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Abstract

Thermomagnetoelectroelastic problems for various defects embedded in an infinite matrix are considered in this paper. Using Stroh’s
formalism, conformal mapping, and perturbation technique, Green’s functions are obtained in closed form for a defect in an infinite
magnetoelectroelastic solid induced by the thermal analog of a line temperature discontinuity and a line heat source. The defect may be of an
elliptic hole or a Griffith crack, a half-plane boundary, a bimaterial interface, or a rigid inclusion. These Green’s functions satisfy the relevant
boundary or interface conditions. The proposed Green’s functions can be used to establish boundary element formulation and to analyzing

fracture behaviour due to the defects mentioned above.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Green’s function plays an important role in the solution
of numerous problems in the mechanics and physics of
solids. It is the heart of many analytical and numerical
methods such as singular integral equation methods,
boundary element methods, eigenstrain approach, and
dislocation methods [1-3]. As such, extensive studies
have been carried out on static Green’s functions in
anisotropic piezoelectric solids. Benveniste [4] studied 3D
solutions in piezoelectric solids using the Fourier transform.
Chen [5] and Chen and Lin [6] expressed the infinite body
Green’s functions and their derivatives as the contour
integrals over the unit circle using 3D Fourier transforms.
Dunn [7] obtained explicit Green’s functions for trans-
versely isotropic piezoelectric solids using the Radom
transform, coordinator transformation, and evaluation of
residues in sequence. Pan [8] gave expressions for 2D
piezoelectric Green’s functions and their boundary integral
equations for dealing with fracture problems. Sosa and
Castro [9] obtained the solutions to the problem of
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concentrated loads acting at the boundary of a 2D half-
plane by means of a state space method in conjunction with
the Fourier transform. Norris [10] discussed the derivation
of dynamic Green’s functions for problems dealing with 2D
dynamic piezoelectricity. Khutoryansky and Sosa [11]
further examined the dynamic Green’s function of piezo-
electric materials and gave a general representation formula
of the governing equations of transient piezoelectricity
through a generalization of the reciprocal theorem and the
plane wave transform method. Fan et al. [12] gave a solution
for a concentrated contact force and charge acting on the
boundary of a half-space by means of Stroh’s formalism.
The contact may be either non-slip or slip in nature. Qin [13]
presented Green’s functions for 2D piezoelectric materials
with various openings and applied them to establish
boundary singular integral equations. Qin and Mai [14]
also derived explicit Green’s functions for an interface crack
subject to an edge dislocation in various piezoelectric
bimaterial combinations. Pan and Yuan [15] gave 3D
Green’s functions for anisotropic piezoelectric bimaterials.
They showed that the 3D bimaterial Green’s function can be
expressed in terms of a full-space part or the Kelvin-type
solution and a complementary part or the Mindlin-type part.
Studies in [6,16] suggested a numerical algorithm to
compute the derivatives of the piezoelectric Green’s
function. Green’s functions for piezoelectric materials
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without thermal effect can also be found in [17] for the case
of full space; [18,19] for half-plane; [20,21] for semi-infinite
crack; [22] for two-phase piezoelectric composites; [23] for
anti-plane arc-crack; [24,25] for an impermeable elliptical
hole or crack; [26,27] for a permeable elliptical hole; [28]
for the case of collinear permeable cracks; and [29,30] for
straight permeable interface cracks between two dissimilar
piezoelectric media. For thermal analysis in piezoelectric
materials, based on Stroh’s formalism and conformal
mapping, Qin [31] obtained Green’s functions in closed
form for an infinite piezoelectric plate with an elliptic hole
induced by temperature discontinuity. Qin and Mai [32] also
investigated thermoelectroelastic Green’s functions for
half-plane or bimaterial problems. Qin [33-35] further
examined the thermoelectroelastic Green’s functions for
piezoelectric materials with various openings or an elliptic
inclusion.

