (cf. for example
[11, pp. 168±173]). The proposed control design
provides a control Lyapunov function for the full sys-
temwhose derivative is negative definite in the state er-
rors. The structure of the equations lead to a strong

convergence result for all parametric errors under a
weak boundedness condition on the desired trajectory.
In practice, as long as some care is taken in choosing
the adaptation gain, the robustness of the algorithm
leads to an effective closed loop performance even in
the presence of unmodelled dynamic perturbations
and added input noise.

The paper is divided into five sections including the
introduction. Section 2 presents the proposed model
and motivates the use of engine torque as the principal
thrust control. In Section 3 an adaptive control law is
derived and a theorem is proved guaranteeing conver-
gence of the tracking error and parameter estimates
under certain unrestrictive assumptions. In Section 4
a series of simulations are presented that verify the
performance of the adaptive controller under some
simulated realistic perturbations. In Section 5 a brief
resumeÂ of the main contributions of the paper is
presented.

2. A Dynamic Model of an
Autonomous Helicopter

In this section a dynamic model of a scale model
autonomous helicopter is presented.

Consider Fig. 1. Let I � fEx,Ey,Ezg denote a right-
hand inertial frame. Let the vector � � �x, y, z� denote
the position of the centre of mass of the helicopter
relative to the frame I . Let A � fEa
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The orientation of the helicopter is given by a rota-
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Fig. 1. Geometry of scale model autonomous helicopter.
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of rotation is denoted$. Note that the position of the
rotor blades is irrelevant and only the angular velocity
of the blades is considered.

Let m 2 R denote the mass of the helicopter and
I 2 R3�3 denote the constant inertia matrix around
the centre ofmass (with respect to the body fixed frame
A). The dynamics of the helicopter airframe are
modelled as rigid body motion [2,22,24]

_� � v, �1�
m _v � F�mge3 � �, �2�
_R � Rsk�
�, �3�
I _
 � ÿ _
� I
� ÿ, �4�

where sk�
� is the skew symmetric matrix associated
with the vector product 
� u � sk�
�u. The vector
F 2 I combines the principal non-conservative forces
applied to the helicopter airframe includingmain rotor
thrustT and drag terms associated with the rotor wake
on the airframe (cf. Eq. (10)). The term � denotes the
modelling error in the linear force input and ÿ denotes
the external torque applied to the airframe. Some brief
comments on the nature of these terms are given
below. For a detailed discussion of helicopter aero-
dynamics the reader is referred to any standard text
on helicopter design (cf. for example [22]).

Torque inputs ÿ: Control input for the attitude
dynamics is obtained via the tail rotor collective pitch
and cyclic pitch input to the main rotor. Cyclic pitch
inputs lead to a tilting of the rotor disk relative to
the airframe and hence an inclination of the principal
thrust component of the lift that, due to the offset
between the rotor hub and centre of mass of the air-
frame, results in a torque input to the airframe attitude
dynamics. The aerodynamic balance of the rotor disk
is highly susceptible to local wind conditions and its
tilting motion is strongly influenced by wind gusts and
deformation of the rotor wake. Stabilisation of the
attitude dynamics of a scale model autonomous heli-
copter (or indeed any helicopter) is a difficult problem.
This is especially true when the helicopter enters the
ground effect zone in which the rotor wake interacts
with the earth's surface causing random wind gusts,
the formation of vortices1 and dynamic inflow reso-
nance effects [4,20]. These complex aerodynamic dis-
turbances tend to affect the roll and pitch stability of
the helicopter first and lead to significant perturbation
of the linear dynamics only if the motion of the heli-
copter tends towards instability. The stabilisation of

the attitude dynamics is not the subject of this paper
and we assume that a suitable low level robust stabilis-
ing control is implemented that satisfactorily regulates
the torque inputs ÿ. The torque input �a used in the
control design may be thought of as time-varying set
point for the fast dynamics of the low level control. In
the theoretical development we assume that ÿ � �a
in order to focus on the adaptive control algorithm.
In Section 4 the robustness of the proposed algorithm
is simulated with a noise-like disturbance added to the
actual torque inputs ÿ � �a � ��t�. The disturbance �
is chosen to model the types of input disturbances that
may be encountered due to the complex aerodynamic
effects mentioned above.

Perturbation to the linear force input: Apart from some
negligible noise effects the perturbation � incorpo-
rates an important dynamic coupling between the alti-
tude and linear dynamics. The expression used in
Section 4 (Eq. (59)) to model � for the robustness
simulation corresponds to the form used in contem-
porary works [10,12,29]. The coupling leads to weakly
non-minimum phase zero dynamics [10] that are qua-
litatively similar to those encountered for the original
investigation of the VTOL [6]. Unlike the VTOL [17]
the system is not differentially flat [12,15,29]. As a con-
sequence (to the best of the authors knowledge) there is
no control design available that deals with the full non-
linear dynamics of the accepted model. The approach
taken in prior control algorithms [2,3,16,25,26,31] is to
design a robust controller for the system where � � 0
and analyse the robustness of the closed loop system
with respect to the perturbation �. We take an analo-
gous approach in the present paper. The focus of the
present investigation, however, is on robustness and
adaptation with respect to inaccuracies in modelling
the force F; a different problem to that of robustness
with respect to�, and not one that has been considered
in previous work. For this reason, and in the interest of
a less complicated presentation, we analyse only the
dynamic model Eqs (1)±(4) where � � 0, in detail
and leave further discussion of the dynamic perturba-
tion � until Section 4.

