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Abstract

Thermomagnetoelectroelastic problems for various defects embedded in an infinite matrix are considered in this paper. Using Stroh’s

formalism, conformal mapping, and perturbation technique, Green’s functions are obtained in closed form for a defect in an infinite

magnetoelectroelastic solid induced by the thermal analog of a line temperature discontinuity and a line heat source. The defect may be of an

elliptic hole or a Griffith crack, a half-plane boundary, a bimaterial interface, or a rigid inclusion. These Green’s functions satisfy the relevant

boundary or interface conditions. The proposed Green’s functions can be used to establish boundary element formulation and to analyzing

fracture behaviour due to the defects mentioned above.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Green’s function plays an important role in the solution

of numerous problems in the mechanics and physics of

solids. It is the heart of many analytical and numerical

methods such as singular integral equation methods,

boundary element methods, eigenstrain approach, and

dislocation methods [1–3]. As such, extensive studies

have been carried out on static Green’s functions in

anisotropic piezoelectric solids. Benveniste [4] studied 3D

solutions in piezoelectric solids using the Fourier transform.

Chen [5] and Chen and Lin [6] expressed the infinite body

Green’s functions and their derivatives as the contour

integrals over the unit circle using 3D Fourier transforms.

Dunn [7] obtained explicit Green’s functions for trans-

versely isotropic piezoelectric solids using the Radom

transform, coordinator transformation, and evaluation of

residues in sequence. Pan [8] gave expressions for 2D

piezoelectric Green’s functions and their boundary integral

equations for dealing with fracture problems. Sosa and

Castro [9] obtained the solutions to the problem of
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concentrated loads acting at the boundary of a 2D half-

plane by means of a state space method in conjunction with

the Fourier transform. Norris [10] discussed the derivation

of dynamic Green’s functions for problems dealing with 2D

dynamic piezoelectricity. Khutoryansky and Sosa [11]

further examined the dynamic Green’s function of piezo-

electric materials and gave a general representation formula

of the governing equations of transient piezoelectricity

through a generalization of the reciprocal theorem and the

plane wave transform method. Fan et al. [12] gave a solution

for a concentrated contact force and charge acting on the

boundary of a half-space by means of Stroh’s formalism.

The contact may be either non-slip or slip in nature. Qin [13]

presented Green’s functions for 2D piezoelectric materials

with various openings and applied them to establish

boundary singular integral equations. Qin and Mai [14]

also derived explicit Green’s functions for an interface crack

subject to an edge dislocation in various piezoelectric

bimaterial combinations. Pan and Yuan [15] gave 3D

Green’s functions for anisotropic piezoelectric bimaterials.

They showed that the 3D bimaterial Green’s function can be

expressed in terms of a full-space part or the Kelvin-type

solution and a complementary part or the Mindlin-type part.

Studies in [6,16] suggested a numerical algorithm to

compute the derivatives of the piezoelectric Green’s

function. Green’s functions for piezoelectric materials
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without thermal effect can also be found in [17] for the case

of full space; [18,19] for half-plane; [20,21] for semi-infinite

crack; [22] for two-phase piezoelectric composites; [23] for

anti-plane arc-crack; [24,25] for an impermeable elliptical

hole or crack; [26,27] for a permeable elliptical hole; [28]

for the case of collinear permeable cracks; and [29,30] for

straight permeable interface cracks between two dissimilar

piezoelectric media. For thermal analysis in piezoelectric

materials, based on Stroh’s formalism and conformal

mapping, Qin [31] obtained Green’s functions in closed

form for an infinite piezoelectric plate with an elliptic hole

induced by temperature discontinuity. Qin and Mai [32] also

investigated thermoelectroelastic Green’s functions for

half-plane or bimaterial problems. Qin [33–35] further

examined the thermoelectroelastic Green’s functions for

piezoelectric materials with various openings or an elliptic

inclusion.

In contrast, study of corresponding Green’s functions

in magnetoelectroelastic solids satisfying special

boundary or continuity conditions has not yet become a

popular field as shown in the literature, though the

solution might be of both theoretical and practical

importance. Pan [36] derived three-dimensional Green’s

functions in anisotropic magnetoelectroelastic full-space,

half-space, bimaterials based on the extended Stroh

formalism and two-dimensional Fourier transforms. Pan

[37] and Pan and Heyliger [38] also presented an exact

solution for simply supported magneto-electro-elastic

rectangular plates. Soh et al. [39] presented the 3D

explicit Green’s functions for an infinite three-dimen-

sional transversely isotropic magnetoelectroelastic solid

based on the potential theory. Huang et al. [40] obtained

magneto-electro-elastic Eshelby tensors in an inclusion

resulting from the constraint of the surrounding matrix of

piezoelectric-piezomagnetic composites. Li and Dunn

[41] and Li [42] studied coupled magneto-electroelastic

behaviour due to inclusion or inhomogeneity using

Eshelby’s tensor approach. Hou et al. [43] presented a

general solution for transversely isotropic magneto-

electro-elastic media in terms of five harmonic functions.