In contrast, study of corresponding Green’s functions
in magnetoelectroelastic solids satisfying special
boundary or continuity conditions has not yet become a
popular field as shown in the literature, though the
solution might be of both theoretical and practical
importance. Pan [36] derived three-dimensional Green’s
functions in anisotropic magnetoelectroelastic full-space,
half-space, bimaterials based on the extended Stroh
formalism and two-dimensional Fourier transforms. Pan
[37] and Pan and Heyliger [38] also presented an exact
solution for simply supported magneto-electro-elastic
rectangular plates. Soh et al. [39] presented the 3D
explicit Green’s functions for an infinite three-dimen-
sional transversely isotropic magnetoelectroelastic solid
based on the potential theory. Huang et al. [40] obtained
magneto-electro-elastic Eshelby tensors in an inclusion
resulting from the constraint of the surrounding matrix of
piezoelectric-piezomagnetic composites. Li and Dunn
[41] and Li [42] studied coupled magneto-electroelastic
behaviour due to inclusion or inhomogeneity using
Eshelby’s tensor approach. Hou et al. [43] presented a
general solution for transversely isotropic magneto-
electro-elastic media in terms of five harmonic functions.
Based on Stroh’s formalism, comformal mapping, and
Laurent series expansion, Liu et al. [44] obtained Green’s
functions for an infinite 2D anisotropic magneto-electro-
elastic medium containing an elliptical cavity or a crack.
To the author’s knowledge, however, there is no report
on thermal Green’s function for media possessing
simultaneously piezoelectric, piezomagnetic, magneto-
electric, and thermal effects. In the present paper,
thermal Green’s functions for 2D anisotropic magneto-
electro-elastic solids with various defects are presented.
The defects may be an elliptic hole or a Griffith crack, a
half-plane boundary, a bimaterial interface, or a rigid
inclusion. The Green’s functions presented here are
suitable for implementing into standard boundary element
formulation and computer programming for numerical
analysis.

2. Basic formulations

The governing equations and general solutions of 2D
magnetoelectroelastic solids where all fields are functions of
x1 and x, only are here summarized briefly. Throughout this
paper the shorthand notation introduced by Barnett and Lothe
[45] and the fixed Cartesian coordinate system (xi, X, X3)
are adopted. Lower case Latin subscripts always range from
1 to 3, upper case Latin subscripts will range from 1 to 5, and
the summation convention is used for repeating subscripts
unless otherwise indicated. In the stationary case where no
free electric charge, electric current, body force, and heat
source are assumed to exist, the complete set of governing
equations for coupled thermo-electro-magneto-elastic pro-
blems are [46,47]:

hi;=0 X;=0 (1)
together with
hy = —kiT; Xy = EgnUpn — X T )
in which

o , U, M<3,
Eij = Di? J :4, UM = ¢, M :4,

Bi’ =), w, M = 5,

3)
A >

X =14 pi» J =4,

Cinr S M <3,

ey J<3,M =4,

Qujp T<3M =35,

Cimns J=4,MZ3,

Eippn = —Kip, J =4,M =4, %)
—a;,, J=4M =35,

Qimm» J =5,M<3,

—a;,, J=5M=4,

—My J=5M=5,

where T and h; are temperature change and heat flux, o, D;,
and B; are elastic stress tensor, electric displacement vector,
and magnetic induction vector; u,,, ¢, and w are elastic
displacement vector, electric potential, and magnetic poten-
tial; A;, p;, and v; are thermal moduli tensor, pyroelectric
coefficients, and pyromagnetic coefficients; k;; is the thermal
conductivity; Cyj,,, elastic moduli, e,; piezoelectric coeffi-
cients, ¢g,; piezomagnetic coefficients, a;, magnetoelectric
coefficients, «;, dielectric constants, u;, magnetic per-
meability. A general solution to Eq. (1) can be
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expressed as [47]:
T =2Relg'(z)], U =2Re[Af(z)q + cg(z,)] )
with

A=[A A A; AL As]

f(z) = (f(z,)) = diaglf(z1) f(z2) f(23) f(24) f(25)]

q=1{q1 % ¢ 0 g5}"