The dynamics of the main rotor disk around its axis
of rotation is a decoupled system independent of its
tilting motion. The torque exerted by the helicopter
engine �e is transmitted via a flexible coupling to the
rotor blades. The engine torque is opposed by an
aerodynamic drag QM. The dynamic of the angular
velocity of the disk is

IM _$ � �e ÿQM, �5�
where IM is the moment of inertia of the rotor disk
around its axis. Lead-lag motion of the rotor blades
is negligible in this analysis.

1A discussion of this effect is given in Prouty [22, p. 138] for the
case of forward flight. Local wind and uneven ground can generate
this situation in hover conditions.
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The lift and drag generated by the main rotor is
directly affected by two input controls: The collective
pitch that is the angle of the rotor blades with respect
to the plane of the rotor disk, controlled by regulating
the elevation of the swash plate, and the velocity of the
rotor blades, controlled by regulating the throttle to
the engine. As a first approximation the total thrust
T may be approximated as [22, p. 15]

T :� C�$
2��ÿ ��, �6�

where � is the collective pitch and � is the in¯ow angle
generated by the down-¯ow of air present in all ¯ight-
conditions. The constant C� :� ��r3MnMlMaM�=4
combines respectively density of air, the cube of
the radius of the rotor blades, the number of blades,
the chord length of the blades and the lift constant
linking angle of attack of the blade airfoil to the lift
generated. The in¯ow angle may in general be approxi-
mated by

� � tan��� � vM

$rM
,

where a small angle approximation is used for `tan' vM
is the down-¯ow velocity at the main rotor while $rM
is the effective forward velocity of the rotor tip in the
plane of the rotor disk. For hover condition in the
absence of the ground effect the down-¯ow velocity
vM is itself related to the total thrust generated by the
main rotor. Following Prouty [22, p. 4] one has

T � 2�AMv2M, �7�
where AM is the area of the rotor disk. Substituting
into Eq. (6) yields

T :� C�$
2�ÿ C�$

����
T
p

, �8�
where C� � C�=�rM

������������
2�AM

p �. In the presence of
ground effect the actual down-¯ow velocity is com-
puted as a ratio with respect to the clean air down-¯ow
velocity based on experimentally validated data [22,
p. 63±65]. The relationship between thrust and the
clean air down-¯ow velocity is still a reasonable ap-
proximation in this situation and an expression for
the actual thrust is obtained where C� varies with the
height of the helicopter above the ground. Further dis-
cussion of the ground effect is deferred to Section 4.

Equation (8) poses considerable problems from a
control perspective. The constants C� and C� are not
precisely known and depend on variable factors such
as the density of air, proximity to the ground, humidity
and other factors. The relationship between the thrust
generated and the collective pitch � is nonlinear
and depends on the angular velocity of the rotor. To
overcome these difficulties we propose an alter-
native approach that exploits the rotor velocity as

the principal control input for the thrust T. Fix � to
be a constant value such that the thrust generated at
the nominal operating condition supports the helicop-
ter in hover. Dividing through Eq. (8) by$2 and com-
pleting the square for

����
T
p

=$ one obtains

T � CM$
2, �9�

where

CM :� 4C 2
��

2

C� �
�����������������������
4C��� C 2

�

q� �2 ,
may be thought of as an unknown parametric input
uncertainty.

The total force applied to the airframe in direction
E a

3 is (to a first approximation)

F � �TÿDM�E a
3,

where DM � CDM
�v2M [22, p. 7] is the drag due to the

rotor wake on the helicopter airframe (CDM
is the drag

coef®cient of the exposed airframe times its surface
area). The drag is proportional to the thrust T due to
the quadratic dependence on the down-¯ow velocity
vM (Eq. (7)); thus (noting thatEa

3 � Re3 onemaywrite)

F :� ÿb$2�Re3� �10�
where b > 0 is an unknown parametric error. An
important observation is that the sign of the constant
b is known!

Recalling the discussion following the model Eqs
(1)±(4) the aerodynamic torque inputs applied to
the airframe using the cyclic and tail rotor control
inputs are

ÿ � �a � ��1a , �2a , �3a �:
Air resistance on both the rotors generate anti-torques
applied to the airframe acting through the hub of the
respective rotor (independent of the orientation of
the actual rotor disk). With the collective pitch ®xed
to a constant value the air resistance on the main rotor
blades is proportional to the square of the angular
velocity of rotation of the rotor blades. Thus, one
may write (cf. Eq. (5))

QM � dM$
2Ea

3, QT � dT$
2Ea

2,

where dM, dT are unknown constants. The tail rotor
and main rotor are mechanically coupled in all scale
model autonomous helicopters resulting in the direct
dependence of the tail rotor drag on$2. The ®nal tor-
que contribution to the airframe dynamics comes from
the reactive torque exerted on the airframe by the
motor. This torque is equal and opposite to the engine
torque applied to the main rotor dynamics.
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Based on Eqs (1)±(4) and the above discussion the
following approximate model is proposed

_� � v, �11�
m _v � ÿb$2Re3 �mge3, �12�
R � Rsk�
�, �13�
I _
 � ÿ
� I
ÿ �ee3 ÿ dT$

2e2 � �a, �14�
IM _$ � �e ÿ dM$

2, �15�
where b, dM and dT are parametric uncertainties. There
is a natural coupling between the rotor dynamics
(Eq. (15)) and the yaw dynamics (third component of
Eq. (14)). Indeed, if _$ � 0 then �e � dM$

2 and substi-
tuting into Eq. (14) one obtains (a simpli®ed form) of
the classical equations for the motion of a helicopter
[22, p. 557] [2,3,14,25,26,31].