Based on Stroh’s formalism, comformal mapping, and

Laurent series expansion, Liu et al. [44] obtained Green’s

functions for an infinite 2D anisotropic magneto-electro-

elastic medium containing an elliptical cavity or a crack.

To the author’s knowledge, however, there is no report

on thermal Green’s function for media possessing

simultaneously piezoelectric, piezomagnetic, magneto-

electric, and thermal effects. In the present paper,

thermal Green’s functions for 2D anisotropic magneto-

electro-elastic solids with various defects are presented.

The defects may be an elliptic hole or a Griffith crack, a

half-plane boundary, a bimaterial interface, or a rigid

inclusion. The Green’s functions presented here are

suitable for implementing into standard boundary element

formulation and computer programming for numerical

analysis.
2. Basic formulations

The governing equations and general solutions of 2D

magnetoelectroelastic solids where all fields are functions of

x1 and x2 only are here summarized briefly. Throughout this

paper the shorthand notation introduced by Barnett and Lothe

[45] and the fixed Cartesian coordinate system (x1, x2, x3)

are adopted. Lower case Latin subscripts always range from

1 to 3, upper case Latin subscripts will range from 1 to 5, and

the summation convention is used for repeating subscripts

unless otherwise indicated. In the stationary case where no

free electric charge, electric current, body force, and heat

source are assumed to exist, the complete set of governing

equations for coupled thermo-electro-magneto-elastic pro-

blems are [46,47]:

hi;i Z 0 SiJ;i Z 0 (1)

together with

hi ZKkijT;j SiJ Z EiJMnUM;n KciJT (2)

in which

SiJ Z

sij; J%3;

Di; J Z 4;

Bi; J Z 5;

8><
>: UM Z

um; M%3;

f; M Z 4;

6; M Z 5;

8><
>:

ciJ Z

lij; J%3;

ri; J Z 4;

yi; J Z 5;

8><
>:

(3)

EiJMn Z

Cijmn; J;M%3;

enij; J%3;M Z 4;

qnij; J%3;M Z 5;

eimn; J Z 4;M%3;

Kkin; J Z 4;M Z 4;

Kain; J Z 4;M Z 5;

qimn; J Z 5;M%3;

Kain; J Z 5;M Z 4;

Kmin J Z 5;M Z 5;

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(4)

where T and hi are temperature change and heat flux, sij, Di,

and Bi are elastic stress tensor, electric displacement vector,

and magnetic induction vector; um, f, and 6 are elastic

displacement vector, electric potential, and magnetic poten-

tial; lij, ri, and yi are thermal moduli tensor, pyroelectric

coefficients, and pyromagnetic coefficients; kij is the thermal

conductivity; Cijmn elastic moduli, enij piezoelectric coeffi-

cients, qnij piezomagnetic coefficients, ain magnetoelectric

coefficients, kin dielectric constants, min magnetic per-

meability. A general solution to Eq. (1) can be
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Fig. 1. Magnetoelectroelastic half-plane.
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expressed as [47]:

T Z 2 Re½g0ðztÞ�; U Z 2 Re½AfðzÞq CcgðztÞ� (5)

with

A Z ½A1 A2 A3 A4 A5�

fðzÞ Z hf ðzaÞi Z diag½f ðz1Þ f ðz2Þ f ðz3Þ f ðz4Þ f ðz5Þ�

q Z fq1 q2 q3 q4 q5g
T

zt Z x1 Ctx2

zi Z x1 Cpix2

in which ‘Re’ stands for the real part of the complex number,

the prime ( 0) denotes differentiation with the argument, q
represents unknown constants to be found by boundary

conditions, g and f are arbitrary functions to be determined,

pi, t, A and c are constants determined by [2]

k22t2 C ðk12 Ck21Þt Ck11 Z 0

½Q C ðR CRT Þpi CTp2
i �Ai Z 0

½Q C ðR CRT Þt CTt2�c Z c1 Ctc2

(6)

in which superscript ‘T’ denotes the transpose, ci are 5!1

vectors, and Q, R and T are 5!5 matrices defined by

ci Z fli1 li2 li3 ri yig
T ; ðQÞIK Z E1IK1;

