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Trefftz Finite Element Method and
Its Applications
This paper presents an overview of the Trefftz finite element and its application in various
engineering problems. Basic concepts of the Trefftz method are discussed, such as
T-complete functions, special purpose elements, modified variational functionals, rank
conditions, intraelement fields, and frame fields. The hybrid-Trefftz finite element formu-
lation and numerical solutions of potential flow problems, plane elasticity, linear thin and
thick plate bending, transient heat conduction, and geometrically nonlinear plate bending
are described. Formulations for all cases are derived by means of a modified variational
functional and T-complete solutions. In the case of geometrically nonlinear plate bend-
ing, exact solutions of the Lamé-Navier equations are used for the in-plane intraelement
displacement field, and an incremental form of the basic equations is adopted. Genera-
tion of elemental stiffness equations from the modified variational principle is also dis-
cussed. Some typical numerical results are presented to show the application of the finite
element approach. Finally, a brief summary of the approach is provided and future trends
in this field are identified. There are 151 references cited in this revised article.
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1 Introduction
During past decades the hybrid-Trefftz �HT� finite element �FE�

model, originating about 27 years ago �1,2�, has been considerably
improved and has now become a highly efficient computational
tool for the solution of complex boundary value problems. In
contrast to conventional FE models, the class of finite elements
associated with the Trefftz method is based on a hybrid method
that includes the use of an auxiliary interelement displacement or
traction frame to link the internal displacement fields of the ele-
ments. Such internal fields, chosen so as to a priori satisfy the
governing differential equations, have conveniently been repre-
sented as the sum of a particular integral of nonhomogeneous
equations and a suitably truncated T-complete set of regular ho-
mogeneous solutions multiplied by undetermined coefficients. The
mathematical fundamentals of the T-complete set have been laid
out mainly by Herrera and co-workers �3–6� who named this sys-
tem a C-complete system. Following a suggestion by Zienkiewicz,
he changed this to the T-complete �Trefftz-complete� system of
solutions, in honor of the originator of such nonsingular solutions.
As such, the terminology “TH-families” is usually used when re-
ferring to systems of functions that satisfy the criterion originated
by Herrera �4�. Interelement continuity is enforced by using a
modified variational principle together with an independent frame
field defined on each element boundary. The element formulation,
during which the internal parameters are eliminated at the element
level, leads to the standard force-displacement relationship, with a
symmetric positive definite stiffness matrix. Clearly, although the
conventional FE formulation may be assimilated to a particular
form of the Rayleigh-Ritz method, the HT FE approach has a
close relationship with the Trefftz method �7�. As noted in �8,9�,
the main advantages stemming from the HT FE model are �i� the
formulation calls for integration along the element boundaries
only, which enables arbitrary polygonal or even curve-sided ele-
ments to be generated. As a result, it may be considered as a
special, symmetric, substructure-oriented boundary solution ap-
proach and, thus, possesses the advantages of the boundary ele-
ment method �BEM�. In contrast to conventional boundary ele-
ment formulation, however, the HT FE model avoids the
introduction of singular integral equations and does not require
the construction of a fundamental solution, which may be very
Transmitted by Associate Editor S. Adali.
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laborious to build; �ii� the HT FE model is likely to represent the
optimal expansion bases for hybrid-type elements where interele-
ment continuity need not be satisfied, a priori, which is particu-
larly important for generating a quasi-conforming plate-bending
element; �iii� the model offers the attractive possibility of devel-
oping accurate crack-tip, singular corner, or perforated elements,
simply by using appropriate known local solution functions as the
trial functions of intraelement displacements.

The first attempt to generate a general purpose HT FE formu-
lation occurred in the study by Jirousek and Leon �2� of the effect
of mesh distortion on thin-plate elements. It was immediately
noted that T-complete functions represented an optimal expansion
basis for hybrid-type elements where interelement continuity need
not be satisfied a priori. Since then, the Trefftz-element concept
has become increasingly popular, attracting a growing number of
researchers into this field �10–23�. Trefftz-elements have been
successfully applied to problems of elasticity �24–28�, Kirchhoff
plates �8,22,29–31�, moderately thick Reissner-Mindlin plates
�32–36�, thick plates �37–39�, general three-dimensional �3D�
solid mechanics �20,40�, axisymmetric solid mechanics �41�, po-
tential problems �42,43�, shells �44�, elastodynamic problems
�16,45–47�, transient heat conduction analysis �48�, geometrically
nonlinear plates �49–52�, materially nonlinear elasticity �53–55�,
and piezoelectric materials �56,57�. Furthermore, the concept of
special purpose functions has been found to be of great efficiency
in dealing with various geometry or load-dependent singularities
and local effects �e.g., obtuse or reentrant corners, cracks, circular
or elliptic holes, concentrated or patch loads, see �24,25,27,30,58�
for details�. In addition, the idea of developing p versions of Tr-
efftz elements, similar to those used in the conventional FE
model, was presented in 1982 �24� and has already been shown to
be particularly advantageous from the point of view of both com-
putation and facilities for use �13,59�. Huang and Li �60� pre-
sented an Adini’s element coupled with the Trefftz method, which
is suitable for modeling singular problems. The first monograph to
describe, in detail, the HT FE approach and its applications in
solid mechanics was published recently �61�. Moreover, a wealthy
source of information pertaining to the HT FE approach exists in
a number of general or special review type of articles, such as
those of Herrera �12,62�, Jirousek �63�, Jirousek and Wroblewski
�9,64�, Jirousek and Zielinski �65�, Kita and Kamiya �66�, Qin
�67,68�, and Zienkiewicz �69�.
Another related approach, called the indirect Trefftz approach,
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deals with any linear system regardless of whether it is symmetric
or nonsymmetric �62�. The method is based on local solutions of
the adjoint differential equations and provides information about
the sought solution at internal boundaries. Many developments
and applications of the method have been made during the past
decades. For example, some theoretical results for symmetric sys-
tems can be found in �3,4,6,70,71�. Numerical applications were
reported in �72,73�. Based on this approach a localized adjoint
method was precented in �5,74�. More Recently, Herrera and his
coworkers developed the advanced theory of domain decomposi-
tion methods �75–79� and produced corresponding numerical re-
sults �80,81�.