3. Adaptive Control Design

In this section an adaptive control law is proposed for
thehelicoptermodel introduced in theprevious section.

The problem considered is that of tracking a desired
trajectory in the inertial frame I . In particular, we
consider a given trajectory �̂�t� � �x̂�t�, ŷ�t�, ẑ�t�� and
look for a control law that achieves regulation of
j� ÿ �̂j to zero. In addition to the basic tracking pro-
blem it is desired that the control law estimate the
unknown values b, dM and dT on-line. There are four
physical inputs; the three torque components �a 2 R3

to the attitude dynamics, and a reactive torque �e,
between the main rotors and the airframe, due to the
engine. To ensure awell conditioned control algorithm
a fourth objective is added to make the problem one of
block input/output regulation. We choose to stabilise
the yaw speed of the helicopter, that is the angular
velocity around the axis Ea

3. This choice allows the
helicopter to stabilise naturally to the most natural or-
ientation with respect to the trajectory it is following.

Define the error

�1 :� ��t� ÿ �̂�t�: �16�
The derivative of �1 is given by

_�1 � vÿ v̂: �17�
De®ne a ®rst storage function:

S1 � 1

2
j�1j2: �18�

Taking the time derivative of S1 and substituting for
(11) yields

d

dt
S1 � �T1 �vÿ v̂�: �19�

Let vd denote a desired value for the velocity v;
this is chosen such that the storage function S1 is

monotonically decreasing when v � vd,

vd :� v̂ÿ k1�1: �20�

With this choice one has

_S1 � ÿk1j�1j2 � 1

m
�T1 �2, �21�

where �2 de®nes the difference between the desired and
true velocities and represents the new error used for the
next step of the backstepping procedure.

�2 :� mvÿmvd: �22�

Deriving �2 and recalling Eq. (12) yields

_�2 � ÿb$2Re3 �mge3 ÿm _vd: �23�

Following the standard trick in adaptive control when
there is an unknown input gain, two new dynamic vari-
ables b̂ and �̂, estimates of b and � � 1=b, are intro-
duced. The estimate �̂ is introduced to avoid the
division by b̂ which may take value zero.

Analogous to previous work [3,14,25] the vector
input �$2Re3� is considered to be a vectorial virtual
control. Considering the rotation matrix R and $2 as
virtual controls, it is clear that vectorial virtual control
chosenmay be used to assign an arbitrary virtual input
without encountering singularities.

Let �$2Re3�d denote the desired value of the vector-
ial virtual control and set

�$2Re3�d � �̂ mge3 ÿm _vd � k2�2 � 1

m
�1

� �
:� �̂X,

where �̂ is the estimate of � � 1=b and X � mge3ÿ
m _vd � k2�2 � �1=m��1. Note the desired values of $
and R are not uniquely de®ned by this equation, how-
ever, as long as the virtual control is preserved in its
vectorial form (which is uniquely de®ned) this does
not invalidate the backstepping procedure. The vec-
torial form is preserved until the ®nal stage of back-
stepping when the structure of the 
 dynamics
naturally leads to a decomposition of the control in-
puts. In this manner the control design avoids introdu-
cing singularities associated with an Euler coordinate
representation of the rotation matrix! With the above
choice of virtual control one has (cf. Eq. (23))

_�2 � ÿb�̂X�mge3 ÿm _vd � b��̂Xÿ$2Re3�:
The process of the backstepping continues by con-

sidering a third error

�3 :� �̂Xÿ$2Re3: �24�

Adaptive Compensation of Aerodynamic Effects 5



In terms of the error variables the �2 dynamics may
now be written

_�2 � ÿ 1

m
�1 ÿ k2�2 � b~�X� b̂�3 � ~b�3, �25�

where ~b � bÿ b̂ and ~� � 1=bÿ �̂.
Consider the storage function

S2 � 1

2
j�2j2 � 1

2
bc1~�2: �26�

Since the unknown constant b > 0 is positive this sto-
rage function is positive de®nite in �2 and ~�. Deriving
S2 and substituting for Eq. (25) yields

_S2 � ÿ 1

m
�T1 �2 ÿ k2j�2j2 � b̂�T2 �3

� b~���T2Xÿ c1 _̂�� � ~b�T2 �3: �27�
Employing the standard trick in adaptive control to
cancel the terms containing the unknown ~� one
chooses the following dynamics for �̂

_̂� � 1

c1
�T2X: �28�

Thus,

_S2 � ÿ 1

m
�T1 �2 ÿ k2j�2j2 � b̂�T2 �3 � ~b�T2 �3: �29�

For the third step of the procedure, consider the
derivative of �3 and recall Eq. (13)

_�3 � _̂�X� �̂ _Xÿ R�2$ _$e3 �$2sk�
�e3�: �30�
To understand this equation it is necessary to express
both the terms _X and _$ in more detail. Deriving X
and recalling Eqs (17), (20), (23) yields

_X � _X
m ÿ �k1 � k2�~b$2Re3, �31�

where _Xm represents the known or measurable part
of _X while the part depending on the unknown para-
metric error ~bmust be dealt with separately in the con-
trol design. The measurable part of _X is given by

_X
m � ÿm�̂vÿ �k1 � k2��b̂$2Re3 ÿmge3�
ÿ k1m _̂vÿ k2m _vd � 1

m
�vÿ v̂�:

To simplify the following analysis we rewrite Eq. (15)

_$ � �e
IM
ÿ dM

IM
$2 � we ÿ d 0M$

2, �32�

where d 0M � dM=IM is an unknown constant and we

is considered as the new input to the $ dynamics

Eq. (32). Since d 0M is unknown, an estimate d̂M of d 0M
is introduced and the parametric error is de®ned to be

~dM � d 0M ÿ d̂M:

The �3 dynamics may be rewritten

_�3 � _̂�X� �̂ _X� 2$3d 0MRe3
ÿ R�2$wee3 �$2sk�
�e3�:

The ®nal term in this expression will act as the virtual
control input for the next stage of the backstepping
procedure.