ðRÞIK Z E1IK2; ðTÞIK Z E2IK2

(7)

The heat flux, h, and the stress-electric displacement-

magnetic induction (SEDMI), S, obtained from Eq. (2) can

be written as

hi ZK2 Re½ðki1 Ctki2Þg
00ðztÞ�;

S1J ZKfJ;2; S2J Z fJ;1

(8)

where f is the SEDMI function given as

f Z 2 Re½BfðzÞq CdgðztÞ� (9)

with

B Z RT A CTAP ZKðQA CRAPÞPK1

P Z hpai Z diag½p1 p2 p3 p4 p5�

d Z ðRT CtTÞc Kc2 ZKðQ CtRÞc=t Cc1=t

(10)

Introducing a heat flow function [34]

w Z 2k Im½g0ðztÞ� (11)

where kZ ðk11k22 Kk2
12Þ

1=2, ‘Im’ stands for the imaginary

part of the complex number, we have

h1 ZKw;2; h2 Z w;1 (12)

which has the same form as those for stress function (see

Eq. (8)2). Thus we may use the same method as that in

electroelastic problems to derive the thermal solutions.
3. Green’s function for half-plane or bimaterial

problems

3.1. Green’s function for half-plane problem

The half-plane considered here is slightly different from

those reported in the literature [2,18]. The half-plane

boundary is in the vertical direction (x1Z0 on the boundary

in our analysis), rather than in the horizontal direction

(see Fig. 1). It is obvious that ztZx1Ctx2 (or zkZx1Cpkx2)

becomes a real number on the horizontal boundary x2Z0.

However, zt (or zk) is, in general, neither a real number nor a

pure imaginary number on the vertical boundary x1Z0,

which makes the related mathematical derivation compli-

cated. To bypass this problem, introduce a new coordinate

variable

z
t Z zt=t; z
k Z zk=pk (13)

which makes both z
t and z
k to be real numbers on the

vertical boundary x1Z0. This coordinate transformation is

used for both the half-plane and the bimaterial problem.

In the analysis the boundary faces of the half-plane are

assumed to be thermal-insulated, free of traction force,

external electric current and charge. The boundary

condition along the boundary of the half-plane can thus be

written as

w Z f Z 0 (14)

Here following relations have been used

hn Z w;s; tn Z f;s (15)

where n is the normal direction of the half-plane boundary, s

is the arc length measured along the boundary face, and tn

represents surface traction vector.

3.1.1. Green’s function for thermal field in half-plane solid

The half-plane solution can be obtained by considering

full-space solution plus some modification term to satisfy
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the condition on the boundary of the half-plane. To this end,

the general solution for temperature and heat-flow function

can be assumed in the form [34]

T Z 2 Re½g0ðz
t Þ� Z 2 Re½f0ðz


t ÞC f1ðz



t Þ� (16)

w Z 2k Im½g0ðz
t Þ� Z 2k Im½f0ðz


t ÞC f1ðz



t Þ� (17)

where f0 can be chosen to represent the solutions associated

with the unperturbed thermal fields which are holomorphic in

the entire domain except at some singular points such as the

pointatwhichapointheatsourceisapplied,and f1isafunction

corresponding to the perturbed field due to the half-plane.

For a given loading condition, the full plane function f0
can be obtained easily since it is related to the solution of

homogeneous media. When an infinite plane is subjected to

a line heat source h* and the thermal analog of a line

temperature discontinuity T0 both located at (x10,x20), the

function f0 can be chosen in the form

f0ðz


t Þ Z q0 lnðz
t Kz
t0Þ (18)

and q0 is a complex number which can be determined from

the conditionsð
C

dT Z T0 for any closed curve C enclosing the point z
t0;

(19)

ð
C

dw ZKh
 for any closed curve C enclosing the point z
t0:

(20)

with the substitution of Eq. (18) into Eqs. (16) and (17), the

conditions (19) and (20) yield

q0 Z T0=4pi Kh
=4pk: (21)

For the half-plane in the z
t Zzt=t system, the pertur-

bation function can be assumed in the form [2,32]

f1ðz


t Þ Z q1 lnðz
t K �z
t0Þ (22)