Variational functionals are essential and play a central role in
the formulation of the fundamental governing equations in the
Trefftz FE method. They are the heart of many numerical meth-
ods, such as boundary element methods, finite volume methods,
and Trefftz FE methods �61�. During past decades, much work has
been done concerning variational formulations for Trefftz numeri-
cal methods �27,61,82–85�. Herrera �82� presented a variational
formulation that is for problems with or without discontinuities
using Trefftz method. Piltner �27� presented two different varia-
tional formulations to treat special elements with holes or cracks.
The formulations consist of a conventional potential energy and a
least-squares functional. The least-squares functional was not
added as a penalty function to the potential functional, but is
minimized separately for the special elements considered. Jir-
ousek �84� developed a variational functional in which either the
displacement conformity or the reciprocity of the conjugate trac-
tions is enforced at the element interfaces. Jirousek and Zielinski
�85� obtained two complementary hybrid Trefftz formulations
based on the weighted residual method. The dual formulations
enforced the reciprocity of boundary traction more strongly than
the conformity of the displacement fields. Qin �61� presented a
modified variational principle based hybrid-Trefftz displacement
frame.

Applying T-complete solution functions, Zielinski and Zienk-
iewicz �43� presented a solution technique in which the boundary
solutions over subdomains are linked by least-squares procedures
without an auxiliary frame. Cheung et al. �86,87� developed a set
of indirect and direct formulations using T-complete systems of
Trefftz functions for Poisson and Helmholtz equations. Jirousek
and Stojek �42� and Jirousek and Wroblewski �88� studied an
alternative method, called “frameless” T-element approach, based
on the application of a suitably truncated T-complete set of Trefftz
functions, over individual subdomains linked by means of a least-
squares procedure, and applied it to Poisson’s equation. Stojek
�89� extended their work to the case of the Helmholtz equation. In
addition, the work should be mentioned here of Cialkowski �90�,
Desmet et al. �91�, Hsiao et al. �92�, Ihlenburg and Babuska �93�,
Kita et al. �94�, Kolodziej and Mendes �95�, Kolodziej and Uscil-
owska �96�, Stojek et al. �97�, and Zielinski �98�, in connection
with potential flow problems.

The first application of the HT FE approach to plane elastic
problems appears to be that of Jirousek and Teodorescu �24�. That
paper deals with two alternative variational formulations of HT
plane elasticity elements, depending on whether the auxiliary
frame function displacement field is assumed along the whole
element boundary or confined only to the interelement portion.
Subsequently, various versions of HT elasticity elements have
been presented by Freitas and Bussamra �99�, Freitas and Cisma-
siu �100�, Hsiao et al. �101�, Jin et al. �102�, Qin �103�, Jirousek
and Venkatesh �25�, Kompis et al. �104,105�, Piltner �27,40�,
Sladek and Sladek �106�, and Sladek et al. �107�. Most of the
developments in this field are described in a recent review paper
by Jirousek and Wroblewski �9�.

Extensions of the Trefftz method to plate bending have been the
subject of fruitful scientific preoccupation of many a distinguished
researcher �e.g., �22,29,31,58,108,109��. Jirousek and Leon �2�

pioneered the application of T-elements to plate bending prob-
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lems. Since then, various plate elements based on the hybrid-
Trefftz approach have been presented, such as h and p elements
�29�, nine-degree-of-freedom �DOF� triangular elements �30� and
an improved version �110�, and a family of 12-DOF quadrilateral
elements �33�. Extensions of this procedure have been reported for
thin plate on an elastic foundation �22�, for transient plate-bending
analysis �47�, and for postbuckling analysis of thin plates �49�.
Alternatively, Jin et al. �108� developed a set of formulations,
called Trefftz direct and indirect methods, for plate-bending prob-
lems based on the weighted residual method.

Based on the Trefftz method, a hierarchic family of triangular
and quadrilateral T-elements for analyzing moderately thick
Reissner-Mindlin plates was presented by Jirousek et al. �33,34�
and Petrolito �37,38�. In these HT formulations, the displacement
and rotation components of the auxiliary frame field ũ

= �w̃ , �̃x , �̃y�T, used to enforce conformity on the internal Trefftz
field u= �w ,�x ,�y�T, are independently interpolated along the el-
ement boundary in terms of nodal values. Jirousek et al. �33�
showed that the performance of the HT thick plate elements could
be considerably improved by the application of a linked interpo-
lation whereby the boundary interpolation of the displacement w̃
is linked through a suitable constraint with that of the tangential
rotation component.