Analogous to the procedure in the previous back-
stepping step the desired virtual control is assigned
as a single vectorial equation

�2$!ee3 �$2sk�
�e3�d :� Y,

where

Y :� RT� _̂�X� �̂ _X
m � b̂�2 � 2$3d̂MRe3 � k3�3�: �33�

Note that the input we enters directly into the above
expression for the desired vectorial virtual control.
Assigning the control input we directly will introduce
undesirable time-scale separation in the control action
and reduces the robustness of the overall designwhen a
general trajectory tracking control task is considered.

Remark 3.1. It should be noted that the control task
considered for the popular control algorithms pro-
posed by Hauser et al. [6] and Teel [28] for the VTOL
do assign the height input directly. Such control
designs act to stabilise the height of the airframe faster
than the horizontal position and use the natural
separation of the inputs to impose a time-scale separa-
tion within the system. The proposed approach assigns
roughly equivalent dynamic response to all the state
coordinates.

Consider a dynamic extension of the control we

_!e � u: �34�
Thus, the control input we becomes an internal vari-
able of a dynamic controller and a new control input
u is associated with the rotor dynamics.

Define a new error term

�4 � Yÿ �2$!ee3 �$2sk�
�e3�: �35�
With the choice of virtual control (Eq. (33)) and the
new error variable �4, the �3 dynamicsmay be rewritten

_�3 � _̂�X� �̂ _X� 2$3 ~dMRe3 � 2$3d̂MRe3 ÿ RY� R�4

� ÿb̂�2 ÿ k3�3 � R�4 ÿ �k1 � k2�~b�̂$2Re3

� 2$3 ~dMRe3: �36�
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Thus, in addition to the standard backstepping
structure there are two error terms associated with
the unknown parametric errors ~b and ~dM. These para-
metric error terms are in the correct form to be incor-
porated into the control design using extended
matching adaptive control techniques in the next stage
of the backstepping procedure.

The storage function associated with this stage of
the computation is

S3 � 1

2
j�3j2: �37�

Taking the derivative of S3 yields

_S3 � ÿb̂�T3 �2 ÿ k3j�3j2 � �T3R�4
ÿ �k1 � k2�~b�̂$2�T3Re3 � 2$3 ~dM�

T
3Re3: �38�

For the next and last stage for the backstepping,
consider the derivative of �4

_�4 � _Yÿ 2 _$!ee3 � 2$u� 2$ _$sk� _
�e3 �$2sk� _
�e3
ÿ �

:

The �4 dynamics must be decomposed into a known
part (or measurable part) and a part that depends on
the parametric errors. In this case there are parametric
errors associated with ~b and ~dM. Standard but tedious
calculations lead one to de®ne

A � ÿsk�
�Y� RT ��̂��mX� 2 _̂� _X
m � �̂ d

dt
_X
m

� �m�
� _̂
b�2 � b̂ _�

m

2 � k3 _�
m

3

�
� RT 6$2d̂M�!e ÿ d̂M$

2�Re3 ÿ 2�we ÿ d̂M$
2�

�
�wee3 �$sk�
�e3� � 2$3e3

_̂
dM

�
,

�39�

B � ÿ$2�Re3�
�h

XT � �k1 � k2��T2
i
X _̂��k1 � k2�

�
�
k1k2 � k1k3 � k2k3 � 1

m2

�
�̂� b̂

�
,

�40�
C � ÿ6$4d̂MR3 � 2$2�wee3 �$sk�
�e3�: �41�

In Eq. (39) the notation ��̂��m, �d=dt� _Xm
ÿ �m

, _�m2 and
_�m3 denotes the known or measurable parts of �̂�,
�d=dt� _Xm

ÿ �
, _�2 and _�3 respectively. The parts of these

expressions that depend on the parametric errors ~b
and ~dM are included in the terms B and C in order that
these errors are explicit in the expression for _�4. Note
that the expression for A depends on the dynamics

_̂
b

and
_̂
dM of the parametric estimates. These dynamics

are not explicitly known at this stage of the procedure.
The dynamics are assigned in the following analysis

and then back-substituted into the above expression
in accordance with the usual practice of extended
matching. With the above definitions the �4 dynamics
may be written as

_�4 � A� ~bB� ~dMC

� 2$ue3 �$2sk� _
�e3
ÿ �

: �42�

At this point the control inputs u and �a may be utilised
directly to terminate the backstepping procedure. The
input �a is introduced via the derivative _
. To simplify
the following development a control input transforma-
tion of Eq. (14) is de®ned

wa :� Iÿ1 ÿ
� I
ÿM we ÿ d̂T$
2e2 � �a

� �
: �43�

Since I is full rank then this is certainly a bijective con-
trol input transformation between �a and wa. With this
choice

_
 � wa � ~dT$
2Iÿ1e2:

Using the input transformation for �a, Eq. (42) may be
rewritten

_�4 � A� ~bB� ~dMC� ~dTD

� 2$ue3 ÿ$2sk�e3�wa

ÿ �
, �44�

where

D � ÿ$4sk�e3�Iÿ1e2:
It is easily veri®ed that

2$ue3 ÿ$2sk�e3�wa

ÿ � � $2w2
a

ÿ$2w1
a

2$u

0@ 1A: �45�

Thus, as long as $ 6� 0 then full control of the
�4 dynamics is available using only the inputs u,
w1
a and w2

a. This leaves w3
a free to stabilise the yaw

velocity.
The storage function associated with this stage of

the backstepping is

S4 � 1

2
j�4j2 � 1

2
c2 ~b 2 � 1

2
c3 ~d 2

M �
1

2
c4 ~d 2

T:

Taking the derivative of S4 yields

_S4 � �T4A� ~b�T4B� ~dM�
T
4C� ~dT�

T
4D

� �T4 �2$ue3 ÿ$2sk�e3�wa�
ÿ c2 ~b

_̂
bÿ c3 ~dM

_̂
dM ÿ c4 ~dT

_̂
dT �46�

From Eq. (46) it is clear how to choose the dynamics
for b̂, d̂M and d̂T to cancel the contributions of the
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parametric errors ~b, ~dM and ~dT to the dynamics of S4.
One chooses,

_̂
b � 1

c2
�T4B� �T2 �3 ÿ �k1 � k2��̂$2�T3Re3
ÿ �

, �47�

_̂
dM � 1

c3
�T4C� 2$3�T3Re3
ÿ �

, �48�

_̂
dT � 1

c4
�T4D: �49�

The additional terms in Eqs (47)±(49) not associated
with cancelling the contributions of the parametric
errors in Eq. (46) cancel parametric errors arising in
_S3 and _S4 (Eqs (29) and (38)).
The above dynamic expressions for

_̂
b and

_̂
dM are

back substituted into the expression for A (Eq. (39)).
Finally, the backstepping procedure is terminated by
choosing

$2w2
a

ÿ$2w1
a

2$u

0@ 1A � ÿAÿ RT�3 ÿ k4�4: �50�

With the choice of dynamics for the estimates
_̂
b,

_̂
dM

and
_̂
dT (Eqs (47)±(49)) and the control inputs

�u,w1
a,w

2
a� Eq. (50) the derivative of S4 may be

rewritten

_S4 � ÿk4j�4j2 ÿ �T4RT�3

ÿ ~b �T2 �3
ÿ ÿ k1 � k2��̂$2�T3Re3

ÿ �
ÿ ~dM 2$3�T3Re3

ÿ �
: �51�

A function of the particular structure of the auton-
omous helicopter equations and the control strategy
considered is that the backstepping procedure requires
only the control inputs u, w1

a and w2
a to achieve the de-

sired adaptive tracking of the trajectory �̂. This leaves
the input w3

a free to stabilise the yaw speed. Let

w3
a � ÿk5
3 �52�

where k5 > 0.
The proposed control algorithm achieves the mono-

tonic decrease of the following Lyapunov function

L � S1 � S2 � S3 � S4 � 1

2
�
3�2:

This is easily veri®ed by computing the derivative of _L
and substituting for the expressions previously given
for _S1, _S2, _S3 and _S4 (Eqs (21), (29), (38) and (51)).
Cancelling the cross terms, it follows that

_L � ÿk1j�1j2 ÿ k2j�2j2 ÿ k3j�3j2

ÿ k4j�4j2 ÿ k5�
3�2: �53�

Theorem 3.2. Consider the dynamics de®ned by Eqs
(11)±(15). Let the controls wa and u be given by Eqs
(50) and (25) and recover the control inputs w and �e
from Eqs (43), (32) and (34). Then, for control laws
for wa and u, given by Eqs (45) and (52), well de®ned
for all time (cf. Remark 3.3), the proposed control
algorithm asymptotically stabilises the error posture
for the complete system Eqs (11)±(15)

�1 ! 0, 
3 ! 0:

In addition if the desired trajectory satis®es

j _̂vj < g, �54�
then the proposed control algorithm ensures that

~b, ~dM, ~dT ! 0:

Remark 3.3. In the statement of Theorem 3.2 it is
required that the control laws remain well de®ned.
This statement is necessary because of the nonlinear
dependence of the control inputs on the angular velo-
city of the main rotor (Eq. (45)). Indeed, if one chooses
an absurd desired trajectory or a very large initial
tracking error then a transient for which the control
is not well de®ned is theoretically possible. Neither
of these situations will ever occur if the proposed con-
trol is implemented with a sensible trajectory planning
algorithm.

Proof. Applying the standard Lyapunov argument
using the inequality Eq. (53) one concludes that
��1, �2, �3, �4,
3� are exponentially stable to zero as t
tends to infinity.

To prove convergence of the parameter errors we
appeal to LaSalles principle. The invariant set is con-
tained in the set defined by the conditions �i � 0 and

3 � 0. Recalling Eqs (28) and (47)±(49) it follows
that _̂� � 0,

_̂
b � 0,

_̂
dM � 0 and

_̂
dT � 0 on the invariant

set. Consider the expression for the derivative of �2
(Eq. (25)) and note (Eq. (54)) that X 6� 0 on the invar-
iant set. It follows that a further condition on the
invariant set is ~� � 0, and consequently that �̂ con-
verges to its true value.