Substituting Eqs. (18) and (22) into Eq. (17), the

condition (14)1 yields

Im½q0 lnðx2 Kz
t0ÞCq1 lnðx2 K �z
t0Þ� Z 0 (23)

Noting that z
t Zx2 on the half-plane boundary and

Imðf ÞZKImð�f Þ, we have

Im½q0 lnðx2 Kz
t0Þ� ZKIm½ �q0 lnðx2 K �z
t0Þ� (24)

Eq. (23) now yields

q1 Z �q0 (25)

The function g in Eq. (16) can then be obtained by

integrating f0 and f1 with respect to zt, which yields

gðztÞ Z q0 f̂ ðz
t ; z


t0ÞC �q0 f̂ ðz
t ; �z



t0Þ (26)

where f̂ ðx; aÞZ ðxKaÞ½lnðxKaÞK1�.
3.1.2. Green’s function for magnetoelectroelastic field

in half-plane solid

The general solution of the thermomagnetoelectroelastic

problem can be written as

U Z Up CUh; f Z fp Cfh (27)

where subscripts ‘p’ and ‘h’ refer, respectively, to the

particular and homogeneous solution.

From Eqs. (5) and (9) the particular solution of

magnetoelectroelastic field induced by thermal loading

can be written as

up Z 2 Re½cgðztÞ�; fp Z 2 Re½dgðztÞ� (28)

The particular solutions (28) do not generally satisfy the

boundary condition (14)2 along the half-plane boundary.

We therefore need to seek a corrective isothermal solution

for a given problem so that, when superimposed on the

particular thermomagnetoelectroelastic solution, the sur-

face conditions (14)2 will be satisfied. Owing to the fact

that f(zk) and g(zt) have the same order of effect on stress

and electric displacement in Eqs. (5) and (9), possible

function forms come from the partition of g(zt). The

corrective isothermal solution Uh and fh can, thus, be

assumed in the form

Uh Z 2 Re½cq0 f̂ ðz
k ; z


t0ÞCc �q0½f̂ ðz



k ; �z



t0Þ� (29)

fh Z 2 Re½dq0 f̂ ðz
k ; z


t0Þ�Cd �q0 f̂ ðz
k ; �z



t0Þ� (30)

For Simplicity, denote

f ðz
k Þ Z q0½f̂ ðz


k ; z



t0ÞC �q0 f̂ ðz
k ; �z



t0Þ� (31)

The substitution of Eqs. (29)–(31) into (9), later into

(14)2, leads to

q ZKBK1d (32)

Thus Green’s functions for the magnetoelectroelastic

field of the half-plane problem can be written as

U Z 2 Re½KAfðz
ÞBK1d CcgðztÞ�;

f Z 2 Re½KBfðz
ÞBK1d CdgðztÞ�

(33)

where fðz
ÞZdiag½f ðz
1 Þ f ðz
2 Þ f ðz
3 Þ f ðz
4 Þ f ðz
5 Þ�.
3.2. Green’s function for bimaterial problem

We now consider a bimaterial solid whose interface is on

x2-axis (x1Z0). It is assumed that the left half-plane (x1!0)

is occupied by material 1, and the right half plane (x1O0) is

occupied by material 2 (Fig. 2). They are rigidly bonded

together so that

T ð1Þ Z T ð2Þ; wð1Þ Z wð2Þ; Uð1Þ Z Uð2Þ;

f
ð1Þ Z f

ð2Þ; at x1 Z 0
(34)



x1

2x

z0(x10, x20)

o

Material 2 
Material 1 

Interface 

Fig. 2. Magnetoelectroelastic bimaterial plate.
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where the superscripts (1) and (2) label the quantities

relating to materials 1 and 2 respectively. The equality of

heat flow and traction continuity comes from the relations

hnZvw/vs and tZvf/vs. When points along the interface

are considered, integration of hð1Þ
n Zhð2Þ

n and t(1)Zt(2)

provides Eq. (34)2,4, since the integration constants which

correspond to constant thermal expansion and rigid motion

can be neglected.
3.2.1. Green’s function for thermal field in bimaterial

solids

For a bimaterial subjected to a temperature discontinuity

T0 and a heat source h*, both located in the left half-plane at

z0 (x10,x20) as shown in Fig. 2, the general solution for the

bimaterial solid can be assumed in the form

T ð1Þ Z 2 Re½f0ðz
ð1Þ

t ÞC f1ðz

ð1Þ

t Þ�;

wð1Þ Z 2kð1Þ Im½f0ðz
ð1Þ

t ÞC f1ðz

ð1Þ

t Þ�; x1!0;