Applications of the Trefftz FE method to other fields can be
found in the work of Brink et al. �111�, Chang et al. �112�, Freitas
�113�, Gyimesi et al. �114�, He �115�, Herrera et al. �79�, Jirousek
and Venkatesh �116�, Karaś and Zieliński �117�, Kompis and
Jakubovicova �118�, Olegovich �119�, Onuki et al. �120�, Qin
�56,57�, Reutskiy �121�, Szybiński et al. �122�, Wroblewski et al.
�41�, Zieliński and Herrera �123�, and Zieliński et al. �124�.

Following this introduction, the present review consists of 11
sections. Basic concepts and general element formulations of the
method, which include basic descriptions of a physical problem,
two groups of independently assumed displacement fields, Trefftz
functions, and modified variational functions, are described in
Sec. 2. Section 3 focuses on the essentials of Trefftz elements for
linear potential problems based on Trefftz functions and the modi-
fied variational principle appearing in Sec. 2. It describes, in de-
tail, the method of deriving Trefftz functions, element stiffness
equations, the concept of rank condition, and special-purpose
functions accounting for local effects. The applications of Trefftz
elements to linear elastic problems, thin-plate bending, thick plate,
and transient heat conduction are described in Sec. 4–7. Exten-
sions of the process to geometrically nonlinear problems of plates
is considered in Sec. 8 and 9. A variety of numerical examples are
presented in Sec. 10 to illustrate the applications of the Trefftz FE
method. Finally, a brief summary of the developments of the
Treffz FE approach is provided, and areas that need further re-
search are identified.

2 Basic Formulations for Trefftz FE Approach
In this section, some important preliminary concepts, emphasiz-

ing Trefftz functions, modified variational principles, and elemen-
tal stiffness matrix, are reviewed. The following descriptions are
based on the work of Jirousek and Wroblewski �9�, Jirousek and
Zielinski �65�, and Qin �61�. In the following, a right-hand Carte-
sian coordinate system is adopted, the position of a point is de-
noted by x �or xi�, and both conventional indicial notation �xi� and
traditional Cartesian notation �x ,y ,z� are utilized. In the case of
indicial notation we invoke the summation convention over re-
peated indices. Vectors, tensors, and their matrix representations
are denoted by boldface letters.

2.1 Basic Relationships in Engineering Problems. Most of
the physical problems in various branches of engineering are
boundary value problems. Any numerical solution to these prob-
lems must satisfy the basic equations of equilibrium, boundary
conditions, and so on. For a practical problem, physical behavior

is governed by the following field equations:
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L� + b̄ = 0 �partial differential equation� �1�

� = D� �constitutive law� �2�

� = LTu �generalized geometrical relationship� �3�

with the boundary conditions

u = ū �on �u, essential boundary condition� �4�

t = A� = t̄ �on �t, natural boundary condition� �5�

where the matrix notation u, �, �, and b̄ are vectors of general-
ized displacements, strains, stresses, and body forces; L, D, and A
stand for differential operator matrix, constitutive coefficient ma-
trix, and transformation matrix, respectively, including the com-
ponents of the external normal unit vector of the boundary. In the
Trefftz FE form, Eqs. �1�–�5� should be completed by adding the
following interelement continuity requirements:

ue = u f �on �e � � f, conformity� �6�

te + t f = 0 �on �e � � f, traction reciprocity� �7�

where e and f stand for any two neighboring elements. With suit-
ably defined matrices L, D, and A, one can describe a particular
physical problem through the general relationships �1�–�7�. The
first step in a FE analysis is, therefore, to decide what kind of
problem is at hand. This decision is based on the assumptions
used in the theory of physical and mathematical approaches to the
solution of specific problems. Some typical problems encountered
may involve: �i� beam, �ii� heat conduction, �iii� electrostatics, �iv�
plane stress, �v� plane strain, �vi� plate bending, �viii� moderately
thick plate, and �ix� general three-dimensional elasticity. As an
illustration, let us consider plane stress problem. For this special
problem, we have

u = �u v�T, b̄ = �b̄x b̄y�T, � = ��xx �yy 2�xy�T,

� = ��xx �yy �xy�T

v = �u v�T, L = ��/�x 0 �/�y

0 �/�y �/�x
�

D =
E

1 − �2	
1 � 0

� 1 0

0 0
1 − �

2

, A = �nx 0 ny

0 ny nx
�,

t = A� = �t1,t2�T �8�

where u, v, and b̄i are, respectively, displacements in the x and y
directions and body forces; �ij and �ij are strains and stresses,
respectively; E and � are Young’s modulus and Poisson’s ratio; ni
are components of the external normal unit vector; and ti are com-
ponents of surface traction.