From the derivative of �3 (Eq. (36)), it follows that

�k1 � k2�~b�̂ � 2$~dM �55�
on the invariant set. Note that on the invariant set ~b,
~dM and �̂ � � are constant and as a consequence either
$ is constant or ~b � 0 and ~dM � 0. In the case where
the control design is used to track a persistently excit-
ing trajectory then it is simple to show that $ must
continue to vary (since it is directly linked to the con-
trol input) and the convergence of the parameter
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estimates is proved. In the case where a stabilising
manoeuvre is considered (e.g. a landing manoeuvre)
then it is expected that $! $1 converges to a con-
stant value. In this case it is suf®cient to analyse the in-
variant trajectories for which _$ � 0 and use LaSalles
principle to show the only invariant trajectories satis-
fying the system dynamics are those for which the
parametric errors are zero.
Consider the trajectories of the closed loop system

for which _$ � 0, _̂� � 0,
_̂
b � 0,

_̂
dM � 0 and �̂ � �.

Then from Eq. (32) one has that we � d 0M$
2. Substi-

tuting in the expression for �4 (Eq. (35)) one obtains

ÿ�mRT�̂v� 2$3 ~dMe3 ÿ$2sk�
�e3 � 0: �56�
Multiplying the above expression by eT3 , it follows that

ÿ�meT3R
T�̂v� 2$3 ~dM � 0:

Therefore

2$3 ~dM � �m�Re3�T�̂v: �57�
Recalling the derivative of �2 (Eq. (23)), one has

Re3 � m

b$2
�ge3 ÿ _̂v�:

Substituting one obtains

�̂v
T�ge3 ÿ _̂v� � 2b$5 ~dM

�m2
�: A0,

whereA0 is a constant. The left hand side may be writ-
ten as an exact derivative �d=dt� g _̂vTe3 ÿ �1=2�j _̂vj

� �
.

Integrating both sides one obtains

g _̂v
T
e3 ÿ 1

2
j _̂vj2

� �
� C0 � A0t

for constant of integration c0. Note there is no need
that C0 or A0 are positive, however, by completing
the square and taking norms one obtains

_̂vÿ ge3
�� ��2� jA0jtÿ jC0j ÿ g 2: �58�

As a consequence either � _̂vÿ ge3� ! 1 or jA0j � 0.
The ®rst case contradicts the assumption that j _̂vj < g
and by inspecting the expression for A0 it follows that
on the invariant set ~dM � 0. Recalling Eq. (55) it fol-
lows that ~b is also zero on the invariant set.

Finally, by inspecting the derivative of �4 (Eq. (44))
and replacing the control law �u,wa� by its expression
Eq. (50), it follows that ~dT � 0 on the invariant set.

Applying LaSalles principle to the closed loop sys-
tem along with the bound on the acceleration of the
desired trajectory proves asymptotic (not exponential)
convergence of the parameter estimate to zero.

Remark 3.4. (i) There are only two places that the
bound on the acceleration of the desired trajectory
j _̂vj < g is used in the proof of Theorem 3.2. The first
case is to show that X 6� 0 on the invariant set
(Eq. (25)). This occurs if and only if vd � mge3, or
that the desired trajectory involves the helicopter
dropping from the sky with zero lift applied. This is
hardly a trajectory that is desirable in practice; nor is
it one that requires a sophisticated control design to
obtain. The second place that the condition is used is
as an upper bound on the right hand side of Eq. (58).
(ii) The argument used in the proof of Theorem 3.2 to
prove convergence of the parameter errors to zero is
based on LaSalles principle. As a consequence, the
proof given is not robust to perturbations in the system
dynamics! However, as seen in Section 4 the para-
meter convergence is robust with respect to unmo-
delled dynamics and added noise. The reason for this
can be seen if the argument applied in the proof is
considered in detail. The conditions on the invariant
set are derived as equalities based on the error
dynamics of the system. If there are perturbations to
these dynamics the equalities are only approximately
true. However, even if only approximations are used
the arguments used in the proof can be applied to
provide bounds on the asymptotic parametric error.
For example the constant A0 is no longer a constant,
however, it is slowly varying with time. The integral
taken to obtain Eq. (58) may still be taken and the
condition A0 � 0 is obtained. Since Eq. (55) is also
approximately true then this provides a bound on ~b in
the limit. The details of a full robustness analysis is
beyond the scope of this paper.

4. Simulation Results

In this section, a simulation example concerning a he-
licopter performing a landing manoeuvre is analysed.

The idealised model Eqs (11)±(15) proposed for the
dynamics of a scale model helicopter is at best an
approximation of actual system dynamics. Apart from
general aerodynamic modelling errors, there are three
main causes of errors in the model used: Firstly the
time-variation of the parametric constants b, dM and
dT encountered in practice during a landing or takeoff
manoeuvrebreak the assumptions of the control design
and will introduce tracking errors into the adaptive
dynamics. Secondly, the dynamic perturbation �
(Eq. (59)) is non-zero resulting in direct coupling of
the roll (pitch) dynamics with latitudinal (longitudi-
nal) lineardynamics.Lastly, the swirlingwindsencoun-
tered due to the interaction of the rotor wake with the
ground tend to get sucked into the rotor inflow leading
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to vortex and dynamic inflow effects [4,20], and bursts
of noisy perturbations to the torque control inputs.
The best performance that can be expected is a practi-
cal stabilisation of the system to a neighbourhood of
the desired trajectory.