(35)

T ð2Þ Z 2 Re½f2ðz
ð2Þ

t Þ�; w

ð2Þ Z 2kð2Þ Im½f2ðz
ð2Þ

t Þ�; x1O0

(36)

where the function f0 is again given in Eq. (18). To satisfy

the interface condition (34)1,2, the functions f1 and f2 are

taken as

f1ðz
ð1Þ

t Þ Z q1 lnðzð1Þ
t K �zð1Þ
t0 Þ (37)

f2ðz
ð2Þ

t Þ Z q2 lnðzð2Þ
t Kzð1Þ
t0 Þ (38)

with the substitution of Eqs. (18), (37), and (38) into

Eqs. (35) and (36), the continuity condition (34)1,2 provides

q1 Z
kð1Þ Kkð2Þ

kð2Þ Ckð1Þ
�q0; q2 Z

2kð1Þ

kð1Þ Ckð2Þ
q0 (39)

Therefore the function g for the present bimaterial

problem can be written in the form

g1ðz
ð1Þ

t Þ Z q0 f̂ ðzð1Þ
t ; zð1Þ
t0 ÞCq1 f̂ ðzð1Þ
t ; �zð1Þ
t0 Þ (40)

g2ðz
ð2Þ

t Þ Z q2 f̂ ðzð2Þ
t ; zð1Þ
t0 Þ (41)
3.2.2. Green’s function for magnetoelectroelastic field

in bimaterial solids

To use the condition (34)3,4 we first consider the

particular solution due to the thermal field. Using

Eqs. (40) and (41), the particular solution for the

magnetoelectroelastic field can be written as

Uð1Þ
p ðzð1Þ
t Þ Z 2 Re½q0cð1Þ f̂ ðzð1Þ
t ; zð1Þ
t0 ÞCcð1Þq1½f̂ ðz

ð1Þ

t ; �zð1Þ
t0 Þ�;

(42)

fð1Þ
p ðzð1Þ
t Þ Z 2 Re½q0dð1Þ f̂ ðzð1Þ
t ; zð1Þ
t0 ÞCdð1Þq1 f̂ ðzð1Þ
t ; �zð1Þ
t0 Þ�

(43)

for x1!0, and

Uð2Þ
p ðzð2Þ
t Þ Z 2 Re½cð2Þq2 f̂ ðzð2Þ
t ; zð1Þ
t0 Þ�; (44)

fð2Þ
p ðzð2Þ
t Þ Z 2 Re½dð2Þq2 f̂ ðzð2Þ
t ; zð1Þ
t0 Þ� (45)

for x1O0. For the same reason as in Section 3.1.2, a

corrective solution needs to be constructed in such a way

that when it is superimposed on the particular solutions

(42)–(45) the interface condition (34) will be satisfied.

Owing to the fact that f(zk) and g(zt) have the same

rule affecting U and f in Eqs. (5) and (9), possible function

forms come from the partition of solution g(zt). This is

f1ðz
ð1Þ

k Þ Z f̂ ðzð1Þ
k ; zð1Þ
t0 Þ; f2ðz

ð1Þ

k Þ Z f̂ ðzð1Þ
k ; �zð1Þ
t0 Þ (46)

f3ðz
ð2Þ

k Þ Z f̂ ðzð2Þ
k ; zð1Þ
t0 Þ; f4ðz

ð2Þ

k Þ Z f̂ ðzð2Þ
k ; �zð1Þ
t0 Þ (47)

Thus the resulting expressions of U(i) and f(i) can be

given as

Uð1Þ Z 2 RefAð1Þ½hf1ðz
ð1Þ

a Þiq11 C hf2ðz

ð1Þ

a Þiq12�

Cq0cð1Þ f̂ ðzð1Þ
t ; zð1Þ
t0 ÞCcð1Þq1 f̂ ðzð1Þ
t ; �zð1Þ
t0 Þg (48)

fð1Þ Z 2 RefBð1Þ½hf1ðz
ð1Þ

a Þiq11 C hf2ðz

ð1Þ

a Þiq12�

Cq0dð1Þ f̂ ðzð1Þ
t ; zð1Þ
t0 ÞCdð1Þq1 f̂ ðzð1Þ
t ; �zð1Þ
t0 Þg (49)