2.2 Assumed Fields. The main idea of the HT FE model is to
establish a finite element formulation whereby interelement con-
tinuity is enforced on a nonconforming internal field chosen so as
to a priori satisfy the governing differential equation of the prob-
lem under consideration �61�. In other words, as an obvious alter-
native to the Rayleigh-Ritz method as a basis for a FE formula-
tion, the model here is based on the method of Trefftz �7�, for
which Herrera �75� gave a general definition as: Given a region of
an Euclidean space of some partitions of that region, a “Trefftz
Method” is any procedure for solving boundary value problems of
partial differential equations or systems of such equations, on
such region, using solutions of that differential equations or its

adjoint, defined in its subregions. With this method the solution
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domain � is subdivided into elements, and over each element e,
the assumed intraelement fields are

u = ŭ + �
i=1

m

Nici = ŭ + Nc �9�

where ŭ and Ni are known functions and ci is a coefficient vector.
If the governing differential equations are written as

Ru�x� = b̄�x�, �x � �e� �10�

where R stands for the differential operator matrix, x for the
position vector, the overhead bar indicates the imposed quantities,
and �e stands for the eth element subdomain, then ŭ= ŭ�x� and
Ni=Ni�x� in Eq. �9� have to be chosen such that

Rŭ = b̄ and RNi = 0, �i = 1,2, ¯ ,m� �11�

everywhere in �e. The unknown coefficient c may be calculated
from the conditions on the external boundary and/or the continuity
conditions on the interelement boundary. Thus various Trefftz-
element models can be obtained by using different approaches to
enforce these conditions. In the majority of approaches, a hybrid
technique is usually used whereby the elements are linked through
an auxiliary conforming displacement frame, which has the same
form as in conventional FE method. This means that, in the Trefftz
FE approach, a conforming potential �or displacement in solid
mechanics� field should be independently defined on the element
boundary to enforce the potential continuity between elements and
also to link the coefficient c, appearing in Eq. �9�, with nodal
displacement d�=�d��. The frame is defined as

ũ�x� = Ñ�x�d, �x � �e� �12�

where the symbol “�” is used to specify that the field is defined
on the element boundary only, d=d�c� stands for the vector of the
nodal displacements, which are the final unknowns of the prob-

lem, �e represents the boundary of element e, and Ñ is a matrix of
the corresponding shape functions, typical examples of which are
displayed in Fig. 1.

2.3 T-Complete Functions. T-complete functions, also called
Trefftz functions, are very important in deriving Trefftz element
formulation. For this reason it is necessary to know how to con-
struct them and what is the suitable criterion for completeness.
The proof of completeness, as well as its general procedures, can
be found in the work of Colton �125�, Henrici �126�, and Herrera
�127�. For illustration, let us consider the Laplace equation

�2u = 0 �13�

where �2=�2 /�x2+�2 /�y2 is the two-dimensional Laplace opera-
tor. Its T-complete solutions are a series of functions satisfying Eq.

Fig. 1 Configuration of the T-element model
�13� and being complete in the sense of containing all possible
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solutions in a given solution domain. It can be shown that any of
the following functions satisfies Eq. �13�:

1,r cos �, r sin �, ¯ , rm cos m�, rm sin m�,¯ �14�

where r and � are a pair of polar coordinates. As a consequence,
the so-called T-complete set, denoted by T, can be written as

T = �1,rm cos m�,rm sin m�� = �Ti� �15�

2.4 Variational Principles. The Trefftz FE equation for the
boundary value problem �1�–�7� can be established by the varia-
tional approach �61�. Since the stationary conditions of the tradi-
tional potential and complementary variational functional may not
satisfy the interelement continuity condition, which is required in
Trefftz FE analysis, several variants of modified variational func-
tionals have been used in the literature to establish Trefftz FE
equation. We list here three of them that have been widely used in
numerical analysis as below.

1. The two variational principles below were due to Herrera
�75,82� and Herrera et al. �83� and are applicable to any boundary
value problems. The first one is in terms of the “prescribed data”


�

wRudx −
�

��u,w�dx −
�

T�u,w�dx =
�

fwdx −
�

gwdx

−
�

jwdx ∀ w � D �16�

while the second one is in terms of the “sought information”


�

uR*wdx −
�

C*�u,w�dx −
�

K*�u,w�dx =
�

fwdx

−
�

gwdx −
�

jwdx ∀ w � D �17�

where R* is a formal adjoint of R in an abstract sense defined in
�82�, ��u ,w� and C*�u ,w� are boundary operators, while T�u ,w�
and K*�u,w� are, respectively, the jump and average operators, �
stands for the internal boundary, f is body force, g is generalized
boundary force, and j is the force related to discontinuities �see
�75,82� for a more detailed explanation on these symbols�. The
variational principles �16� and �17� were called “direct” and “in-
direct” variational formulations of the original boundary value
problem, respectively.

2. An alternative variational functional for hybrid-Trefftz
displacement-type formulation is given by �30�

J�u, ṽ� = �
e
�−

1

2
�e

ue
Tb̄d� −

1

2
�e

te
Tveds +

�e*

te
Tṽeds

−
�e	

t̄e
Tṽeds� = stationary �18�

The boundary �e of the element e consists of the following parts:

�e = �eS + �eu + �e	 + �Ie = �eS + �e* �19�

in which �eS is the portion of �e on which the prescribed bound-
ary conditions are satisfied a priori �this is the case when the
special purpose trial functions are used in the element�, �eu and
�e	 are portions of the remaining part, �e−�eS, of the element
boundary on which either displacement �v= v̄� or traction �t= t̄� is
prescribed, while �Ie is the interelement portion of �e.