7, =x1 t7x

% =X T pixy

in which ‘Re’ stands for the real part of the complex number,
the prime (') denotes differentiation with the argument, q
represents unknown constants to be found by boundary
conditions, g and f are arbitrary functions to be determined,
Pi» T, A and ¢ are constants determined by [2]

k227'2 + (kn + k2l)T + kll =0

[Q + (R +R')p; +TpfIA; =0 ©)
[Q+R+RNT+Tr’le =y, + 0

in which superscript ‘T” denotes the transpose, y; are 5X 1
vectors, and Q, R and T are 5 X5 matrices defined by

Q)i = Euki>
(Tix = Eyk

% =1 Ao As s Ui}T,

7
R)ix = Ekas @

The heat flux, h, and the stress-electric displacement-
magnetic induction (SEDMI), X, obtained from Eq. (2) can
be written as

h; = =2 Re[(k; + Tkip)g"(z)],

(®)
2 ==y 2y =0y,
where ¢ is the SEDMI function given as
¢ = 2 Re[Bf(z)q + dg(z,)] )

with

B =R7A + TAP = —(QA + RAP)P!

P = (p,) = diag[p; p; p3 p4 ps] (10

d=R" +7T)ec — %, = —(Q + TR)e/T + /7
Introducing a heat flow function [34]

¥ = 2k Im[g'(z,)] (11)

where k= (ky1ky, — k%z)m, ‘Im’ stands for the imaginary
part of the complex number, we have

hy=—0,, h =17, (12)

which has the same form as those for stress function (see
Eq. (8),). Thus we may use the same method as that in
electroelastic problems to derive the thermal solutions.

3. Green’s function for half-plane or bimaterial
problems

3.1. Green’s function for half-plane problem

The half-plane considered here is slightly different from
those reported in the literature [2,18]. The half-plane
boundary is in the vertical direction (x; =0 on the boundary
in our analysis), rather than in the horizontal direction
(see Fig. 1). It is obvious that z,=x; + Tx, (Or Zz =X +piX>)
becomes a real number on the horizontal boundary x,=0.
However, z; (or z;) is, in general, neither a real number nor a
pure imaginary number on the vertical boundary x; =0,
which makes the related mathematical derivation compli-
cated. To bypass this problem, introduce a new coordinate
variable

 =zlT, 7 = uldpy (13)

which makes both z; and z{ to be real numbers on the
vertical boundary x; =0. This coordinate transformation is
used for both the half-plane and the bimaterial problem.

In the analysis the boundary faces of the half-plane are
assumed to be thermal-insulated, free of traction force,
external electric current and charge. The boundary
condition along the boundary of the half-plane can thus be
written as

d=¢=0 (14)
Here following relations have been used
hn = 0,s’ tn = ¢,s (15)

where 7 is the normal direction of the half-plane boundary, s
is the arc length measured along the boundary face, and t,
represents surface traction vector.

3.1.1. Green’s function for thermal field in half-plane solid
The half-plane solution can be obtained by considering
full-space solution plus some modification term to satisfy

Fig. 1. Magnetoelectroelastic half-plane.
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the condition on the boundary of the half-plane. To this end,
the general solution for temperature and heat-flow function
can be assumed in the form [34]

T =2 Relg'(z))] = 2 Relfy(z)) + £i(z))] (16)

¥ = 2k Im[g'(z))] = 2k Im[fy(z) + f1(z)] (17)

where f can be chosen to represent the solutions associated
with the unperturbed thermal fields which are holomorphic in
the entire domain except at some singular points such as the
pointatwhichapointheatsourceisapplied, and f; isafunction
corresponding to the perturbed field due to the half-plane.

For a given loading condition, the full plane function f;
can be obtained easily since it is related to the solution of
homogeneous media. When an infinite plane is subjected to
a line heat source 4~ and the thermal analog of a line
temperature discontinuity 7, both located at (x;¢,x20), the
function f, can be chosen in the form

fo@) = qo In(z — z0) (18)

and ¢, is a complex number which can be determined from
the conditions

JdT = T, for any closed curve C enclosing the point z;,

c

19)
Jdﬂ = —h" for any closed curve C enclosing the point zy.
c

(20)

with the substitution of Eq. (18) into Egs. (16) and (17), the
conditions (19) and (20) yield

o = Toldmi — h* /Ark. Q1)