for x1!0, and

Uð2Þ Z 2 RefAð2Þ½hf3ðz
ð2Þ

a Þiq21 C hf4ðz

ð2Þ

a Þiq22�

Ccð2Þq2 f̂ ðzð2Þ
t ; zð1Þ
t0 Þg (50)

fð2Þ Z 2 RefBð2Þhf3ðz
ð2Þ

a Þiq21 C hf4ðz

ð2Þ

a Þiq22�

Cdð2Þq2 f̂ ðzð2Þ
t ; zð1Þ
t0 Þg (51)

for x1O0. The substitution of Eqs. (48)–(51) into Eq. (34)3,4

yields

q11 Z M1½ðB
ð2ÞK1dð2Þ KAð2ÞK1cð2ÞÞq2 K ðBð2ÞK1dð1Þ

KAð2ÞK1cð1ÞÞq0� (52)
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q21 Z M2½ðB
ð1ÞK1dð1Þ KAð1ÞK1cð1ÞÞq0 K ðBð1ÞK1dð2Þ

KAð1ÞK1cð2ÞÞq2� (53)

q12 ZKM1ðB
ð2ÞK1dð1Þ KAð2ÞK1cð1ÞÞq1 (54)

q22 Z M2ðB
ð1ÞK1dð1Þ KAð1ÞK1cð1ÞÞq1 (55)

where M1Z ðBð2ÞK1Bð1ÞKAð2ÞK1Að1ÞÞK1, M2Z ðBð1ÞK1Bð2Þ

KAð1ÞK1Að2ÞÞK1. Thus, the explicit expression of the

magnetothermoelectroelastic Green’s functions for the

bimaterial solid can be obtained by substituting Eqs. (52)–

(55) into Eqs. (48)–(51).
4. Green’s function for elliptical hole or rigid inclusion

problem

4.1. Green’s function for elliptical hole problem

The hole problem to be considered here is illustrated in

Fig. 3, showing an infinite two-dimensional thermomagne-

toelectroelastic plate containing an elliptical hole (with the

limit bZ0, a crack) with semi-major axis a and semi-minor

axis b. The plate is subjected to a line heat source h* and the

thermal analog of a line temperature discontinuity T0, both

located at z0(x10,x20) (Fig. 3).

As shown in Fig. 3, the contour G of the ellipse is

described by

x1 Z a cos j; x2 Z b sin j (56)

where j is a real parameter. Letting m and n be the unit

vectors tangential and normal to the elliptical boundary,

respectively, and u be the angle directed counter-

clockwise from the positive x1-axis to the unit vector

m, we have

m Z fcos u; sin u; 0gT ; n Z fKsin u; cos u; 0gT (57)
x1

x2

n m

o

a

b

z0(x10, x20)

h

ω

ψ

Ω

Ω

Γ

Fig. 3. Geometry of an ellipse.
The normal component of SEDMI vector along the

hole boundary can then be expressed as

ðSnÞJ Z SiJni Z ðf;mÞJ (58)

If it is assumed that the hole surface is thermal

insulated and SEDMI free, the physical and boundary

conditions of the boundary-value problem can be stated

asð
C

dT Z T0 for any closed curve C enclosing the point z0

(59)ð
C

dw ZKh
 for any closed curve C enclosing the point z0

(60)

w Z f Z 0 along the hole boundary (61)

hi/0; SiJ /0 at infinity (62)
4.1.1. Conformal mapping

Since conformal mapping is a fundamental tool used to

find the solution of hole problems, the transformation

zt Za1tzt Ca2tzK1
t ; a1t Z ðaKitbÞ=2; a2t Z ðaCitbÞ=2

(63)

zk Za1kzk Ca2kzK1
k ; a1k ZðaKipkbÞ=2; a2k ZðaCipkbÞ=2

(64)

will be used to map the region, U, occupied by the

magnetoelectroelastic material onto the outside of a unit

circle in the z-plane, described by zajGZs. It is noted that

za on the unit circle is expressed by

zajG Zeij Zcos jCi sin j ðaZ t;1K5Þ (65)
4.1.2. Green’s function for thermal field in hole problem

A suitable function satisfying the boundary conditions

(59), (60), and (62)1, can be given in the form

g0ðztÞ Z q0 lnðzt Kzt0ÞCq1 lnðzK1
t K �zt0Þ (66)

where q0 is defined in Eq. (21). Noting that �zt Z �sZsK1, we

have

Im½q0 lnðs Kzt0Þ� ZKIm½ �q0 lnðsK1 K �zt0Þ� (67)