3. The following modified variational functional will be used

throughout this paper �61�:
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m = �
e


me = �
e
�
e +

�te

�t̄ − t�ũds −
�Ie

tũds� �20�

�m = �
e

�me = �
e
��e +

�ue

�ū − ũ�tds −
�Ie

tũds�
�21�

where


e = 
�e


���d� −
�ue

tūds �22�

�e = 
�e

����� − b̄u�d� −
�te

t̄ũds �23�

with


��� = 1
2�TC�, ���� = 1

2�TD� �24�

in which C=D−1 and Eq. �1� are assumed to be satisfied a priori.
The term “modified principle” refers here to the use of a conven-
tional functional and some modified terms for the construction of
a special variational principle to account for additional require-
ments, such as the condition defined in Eqs. �6� and �7�.

The boundary �e of a particular element consists of the follow-
ing parts:

�e = �ue � �te � �Ie �25�

where

�ue = �u � �e, �te = �t � �e, �26�

and �Ie is the interelement boundary of the element e. The sta-
tionary condition of the functional �20� or �21� and the theorem on
the existence of extremum of the functional, which ensures that an
approximate solution can converge to the exact one, was dis-
cussed by Qin �61�.

2.5 Generation of Element Stiffness Matrix. The element
matrix equation can be generated by setting �
me=0 or ��me
=0. By reason of the solution properties of the intraelement trial
functions, the functional 
me in Eq. �20� can be simplified to


me =
1

2
�e

ub̄d� +
1

2
�e

tuds +
�te

�t̄ − t�ũds −
�Ie

tũds

−
�ue

tūds �27�

Substituting the expressions given in Eqs. �9� and �12� into �20�
and using Eqs. �2�, �3�, and �5� produces


me = − 1
2cTHc + cTSd + cTr1 + dTr2 + terms without c or d

�28�

in which the matrices H ,S and the vectors r1 ,r2 are all known
�61�.

To enforce interelement continuity on the common element
boundary, the unknown vector c should be expressed in terms of
nodal degrees of freedom d. An optional relationship between c
and d in the sense of variation can be obtained from

�
me

�cT = − Hc + Sd + r1 = 0 �29�
This leads to

SEPTEMBER 2005, Vol. 58 / 319



¯

c = Gd + g �30�

where G=H−1S and g=H−1r1, and then straightforwardly yields
the expression of 
me only in terms of d and other known matri-
ces


me = 1
2dTGTHGd + dT�GTHg + r2� + terms without d �31�

Therefore, the element stiffness matrix equation can be ob-
tained by taking the vanishing variation of the functional 
me as

�
me

�dT = 0 ⇒ Kd = P �32�

where K=GTHG and P=−GTHg−r2 are, respectively, the ele-
ment stiffness matrix and the equivalent nodal flow vector. The
expression �32� is the elemental stiffness matrix equation for Tr-
efftz FE analysis.

3 Potential Problems
This section is concerned with the application of the HT FE to

the solution of steady potential flow problems. By steady potential
problems we mean those governed by the Laplace, Poisson, or
Helmholtz equations. The method presented is based on a modi-
fied variational principle and the T-complete functions discussed
in Sec. 2.

3.1 Basic Equations and Assumed Fields. Consider that we

are seeking to find the solution of a Poisson �or Laplace for b̄
=0 below� equation in a domain �

�2u = b̄ �in �� �33�

with b̄ a known function and with boundary conditions

u = ū �on �u� �34�

qn =
�u

�n
= q̄n �on �q� �35�

where n is the normal to the boundary, �=�u+�q and the dashes
indicate that those variables are known.

By way of the method of variable separation, the complete
solutions in a bounded region are obtained as �43�

u�r,�� = �
m=0



rm�am cos m� + bm sin m�� �36�

for two-dimensional problems and

u�r,�� = �
m=0



amrmPm
q �cos ��eiq� �37�

for three-dimensional problems, where Pm
q �cos �� is the associated

Legendre function, −m�q�m, and the spherical coordinates
�r ,� ,�� are used in Eq. �37�. The complete solutions in an un-
bounded region can be similarly obtained �61�. Thus, the associ-
ated T-complete sets of Eqs. �36� and �37� can be expressed in the
form

T = �1,rm cos m�,rm sin m�� = �Ti� �38�

T = �rmPm
q �cos ��eiq�� = �Ti� �39�

The internal trial function Nj �j=1,2…m� in Eq. �9� are in this
case obtained by a suitably truncated T-complete solution �38� or
�39�. For example,

N1 = r cos �, N2 = r sin �, N3 = r2 cos 2�,… , �40�

for a two-dimensional problem with a bounded domain. Note that

the function N1=1 is not used here, as it represents rigid body
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motion and yields zero element stiffness �this is discussed, in de-
tail, in Sec. 3.7�. The particular solution ŭ for any right-hand side

b can be obtained by integration of the source �or Green’s� func-
tion �61�

u*�rPQ� =
1

2�
ln� 1

rPQ
� �41�

where P designates the field point under consideration, Q stands
for the source point, and

rPQ = ��xQ − xP�2 + �yQ − yP�2 �42�

The Green’s function u*�rPQ� is the solution for the Laplace
equation in an infinite domain and with a unit potential applied at
a given point Q, i.e.,

�2u* = ��P,Q� �43�

where ��P ,Q� is a Dirac � function representing a unit concen-
trated potential acting at a point Q. As a consequence, the particu-
lar solution ŭ in Eq. �9� can be expressed as