For the half-plane in the z; =z/7 system, the pertur-
bation function can be assumed in the form [2,32]

fi@) = qi In(z' — Zjp) (22)

Substituting Eqgs. (18) and (22) into Eq. (17), the
condition (14), yields

Im[qy In(x, —z0) + ¢ In(x; — Zp)] =0 (23)

Noting that 7/ =x, on the half-plane boundary and
Im(f) = —Im(f), we have

Im[g In(x; — zp)] = —Im[Gy In(x; — Z)] (24)
Eq. (23) now yields
q91 = qo (25)

The function g in Eq. (16) can then be obtained by
integrating f, and fi with respect to z;, which yields

8@) = 90/ &, z0) + Gof &' Zi0) (26)
where f(x, a)=(x—a)[In(x—a)—1].

3.1.2. Green’s function for magnetoelectroelastic field
in half-plane solid

The general solution of the thermomagnetoelectroelastic
problem can be written as

¢ =9, t oy 27)

where subscripts ‘p” and ‘h’ refer, respectively, to the
particular and homogeneous solution.

From Egs. (5) and (9) the particular solution of
magnetoelectroelastic field induced by thermal loading
can be written as

u, = 2 Releg(z)],

U=U,+U,

¢, = 2 Re[dg(z,)] (28)

The particular solutions (28) do not generally satisfy the
boundary condition (14), along the half-plane boundary.
We therefore need to seek a corrective isothermal solution
for a given problem so that, when superimposed on the
particular thermomagnetoelectroelastic solution, the sur-
face conditions (14), will be satisfied. Owing to the fact
that f(z;) and g(z,) have the same order of effect on stress
and electric displacement in Egs. (5) and (9), possible
function forms come from the partition of g(z;). The
corrective isothermal solution U;, and ¢, can, thus, be
assumed in the form

Uy, = 2 Releqof (27, 2i0) + eGolf (2, )] (29)

¢n = 2 Re[dqof (. 1)1 + ddof i, Zip)] (30)
For Simplicity, denote

@) = qolf @iy z) + Gof @ Z0)] 31)

The substitution of Egs. (29)-(31) into (9), later into
(14),, leads to

q=-Bld (32)

Thus Green’s functions for the magnetoelectroelastic
field of the half-plane problem can be written as

U = 2 Re[—Af(z")B~'d + cg(z)],
(33)
¢ = 2 Re[—Bf(z")B~'d + dg(z,)]

where f(z") = diag[f(z]) f(23) f(23) f(23) f(z5)].

3.2. Green’s function for bimaterial problem

We now consider a bimaterial solid whose interface is on
xo-axis (x; =0). It is assumed that the left half-plane (x; <0)
is occupied by material 1, and the right half plane (x;>0) is
occupied by material 2 (Fig. 2). They are rigidly bonded
together so that

7O — 7@ O — 9@ g = g@

(34)
¢ =@, at x, =0
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ozo(xlo X20)

Materia 1

Fig. 2. Magnetoelectroelastic bimaterial plate.

where the superscripts (1) and (2) label the quantities
relating to materials 1 and 2 respectively. The equality of
heat flow and traction continuity comes from the relations
h,=0v/ds and t=0¢/0s. When points along the interface
are considered, integration of A" =hr? and tP=t?
provides Eq. (34),.4, since the integration constants which
correspond to constant thermal expansion and rigid motion
can be neglected.

3.2.1. Green’s function for thermal field in bimaterial
solids

For a bimaterial subjected to a temperature discontinuity
Ty and a heat source h*, both located in the left half-plane at
Zo (X10.X20) as shown in Fig. 2, the general solution for the
bimaterial solid can be assumed in the form

TV = 2Relfo(@") + @),

(35)
O = 26D Im[fy (") + A&V, x4 <0,
T? =2Re[fh(z7M)], 92 =2k? Im[fHLE7)], x>0
(36)

where the function f; is again given in Eq. (18). To satisfy
the interface condition (34),,, the functions f; and f, are
taken as

AE) =g In@V* =25 (37)

HE*) =g, @ — 25 (38)

with the substitution of Egs. (18), (37), and (38) into
Eqgs. (35) and (36), the continuity condition (34), , provides