Two modifications of the proposed design may be
undertaken to improve robustness of the closed loop
design. To improve robustness of the adaptation pro-
cess it is a good idea to add an additional �-modifica-
tion [7] to the estimator dynamics. The details are
standard and are omitted. A second manner in which
to improve the performance of the closed loop system
is to implement the control design in tandem with a
trajectory planning algorithm that takes into account
trajectory initialisation issues [9] 11, pp. 162±164].
Implementing either of these modifications in the fol-
lowing simulations will tend to obscure the robustness
properties of the control design with respect to unmea-
sured errors. For this reason we have opted to simulate
the core algorithm and demonstrate its robustness
subject to (simulated) real world disturbances. The
performance of the closed loop systemwithout �-mod-
ification or trajectory initialisation is satisfactory even
when time-varying parametric errors, significant
unmodelled dynamics and noise are added. This con-
firms the robustnessmargin of the proposed algorithm.

The manoeuvre considered is a typical landing man-
oeuvre. As the helicopter enters the ground effect zone,
the ratio of actual down-flow velocity to the clean air
down-flow velocity decreases and the value of the
parametric constant b increases. An approximation
of the down-flow velocity ratio based on a piecewise
linear approximation of Figure 1.41 [22, pp. 66] was
used. Recalling Eq. (9) one may write an expression
for the thrust T where CM varies as

CM :� 4C2
��

2

C�
vM
v0
M

�
����������������������������������
4C��� C2

�
vM
v0
M

� �2r !2
:

The drag DM also varies with the reduction in vM with
a ratio DM � CDM

�vM=v0M�2�v0M�2. Combining these
relationships along with the empirical dependence of
vM=v

0
M on z=D one obtains the relationship b :�

b�z=D� shown in Fig. 2.
The parameters for the helicopter used are based

on preliminary modelling of the VARIO 23 cc radio
controlled helicopter at the UniversiteÂ de Technologie
de CompieÂ gne. The parameters used are given in
Table 1.

The control design used the following gains,

k1 � 0:625, k2 � 1, k3 � 3, k4 � 3, k5 � 10,

c1 � 3000, c2 � 6000, c3 � 8000, c4 � 8000:

The gains for the adaptation dynamics must be chosen
carefully since the relative scale of the parametric con-
stants fjbj, jdMj, jdTjg is roughly 10ÿ3 of the errors
associated with the states fjxj, jyj, jzjg. In addition
the extended matching (or tuning function) approach
leads to an adaptive algorithm with highly coupled
dynamics. The approximation used for the depen-
dence of b on the height is only piecewise differentiable
and the effect of the impulse changes in slope appear to
cause sharpdisturbances in theclosed loopsystem.This
is particularly the case when the unmodelled dynamics
due to the small body forces are included in the simu-
lation. These dynamics couple the torque inputs
(in which the higher derivatives of the adaptation
dynamics are present) to the force inputs, and conse-
quently remove the natural ®ltering effect of the
system dynamics. It is possible that an adaptive back-
stepping design [8] (cf. also [11, Ch. 3]) might reduce
sensitivity to these error dynamics at the expense of
increasing the dynamic stiffness of the closed loop
nonlinear system (due to the additional dynamic states
in the control design). This poses the question of
whether there is still a place for the early form of the
adaptive backstepping design when a system shows

Table 1

Parameter Value

m 9.6 kg
Ia1 0.4 kgm2

Ia2 0.56 kgm2

Ia3 0.29 kgm2

g 9.80m sÿ2

b 0.0115
dM 0.001
dT 0.0005

0 0.5 1 1.5 2 2.5
0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

z/D

b

Fig. 2. Piecewise differentiable approximation of the parametric
constant b as a function of height above the ground z=D normalised
with respect to rotor diameter.
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high sensitivity to changes in parametric error. In the
present paper satisfactory performance was obtained
using the proposed design.

The landing trajectory is generated as a stabilisa-
tion problem. Initially, the helicopter is assumed to
be in hover some distance above the ground with
the rotor speed corresponding to the necessary force
to maintain stationary flight b$2 � gm � 94. The
desired trajectory chosen is the stationary point at
(0,0,ÿ 0.25) corresponding to the helicopter touching
ground (note the helicopter undercarriage is below
the centre of mass by 25 cm). As a consequence the
initial error in the Lyapunov system is large (none
of the higher derivatives are matched) and the initial
disturbance to parameter estimates trajectories are
significant. The fact that the algorithm is well
behaved under these circumstance shows its practical
robustness.

The comparative control algorithm with no adapta-
tion was obtained by setting the adaptation dynamics
to zero and using estimates of the parametric con-
stants. The estimates chosen were

b̂0 :� 0:0109 � 0:95b,

�̂0 :� 1

b̂0
,

�d̂M�0 :� 0:002 � 2dM,

�d̂T�0 :� 0:0003 � 0:6dT:

The key estimate is that corresponding to the lift coef-
®cient b. In the case where a good estimate of b is
available it is expected that a non-adaptive control
design will outperform the proposed adaptive algo-
rithm. Simulations indicate that until one enters the
ground effect this is the case and in practice, the
proposed adaptive algorithm should only be used in
the situations for which it has been designed. In con-
trast the non-adaptive algorithm fails to achieve a
successful landing manoeuvre due to increased lift en-
countered due to the unmodelled ground effect and
leaves the helicopter hovering in the most dangerous
and dif®cult zone of ¯ight. To the authors knowledge,
several teams working on the scale model autono-
mous helicopters have encountered problems of this
nature. A common solution appears to be to turn
the motor off and let gravity ®nish the landing man-
oeuvre. The authors hope that the present investiga-
tion will lead to a better solution in the long term.
The system is not highly sensitive to errors in dM
and dT larger parametric errors have been chosen
for these estimates.