The substitution of Eq. (67) into Eq. (66), and then into

Eq. (61)1, yields

q1 Z �q0 (68)

The function g(zt) is thus obtained by integrating Eq. (66)

with respect to zt, i.e.

gðztÞ Z
Ð

g0ðztÞd zt Z
Ð

g0ðztÞða1t Ka2tzK2
t Þd zt (69)
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which yields

gðztÞZq0fa1tðztKzt0Þ½lnðztKzt0ÞK1�Ka2t½lnðzt

Kzt0ÞKlnzt�=zt0Ca2tzK1
t lnðztKzt0Þg

Cq1fa1tzt lnðz
K1
t K �zt0ÞKa1t½lnðz

K1
t

K �zt0ÞClnzt�=�zt0Ca2tðz
K1
t K �zt0Þ½lnðz

K1
t K �zt0ÞK1�g

(70)
4.1.3. Green’s function for magnetoelectroelastic field

in hole problem

As before, the particular solution is in the same form as

that of Eq. (28) except for the function g being obtained

from Eq. (70). Based on the Eq. (70), the corrective

isothermal solution can be taken in the form

f1ðzkÞ Z a½q0F1ðzkÞCq0F2ðzkÞC �q0F3ðzkÞC �q0F4ðzkÞ�=2

f2ðzkÞ Z ipkb½Kq0F1ðzkÞCq0F2ðzkÞK �q0F3ðzkÞ

C�q0F4ðzkÞ�=2

ð71Þ

where the subscripts 1 and 2 are the indices for the different

possible functions, and

F1ðzkÞ Z ðzk Kzt0Þ½lnðzk Kzt0ÞK1�;

F2ðzkÞ Z ðzK1
k Kz

K1
t0 Þlnðzk Kzt0ÞCz

K1
t0 ln zk;

F3ðzkÞ Z ðzK1
k K �zt0Þ½lnðz

K1
k K �zt0ÞK1�;

F4ðzkÞ Z ðzk K �z
K1
t0 ÞlnðzK1

k K �z


t ÞK �z

K1
t0 ln zk

(72)

The Green’s functions for the magnetoelectroelastic

fields can thus be chosen as

U Z 2 Re
X2

kZ1

AfkðzÞqk CcgðztÞ

" #
(73)

f Z 2 Re
X2

kZ1

BfkðzÞqk CdgðztÞ

" #
(74)

The condition (61)2 provides

q1 ZKBK1d; q2 ZKtPK1BK1d (75)

Substituting Eq. (75) into Eqs. (73) and (74), the Green’s

functions can then be rewritten as

U Z 2 RefKA½f1ðzÞC f2ðzÞP
K1t�BK1d CcgðztÞg (76)

f Z 2 RefKB½f1ðzÞC f2ðzÞP
K1t�BK1d CdgðztÞg (77)

In the case of the elliptical hole being filled with a rigid

conductor, which implies that the elliptical hole is not

deformed and the electrical potential as well as the magnetic

potential is constant (Z0 in this study) on the hole surface,

we have

UjG Z 0 (78)
The unknown constants in Eq. (73) are then given by

q1 ZKAK1c; q2 ZKtPK1AK1c (79)

when the minor semi-axis b of the ellipse approaches zero,

the hole reduces to a flat crack of length 2a. The Green’s

functions (76) and (77) in this case are reduced to

U Z 2 RefKAf1ðzÞB
K1d CcgðztÞg (80)

f Z 2 RefKBf1ðzÞB
K1d CdgðztÞg (81)
4.1.4. Green’s function for permeable hole problem

In this subsection, the hole is assumed to be filled with a

homogeneous gas (air or vacuum) of permittivity (kh) and

permeability (mh), where superscript ‘h’ refers to the

quantities associated with the hole [27,44]. Therefore,

induced electric and magnetic fields exist in the hole,

denoted by Uh, and can be governed by the equations:

V2fh Z 0; V2jh Z 0 in Uh (82)

with the constitutive relations

Dh
i ZkhEh

i ZKkhfh
;i; Bh

i ZkhHh
i ZKmhjh

;i i Z1;2 in Uh

(83)

The general solution to Eqs. (82) and (83) are thus given by

fh Z2 Re½f h
1 ðzÞ�; jh Z2 Re½f h

2 ðzÞ�; z Zx1 Cix2 (84)

Defining the potential, electric displacement and magnet

induction function

Uh Z
fh

jh

8<
:

9=
;Z2 Re

f h
1 ðzÞ

f h
2 ðzÞ

8<
:

9=
;;

fh Z2 Re
bh

1 0

0 bh
2

2
4

3
5 f h

1 ðzÞ

f h
2 ðzÞ

8<
:

9=
;

8<
:

9=
;

(85)

where bh
1ZKikh, bh

2ZKimh, we have

Sh
1 Z fDh

1;B
h
1g

T ZKfh
;2; Sh

2 Z fDh
2;B

h
2g

T Zfh
;1 (86)

Using the above expression, the magnetoelectroelastic

boundary conditions along the surface of the hole can be

written as [44]

gT U ZUh; f Zgfh on G (87)

Sij/0 at infinity (88)

where

g Z
0 0 0 1 0

0 0 0 0 1

" #T

(89)

As in [48], the single-valued mapping of the hole region,

Uh, can be written

z Z
aCb

2
zC

aKb

2
z

K1 (90)
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The roots of dz/dzZ0 are z1;2ZG½ð1KeÞ=ð1CeÞ�1=2,

where eZb/a. Thus, the mapping of the region Uh can

be performed by excluding a straight line G0 of length 2a(1K
e2)1/2 along the x1-axis from the ellipse. In this case, the

mapping function (90) will transform G and G0 into the ring of

outer and inner circles with radii routZ1

and rinZ½ð1KeÞ=ð1CeÞ�1=2, respectively.

To satisfy the conditions (87), the solutions U and f can

be taken in the form given in Eqs. (73) and (74), and Uh

and fh are assumed as

Uh Z 2 Re
X2

kZ1

½fh
kðzÞqhk� (91)

fh Z 2 Re
X2

kZ1

½Bhfh
kðzÞqhk� (92)

where

Bh Z
Kikh 0

0 Kimh

" #
(93)

f h
1 ðzÞ Z a½q0F1ðzÞCq0F2ðzÞC �q0F3ðzÞC �q0F4ðzÞ�=2

f h
2 ðzÞ Z itb½Kq0F1ðzÞCq0F2ðzÞK �q0F3ðzÞC �q0F4ðzÞ�=2

(94)

The condition (87) provides

2 Re½gT ðAq1 CcÞ� Z 2 Re½qh1�;

2 Re½Bq1 Cd� Z 2 Re½gBhqh1�
(95)

2 Re½gT ðAPq2 CctÞ� Z 2 Re½qh2t�;

2 Re½BPq2 Cdt� Z 2 Re½gBhqh2t�
(96)

Solving Eqs. (95) and (96) yields

q1 Z WV ; qh1 Z gT ½AWV Cc� (97)

q2 Z tPK1WV; qh2 Z qh1 (98)

where

W Z B KgBhgT A; V Z gBhgT c Kd (99)

A crack of length 2a can be formed by letting the minor

axis b of the ellipse approach zero. The solutions for a crack

in an infinite magnetoelectroelastic plate can then be

obtained from the formulation above by setting bZ0. In

this case, Eqs. (63), (64), and (90) are reduced to

zt Z
a

2
ðzt CzK1

t Þ; a1t Z a2t Z
a

2
(100)

zk Z
a

2
ðzk Ca2kzK1

k Þ; a1k Z a2k Z
a

2
(101)

z Z
a

2
z CzK1
� �

(102)
Substituting the expressions (100)–(102) into Eqs.

(69)–(77), the corresponding solution for a permeable

crack can be obtained. We omit those details here since it

is tedious and algebraic. Similar results for a permeable

crack has been discussed elsewhere [2].
5. Conclusion

The problem of various defects embedded in an infinite

magnetoelectroelastic solid subjected to thermal loading has

been addressed within the framework of in-plane magne-

toelectroelastic interactions. A family of closed-form

thermomagnetoelectroelastic Green’s functions for

problems of defects in a magnetoelectroelastic solid has

been derived through the use of Stroh’s formalism and

conforming mapping. The defects may be of an elliptic hole

or a Griffith crack, half-plane boundary, bimaterial inter-

face, or rigid inclusion. These Green’s functions satisfy the

related boundary or interface conditions. In the case of hole

problem, both permeable and impermeable boundaries are

considered. The Griffith crack of finite length 2a can be

generated by setting the minor semi-axis b at zero. Thus

their Green’s functions can be obtained from the related

solutions of the elliptical hole problem. The Green’s

functions obtained can be used to establish boundary

element formulation and to analyze fracture behavior due

to the defects mentioned above.
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