ŭ�P� =
1

2�


�e

b̄�Q�ln� 1

rPQ
�d��Q� �44�

The corresponding outward normal derivative of u �“traction”�
on �e of element e is

t = qn =
�u

�n
= q̆n + �

j=1

m

Tjcj = q̆n + Qc �45�

3.2 Modified Variational Principle and Element Matrix
Equation. The HT FE for potential problems can be established
by means of a modified variational functional �which is slightly
different from that of Chap. 2 in �61��


me = −
1

2
�

b̄ud � +
1

2
�e

qnuds −
�eu

qnūds

+
�eq

�q̄n − qn�ũds −
�Ie

qnũds �46�

where �e=�eu+�eq+�Ie, with �eu=�e��u, �eq=�e��q, and �Ie
is the interelement boundary of element e. Substituting the expres-
sions given in Eqs. �9�, �12�, and �45� into �46� yields Eq. �28�.
The matrices H ,S and the vectors r1 ,r2 appeared in Eq. �28� are
now defined by

H = −
�e

QTNds �47�

S = −
�Ie

QTÑds −
�eq

QTÑds �48�

r1 = −
1

2
�e

NTb̄d� +
1

2
�e

�q̆neN
T + QTŭe�ds −

�eu

QTūds

�49�

r2 = −
�Ie

ÑTq̆neds +
�eq

ÑT�q̄n − q̆ne�ds �50�

The element stiffness matrix equation is the same as Eq. �32�.

3.3 Special Purpose Functions. Singularities induced by lo-
cal defects, such as angular corners, cracks, etc., can be accurately

accounted for in the conventional FE model by way of appropriate
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local refinement of the element mesh. However, an important fea-
ture of the Trefftz FE method is that such problems can be far
more efficiently handled by the use of special purpose functions
�30�. Elements containing local defects �see Fig. 2� are treated by
simply replacing the standard regular functions N in Eq. �9� by
appropriate special-purpose functions. One common characteristic
of such trial functions is that it is not only the governing differ-
ential equations, which are Poisson equations here, which are sat-
isfied exactly, but also some prescribed boundary conditions at a
particular portion �eS �see Fig. 2� of the element boundary. This
enables various singularities to be specifically taken into account
without troublesome mesh refinement. Since the whole element
formulation remains unchanged �except that now the frame func-
tion ũ in Eq. �12� is defined and the boundary integration is per-
formed at the portion �e* of the element boundary �e=�e* +�eS
only, see Fig. 2�, all that is needed to implement the elements
containing such special trial functions is to provide the element
subroutine of the standard, regular elements with a library of vari-
ous optional sets of special purpose functions.

The special purpose functions for such a singular corner has
been given �p. 56 in �61�� as

u�r,�� = a0 + �
n=1



anrn�/�0 cos�n�

�0
�� + �

n=1,3,5



dnrn�/2�0 sin� n�

2�0
��
�51�

3.4 Orthotropic Case. Consider the case of an orthotropic
body as shown in Fig. 3. The equilibrium equation in the direc-
tions of orthotropy can be written as

Fig. 2 Special element containing a singular corner
Fig. 3 Orthotropic configuration of potential problem
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k1
�2u

�y1
2 + k2

�2u

�y2
2 = 0 �52�

for the two-dimensional case, where ki is the medium property
coefficient in the direction of orthotropy i. Note that yi are the
directions of orthotropy. The simplest way of finding the
T-complete solutions of this problem is by using the transforma-
tion

zi =
yi

�ki

�53�

with which Eq. �52� can be rewritten as

�0
2u = 0 �54�

where �0
2=�2 /�z1

2+�2 /�z2
2.

Hence, we have the same forms of complete solution as in the
isotropic case. They are

u�r,�� = �
m=0



rm�am cos m� + bm sin m�� �55�

where

r = �z1
2 + z2

2�1/2 = � y1
2

k1
+

y2
2

k2
�1/2

, � = arctan� z2

z1
� = arctan��k1y2

�k2y1
�

�56�

The variational functional used to establish the element matrix
equation of this problem has the same form as that of Eq. �46�,
except that the variables q1 and q2 are replaced by qz1

and qz2
,

respectively, i.e.,

q1 ⇒ qz1
=

�u

�z1
and q2 ⇒ qz2

=
�u

�z2
�57�

which gives


me =
1

2
�e

�qz1

2 + qz2

2 �d� −
�eu

q̃nūds +
�eq

�q̄n − qn�ũds

−
�el

qnũds �58�

3.5 The Helmholtz Equation. Another interesting potential
problem type that can be solved using the Trefftz FE approach is
the case of the Helmholtz or wave equation. Its differential equa-
tion is

�2u + �2u = 0 �in �� �59�

where �2 is a positive and known parameter. By using the method
of variable separation, the complete solutions for the Helmholtz
equation in two-dimensional bounded and unbounded regions can
be obtained as �6�

u�r,�� = a0J0��r� + �
m=1



�amJm
�1���r�cos m� + bmJm

�1���r�sin m��

�60�

for a bounded region, and

u�r,�� = a0J0��r� + �
m=1



�amHm
�1���r�cos m� + bmHm

�1���r�sin m��

�61�

for an unbounded region, and the corresponding T-complete sets

of solutions of Eqs. �60� and �61� can be taken as
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T = �J0��r�,Jm��r�cos m�,Jm��r�sin m�� = �Ti� �62�

T = �H0
�1���r�,Hm

�1���r�cos m�,Hm
�1���r�sin m�� = �Ti� �63�

in which Jm��r� and Hm
�1���r� are the Bessel and Hankel functions

of the first kind, respectively. As an illustration, the internal func-
tion Nj in Eq. �9� can be given in the form