KO — @ B 2kM

N Ao 2T g 9 (39)

Therefore the function g for the present bimaterial
problem can be written in the form

a1 @) = gof @V 29 + auf @V 25 (40)

@) = gof @, 20 (41)

3.2.2. Green’s function for magnetoelectroelastic field
in bimaterial solids

To use the condition (34);4 we first consider the
particular solution due to the thermal field. Using
Eqs. (40) and (41), the particular solution for the
magnetoelectroelastic field can be written as

UG =2 Relgoef (" 2ig™) + eVl 2 ),
(42)

(@) = 2 Relgod (@, 20" + 4V (@, 2]

(43)
for x; <0, and
UP ") = 2 Re[eqof 7%, 201, (44)
P (@) =2 Re[dPqaf (27, 2551 45)

for x;>0. For the same reason as in Section 3.1.2, a
corrective solution needs to be constructed in such a way
that when it is superimposed on the particular solutions
(42)—(45) the interface condition (34) will be satisfied.
Owing to the fact that f(z;) and g(z;) have the same
rule affecting U and ¢ in Eqs. (5) and (9), possible function
forms come from the partition of solution g(z,). This is

R =7E" 400, AET =fE 20 (6)

f (Z(Z)*) _f(Z(z)*,Zi(l))*)v f4(Z(2)*) _f(Z(Z)*,Z(,(I))*) A7

Thus the resulting expressions of U and ¢ can be
given as

UY = 2 RefAV[{f, N1y + (BN

+ qoeVf V", 20 + Vg f iV, 20 (48)

¢V =2 Re(B (1 Nan +{HG o]
ta d(”f(z(”*,zﬁ(l))*) n d‘1>qlf(z(')*,§§('))*)} (49)
for x; <0, and

U? =2 RefAP (P N1 + (32 o]

+ ¢ Pgf @, 29} (50)

¢? = 2 ReBAA T Mo + (2@ o]

+dPgof (2%, 2} (51)

for x; > 0. The substitution of Eqgs. (48)—(51) into Eq. (34)3 4

yields
q = Ml[(B(Z)fld(Z) _ A(Z)flc(z))q2 . (B(z)ild(l)

— AP D] (52)
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@ = M (B — AV e)g, — BD'a?

— AV e)gy] (53)
4 = —M;BP 7Y — AP D), (54)
4 = MyBV 1Y — AT e, (55)

where M, = (B@~ BV — A@~TADy=1 M, = (BD'B®
—AWTA@Y1 - Thys, the explicit expression of the
magnetothermoelectroelastic Green’s functions for the
bimaterial solid can be obtained by substituting Egs. (52)-
(55) into Egs. (48)-(51).

4. Green’s function for elliptical hole or rigid inclusion
problem

4.1. Green’s function for elliptical hole problem

The hole problem to be considered here is illustrated in
Fig. 3, showing an infinite two-dimensional thermomagne-
toelectroelastic plate containing an elliptical hole (with the
limit »=0, a crack) with semi-major axis a and semi-minor
axis b. The plate is subjected to a line heat source 4" and the
thermal analog of a line temperature discontinuity 7}, both
located at zo(x19,x20) (Fig. 3).

As shown in Fig. 3, the contour I' of the ellipse is
described by

Xy =acosy, x,=bsiny (56)

where ¢ is a real parameter. Letting m and n be the unit
vectors tangential and normal to the elliptical boundary,
respectively, and « be the angle directed counter-
clockwise from the positive x;-axis to the unit vector
m, we have

m = {cos w,sin 0,0}, n = {—sin w,cos w,0}’ (57)

- Zo(X10: %20)

e

Fig. 3. Geometry of an ellipse.