For simulation results, the classical `yaw', `pitch' and
`roll' Euler angles ��, �, � favoured in aeronautical

applications are used to express the attitude of the air-
frame. In Fig. 3 the performance of the algorithm in
the ideal case is shown. The initial position of the heli-
copter is �0 � �1, 2, ÿ4� and its final position is
�f � �0, 0, ÿ0:25�. In this case a constant parametric
constant b is used and no unmodelled disturbances
are present. Regarding Fig. 3, it is clear that the pro-
posed control design functions perfectly and provides
asymptotically stable convergence of system state and
parametric error estimates.

In Fig. 4 the landing manoeuvre is simulated for
both the non-adaptive (left) and adaptive (right) algo-
rithms for the case where the ground effect is added.
Note that the changing lift coefficient along with the
dynamics of the system cause the helicopter to bounce
as if on a cushion of air as it comes in to land (one clear
bounce is visible in both cases in the trace of the
z-coordinate of the centre plot). In the case of the
non-adaptive design this effect is unavoidable and
the helicopter will continue to bounce around on its
ground effect air cushion until some modification to
the control is made. For the adaptive control algo-
rithm the initial bouncing effect is measurably reduced
andthe following transient shows littleornoeffect from
the changing system parameters. The slight bounce
that does occur for the adaptive system is due to the
transient in the parameter estimates generated by the
lack of trajectory initialisation. The gains c1, . . . , c4
were chosen to give the parameter estimates a conver-
gence that is roughly twice as fast as the system
dynamics (compare the convergence shown in Fig. 6
with that in Figs 4 or 5). In all the simulations shown,
the parameter transients have died out after approxi-
mately 7 s and the landing manoeuvre is completed
after approximately 15 s. The system dynamics from
7±15 s show no tendency towards instability even
though the changes in ground effect are more severe
close to the ground than those encountered during
the first seven seconds (cf. Fig. 2).

Finally, a semi-realistic simulation is given for a
landing manoeuvre. In addition to the changing
ground effect the dynamic perturbation � is included
and a noise like disturbance to the torque control is
added. The form of � used is based on preliminary
modelling of the VARIO 23 cc radio controlled
helicopter at the UniversiteÂ de Technologie de
CompieÂ gne

RT� �
0 ÿ2:2 0
2:2 0 ÿ0:7
0 0 0

0@ 1A ÿ1

ÿ2

ÿ3

0@ 1A, �59�

where the factor of RT transforms the expression into
the body ®xed frame [14]. The coupling between the
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Fig. 4. Evolution of the system states for the proposed closed loop system during a landing manoeuvre where the parametric error
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roll (pitch) dynamics with latitudinal (longitudinal)
linear dynamics corresponds to the form used in con-
temporaryworks [10,12,29].Thenoise-likedisturbance
added to the torque control was chosen to re¯ect the
sort of disturbance encountered due to vortex and dy-
namic effects that disturb the orientation of the main
rotor disk as a helicopter ¯ies close to the ground.
The important disturbances tend to be low frequency
perturbations as gusts and vortices enter the rotor
in¯ow and cause a bias in the set point regulation for
the low level control used to regulate the torque
control. The `noise' added was of the form ��t� :�
0:05�cos�t=10� sin�t=5�, cos�t=5� sin�t=10�, 0� to simu-
late the low frequency aspects of the disturbances and
provide a deterministic repeatable noise sequence.
High frequency noise effects are ®ltered by the system
dynamics and do not signi®cantly affect the perfor-
mance of the control algorithm. It should be noted that
this `noise' propagates directly into the linear dynamics
via �. Regarding Fig. 5 it is clear that the proposed
adaptive algorithm is stable despite the presence of
the added disturbances. Comparing Figs 4 and 5 it
may be seen that the added disturbances do not quali-
tatively degrade the performance of the algorithm.
Finally, by regarding the evolution of the parameter

estimates (Fig. 6) one sees that effective tracking is
maintained at all times after a short transient due to
the large initial error in the Lyapunov function. The
simulation veri®es the underlying robustness of the
adaptation dynamics.
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Fig. 5. Evolution of the system states for the proposed closed loop system during a landing manoeuvre in the presence of changes in the lift
coefficient due to ground effects, unmodelled dynamics and input noise. Non-adaptive algorithm shown on left verses adaptive algorithm
shown on right.
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input noise.
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5. Conclusion

In this paper, we have proposed a simple model for the
dynamics of a scale model autonomous helicopter that
includes rotor dynamics and certain important aero-
dynamic effects. The unknown constants associated
with the aerodynamicmodelling are lumped into linear
parametric errors in themodel and an adaptive control
design based on extended matching is derived. A theo-
rem is given proving convergence of all parametric
error estimates to zero and simulations are provided
as proof of concept.

In the authors opinion the paper provides the first
stage of a necessary research direction in the applica-
tion of adaptive control techniques to control of scale
model autonomous helicopters. It should be stressed
that lift coefficient b may never be precisely measured
and will usually be slowly varying with time. Any high
performance control algorithm will need to take
account of this variation.

Although the use of engine torque as the principal
control input has excellent theoretical properties and
reduces control sensitivity, it has two practical disad-
vantages. There is significant coupling between the
rotor dynamics and the airframe yaw dynamics and
the reduced input sensitivity may negatively impact
on system performance. In practice, it may be prefer-
able to use an affine approximation of the relationship
between thrust and collective pitch [22, Fig. 1.9] and
derive an adaptive control to estimate the slope and
offset of this approximation on-line. It is the authors
opinion that such a formulation of the system will
be amenable to the same techniques presented in this
paper.
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