N1 = J0��r�, N2��r� = J1��r�cos �, N3 = J1��r�sin �,¯

�64�

for two-dimensional Helmholtz equations with bounded regions.
For a particular element, say element e, the variational functional
used for generating the element matrix equation of this problem is


me =
1

2
�e

�q1
2 + q2

2 − �2u2�d� −
�eu

q̃nūds +
�eq

�q̄n − qn�ũds

−
�el

qnũds �65�

Before concluding this subsection, we would like to mentioned
that, for Helmholtz equation, Sanchez et al. �128� have shown that
a suitable system of plane waves is TH-complete in any bounded
region. This is a TH-complete system which, because of its sim-
plicity, could be advantageously used for implementing Trefftz
method.

3.6 Frameless Trefftz Elements. As opposed to the hybrid
approach, which makes use of the independently defined auxiliary
inter-element frame, the frameless T-element approach is based on
the least-squares formulation and was recently presented by Jir-
ousek and Wroblewski �9�. Jirousek and Stojek �42�, and Stojek
�89�. This approach is based on the application of a suitably trun-
cated T-complete set �38� over individual subdomains linked by
means of a least-squares procedure. This section describes some
aspects of the approach in order to provide a brief introduction to
the concept of frameless Trefftz elements.

Consider again a two-dimensional Poisson equation problem

�2u = b̄ �in ��, u = ū �on �u�, qn =
�u

�n
= q̄ �on �q� �66�

The solution domain � �Fig. 4� is divided into subdomains,
�=�e�e, and over each �e the potential u is approximated by
the expansion �9�. Moreover, to prevent numerical problems, the
trial functions must be defined in terms of the local coordinates as
shown in Fig. 4�a�.

The functional to be minimized enforces in the least-squares
sense the boundary conditions on �u��q and the continuity in
potential u and reciprocity of the boundary flux on all subdomain

Fig. 4 FE version of approach: „a… subdivision into subdo-
mains �1 ,�2,… with piecewise approximations u1 ,u2,…; and
„b… corresponding FE mesh with nodes 1,2,…etc.
interfaces �l

322 / Vol. 58, SEPTEMBER 2005
I�c� =
�u

�u − ū�2ds + w2
�q

�qn − q̄n�2ds +
�l

��u+ − u−�2

+ w2�qn
+ + qn

−�2�ds = min �67�

where c= �c1 ,c2 ,…�, the plus and minus superscripts designate
solutions from any two neighboring Trefftz fields along �l, and w
is some positive weight coefficient, which serves the purpose of
restoring the homogeneity of physical dimensions and tuning the
strength laid on the potential and flux conditions, respectively. For
the solution domain shown in Fig. 4, the boundaries �l, �u, and �q
in Eq. �67� are given as follows:

�l = �DA � �DC � �DG, �u = �HA � �AB,

�q = �BC � �CF � �FG � �GH �68�

The vanishing variation of I may be written as

�I = �cT �I

�c
= �cT�Kc + r̆� = 0 �69�

which yields for the unknown c of the whole assembly of subdo-
mains the following symmetric system of linear equations:

Kc + r̆ = 0 �70�

3.7 Rank Condition. By checking the functional �46�, we
know that the solution fails if any of the functions Nj in u is a
rigid-body motion mode associated with a vanishing boundary
flux term of the vector Q in Eq. �45�. As a consequence, the
matrix H defined in Eq. �47� is not in full rank and becomes
singular for inversion. Therefore, special care should be taken to
discard from u all rigid-body motion terms and to form the vector
N= �N1 ,N2 ,… ,Nm� as a set of linearly independent functions Nj
associated with nonvanishing potential derivatives. Note that once
the solution of the FE assembly has been performed, the missing
rigid-body motion modes may, however, be easily recovered, if
desired. It suffices to reintroduce the discarded modes in the in-
ternal field u of a particular element and then to calculate their
undetermined coefficients by requiring, for example, the least-
squares adjustment of u and ũ. The detailed procedure is given by
Jirousek and Guex �30�.

Furthermore, for a successful solution it is important to choose
the proper number m of trial functions Nj for the element. The
basic rule used to prevent spurious energy modes is analogous to
that in the hybrid-stress model. The necessary �but not sufficient�
condition for the matrix H to have full rank is stated as �30�

m � k − r �71�

where k and r are numbers of nodal degrees of freedom of the
element under consideration and of the discarded rigid-body mo-
tion terms. Though the use of the minimum number m=k−r of
flux mode terms in Eq. �9� does not always guarantee a stiffness
matrix with full rank, full rank may always be achieved by suit-
ably augmenting m. The optimal value of m for a given type of
element should be found by numerical experimentation.

4 Plane Elasticity
This section deals with HT FE theory in linear elasticity. The

small strain theory of elasticity is assumed �129–131� and devel-
opments of Trefftz-element formulation in plane elasticity are re-
viewed.