The normal component of SEDMI vector along the
hole boundary can then be expressed as

(Z)y = Zyn; = (0,,); (58)

If it is assumed that the hole surface is thermal
insulated and SEDMI free, the physical and boundary
conditions of the boundary-value problem can be stated
as

JdT = T for any closed curve C enclosing the point z,

c

(59)
Jdﬂ = —h" for any closed curve C enclosing the point
c

(60)
¥ = ¢ = 0 along the hole boundary (61)
h;— 0, X;— 0 atinfinity (62)

4.1.1. Conformal mapping
Since conformal mapping is a fundamental tool used to
find the solution of hole problems, the transformation
a=ai b ta ' ay = (a—ith)2, ay = (a+irb)2
(63)

a=anltanli's ap=(a—ipb)/2, ay =(a+ipb)2

(64)
will be used to map the region, £, occupied by the
magnetoelectroelastic material onto the outside of a unit

circle in the ¢-plane, described by £, |r=o. It is noted that
¢, on the unit circle is expressed by

Clr=e¥ =cosy +isiny(a=11—5) (65)

4.1.2. Green’s function for thermal field in hole problem
A suitable function satisfying the boundary conditions
(59), (60), and (62);, can be given in the form

§'€) =qon( — o) + g1 In¢" — ) (66)

where g is defined in Eq. (21). Noting that {, =G =0, we

have

Im[qq In(c — £0)] = —Im[go In(o ™" — Z0)] (67)

The substitution of Eq. (67) into Eq. (66), and then into
Eq. (61),, yields

91 = 4o (68)

The function g(z,) is thus obtained by integrating Eq. (66)
with respect to z, i.e.

8@z) = [¢z)dz, = [¢C)ar, —ar {7 HAL, (69)
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which yields
8(z) = qolai (& — Lo)In(€, — L) — 11— ay, [In(,

—%0) —InG W0+ ax & ' In(C, — )}
+qifa, L@ =) —ap, [In(g !

—Z0)+Ing 10+ ar (G —Con@& " =) — 11}
(70)

4.1.3. Green’s function for magnetoelectroelastic field
in hole problem

As before, the particular solution is in the same form as
that of Eq. (28) except for the function g being obtained
from Eq. (70). Based on the Eq. (70), the corrective
isothermal solution can be taken in the form

fi@) = algoF 1 (&) + qoF2 (&) + GoF3(8p) + GoFa(C)1/2
@) = ipbl—qoF 1 (Cp) + qoF2(8r) — GoF5(8) (71)
+qoF4 ()12

where the subscripts 1 and 2 are the indices for the different
possible functions, and

Fi (&) = (& = Golln(€ — &o) — 1,

Fy(@) = €' = LohIn(G — Lo) + &0’ In G,

F3(@) = &' = Loln@e ' — o) — 11,

FyGo) = G — Lo n@e ' =) =o' In Gy
The Green’s functions for the magnetoelectroelastic

fields can thus be chosen as

(72)

2
U=2Re|) Af@q +cs() (73)
Lk=1 |
-, i
¢ =2Re|) Bfi(2)q; +dg(z) (74)
Lk=1 |

The condition (61), provides
q=-B'd q=—-P'Bd (75)

Substituting Eq. (75) into Egs. (73) and (74), the Green’s
functions can then be rewritten as

U =2 Re{—A[f,(z) + £,)P"'7IB'd + cg(z,)} (76)

¢ =2 Re{—B[f,(z) + £,(2)P"'7IB"'d + dg(z,)} (77)

In the case of the elliptical hole being filled with a rigid
conductor, which implies that the elliptical hole is not
deformed and the electrical potential as well as the magnetic
potential is constant (=0 in this study) on the hole surface,
we have

Ul =0 (78)

The unknown constants in Eq. (73) are then given by
q=-A"c q=—-1P'Ac 79)

when the minor semi-axis b of the ellipse approaches zero,
the hole reduces to a flat crack of length 2a. The Green’s
functions (76) and (77) in this case are reduced to

U = 2 Re{—Af,(z)B'd + cg(z,)} (80)
¢ =2 Re{—Bf,;(z)B~'d + dg(z,)} (81)

4.1.4. Green’s function for permeable hole problem

In this subsection, the hole is assumed to be filled with a
homogeneous gas (air or vacuum) of permittivity (Kh) and
permeability (u"), where superscript ‘4’ refers to the
quantities associated with the hole [27,44]. Therefore,
induced electric and magnetic fields exist in the hole,
denoted by @, and can be governed by the equations:

72e" =0, P =0inQ, (82)
with the constitutive relations
D! =k"El = —"¢", Bl =«"H! = -y i=1,2inQ,
(83)
The general solution to Egs. (82) and (83) are thus given by
¢" =2Re[f@]. ¥ =2Relf @], z=x +ir, (84

Defining the potential, electric displacement and magnet
induction function

, " @
U" = =2Re ,
Y '(2)
5 85)
b 0| [fl@
¢" =2Re
0 b (A
where b/{ = —ik", b’g = —iuh, we have
st ={D},Bl} = —¢%, h={D} B} =¢" (86)

Using the above expression, the magnetoelectroelastic
boundary conditions along the surface of the hole can be
written as [44]

gU=U" ¢=go"onr (87)
X;; — Oatinfinity (88)
where

~fooo1o]" )
5100001

As in [48], the single-valued mapping of the hole region,
Q;, can be written

:a+bc+a—

b,
- ¢ (90)

2



584 Q.-H. Qin / Engineering Analysis with Boundary Elements 29 (2005) 577-585

The roots of dz/d{=0 are &, ==[(1—e)/(1+e)]"?,
where e=b/a. Thus, the mapping of the region €, can
be performed by excluding a straight line ' of length 2a(1 —
¢?)'"? along the x;-axis from the ellipse. In this case, the
mapping function (90) will transform I" and I' into the ring of
outer and inner circles with radii @ ro, =1
and r;,, = [(1 —e)/(1+ )2, respectively.

To satisfy the conditions (87), the solutions U and ¢ can
be taken in the form given in Eqgs. (73) and (74), and U”
and ¢" are assumed as

2
U' =2Re > [Fi(@)qyu] ©1)
k=1
2
¢" =2Re ) [B'fi(2)qu] (92)
k=1
where
; —ik" 0
B" = (93)
0 —iu"

1(2) = alqoF1(©) + qoF2(0) + GoF3(0) + GoF4(D)1/2
@) = ith[—qoF () + qoF2(0) — GoF3(0) + GoF4(0)1/2

(94)
The condition (87) provides
2Relg' (Aq; +©)] =2 Relqy],
2 Re[Bq, + d] = 2 Re[gB"qy,] ©2)
2 Re[g’ (APq, + ¢7)] = 2 Re[qy 7],
2 Re[BPq, + d7] = 2 Re[gB"q),»7] ©0)
Solving Egs. (95) and (96) yields
a =WV, qu =g [AWV +c] 97)
@ =7PT'WV, q;, =gqy (98)
where
W =B —gB"g’A, V=gB'gc—d (99)

A crack of length 2a can be formed by letting the minor
axis b of the ellipse approach zero. The solutions for a crack
in an infinite magnetoelectroelastic plate can then be
obtained from the formulation above by setting b=0. In
this case, Eqgs. (63), (64), and (90) are reduced to

Q=G ap=a =3 (100)

% = g(Ck +ayl "), ay = ay :% (101)
a -1

z=§(c+c ) (102)

Substituting the expressions (100)-(102) into Egs.
(69)—(77), the corresponding solution for a permeable
crack can be obtained. We omit those details here since it
is tedious and algebraic. Similar results for a permeable
crack has been discussed elsewhere [2].

5. Conclusion

The problem of various defects embedded in an infinite
magnetoelectroelastic solid subjected to thermal loading has
been addressed within the framework of in-plane magne-
toelectroelastic interactions. A family of closed-form
thermomagnetoelectroelastic Green’s functions for
problems of defects in a magnetoelectroelastic solid has
been derived through the use of Stroh’s formalism and
conforming mapping. The defects may be of an elliptic hole
or a Griffith crack, half-plane boundary, bimaterial inter-
face, or rigid inclusion. These Green’s functions satisfy the
related boundary or interface conditions. In the case of hole
problem, both permeable and impermeable boundaries are
considered. The Griffith crack of finite length 2a can be
generated by setting the minor semi-axis b at zero. Thus
their Green’s functions can be obtained from the related
solutions of the elliptical hole problem. The Green’s
functions obtained can be used to establish boundary
element formulation and to analyze fracture behavior due
to the defects mentioned above.
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