In this application, the intraelement field �9� becomes

u = �u1

u2
� = �ŭ1

ŭ2
� + �

j=1

m

N jc j = ŭ + Nc �72�

where c j are undetermined coefficients and the known coordinate
˘
functions u and N j are, respectively, particular integral and a set
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of appropriate homogeneous solutions to the equation

LDLTŭ + b̄ = 0 �on �e� �73�

and

LDLTN j = 0 �on �e� �74�

where b̄, L, and D are defined in Eq. �8� for plane stress problems.
For plane strain applications, it suffices to replace E and � above
by

E* =
E

1 − �2 , �* =
�

1 − �
�75�

In the presence of constant body forces �b̄1 and b̄2 being two
constants�, the particular solution is conveniently taken as

ŭ = −
1 + �

E �b̄1y2

b̄2x2
� �76�

The distribution of the frame �12� can now be written as

ũ1 = ÑAũ1A + ÑBũ1B + �
i=1

M

�i−1ÑCiaCi �77�

ũ2 = ÑAũ2A + ÑBũ2B + �
i=1

M

�i−1ÑCibCi �78�

along a particular side A-C-B of an element �Fig. 1�, where ÑA,

ÑB and ÑCi are defined in Fig. 1, � is a coefficient equal to either
1 or −1 according to the orientation of the side A-C-B �Fig. 1� in
the global coordinate system �X1 ,X2�

� = �+ 1 if X1B − X1A � X2B − X2A

− 1 otherwise
� �79�

A T-complete set of homogeneous solutions N j can be gener-
ated in a systematic way from Muskhelishvili’s complex variable
formulation �132�. They can be written as �25�

2GNej = �Re Z1k

Im Z1k
� with Z1k = i�zk + kizz̄k−1 �80�

2GNej+1 = �Re Z2k

Im Z2k
� with Z2k = �zk − kzz̄k−1 �81�

2GNej+2 = �Re Z3k

Im Z3k
� with Z3k = iz̄k �82�

2GNej+3 = �Re Z4k

Im Z4k
� with Z4k = − z̄k �83�

The corresponding stress field is obtained by the standard consti-
tutive relation �2�

� = ��11

�22

�12
� = �̆ + �

j=1

m

T jc j = �̆ + Tc �84�

while the particular solution �̆ can be easily obtained by setting
�̆=DLTŭ. Derivation of the element stiffness equation is based on

the functional
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me =
1

2
�e

�LTu�TDLTud� −
�eu

t̃ūds +
�e	

�t̄ − t�ũds

−
�el

tũds �85�

Let us turn our attention to discuss two representative special-
purpose element models. First, we consider a concentrated load
acting at a point of any element �Fig. 5�. Singularities produced by
the load can accurately be accounted for by augmenting the par-
ticular solution ŭe with the suitable singular solution ûe. For an
isolated force in an infinite plane, for example �Fig. 5�, the plane
stress solution �133� yields the following displacements:

û1 =
1 + �

4�E
P1��1 + ��

x1
2

r2 −
3 − �

2
ln

r2

l2� +
�1 + ��2

4�E
P2

x1x2

r2

�86�

û2 =
�1 + ��2

4�E
P1

x1x2

r2 +
1 + �

4�E
P2��1 + ��

x2
2

r2 −
3 − �

2
ln

r2

l2�
�87�

where l�0 is an arbitrary positive constant used to give a refer-
ence frame, r2=x1

2+x2
2, and P1 and P2 are the values of concen-

trated loads shown in Fig. 5.
Another special-purpose element model is concerned with a

singular corner �Fig. 6�. A complete set of Trefftz functions veri-
fying the free stress conditions along the sides of a notch can be
obtained by using the Williams’ eigenfunctions �134�. Such func-

Fig. 5 Isolated concentrated loads in infinite plane
Fig. 6 Singular V-notched element
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tions have, in the past, been used successfully by Lin and Tong
�135� to generate a singular V-notched superelement. These func-
tions can be used to generate special-purpose elements with sin-
gular corners. They are

2Gu1 = a�
n

Re�� r

a
��n

�n��� + �n cos 2� + cos 2�n��cos �n�

− �n cos��n − 2��� − � r

a
��n

�n��� + �n cos 2� − cos 2�n��

�sin �n� − �n sin��n − 2���� �88�

2Gu2 = a�
n

Re�� r

a
��n

�n��� − �n cos 2� − cos 2�n��sin �n�

+ �n sin��n − 2��� + � r

a
��n

�n��� − �n cos 2� + cos 2�n��

�cos �n� + �n cos��n − 2���� �89�

where a is defined by

a = �
i=1

N
�x1i

2 + x2i
2 �1/2

N
�90�

with N being the number of nodes in the element under consider-
ation, �n and �n are real undetermined constants, � and � are
shown in Fig. 6, while �n and �n are eigenvalues that have a real
part greater than or equal to 1/2 and are the roots of the following
characteristic equations:

sin 2�n� = − �n sin 2� �91�

for symmetric �tension� loading, and

sin 2�n� = �n sin 2� �92�

for antisymmetric �pure shear� loading.
Apart from their high efficiency in solving singular corner

problems, the great advantage of the above special-purpose func-
tion set is the attractive possibility of straightforwardly evaluating
the stress intensity factors KI �opening mode� and KII �sliding
mode� from the first two internal parameters �1 and �1

KI = �2��1a1−�1��1 + 1 − �1 cos 2� − cos 2�1���1 �93�

KII = �2��1a1−�1��1 − 1 − �1 cos 2� + cos 2�1���1 �94�

5 Thin Plate Bending
In Secs 3 and 4, applications of Trefftz-elements to the potential

problem and plane elasticity were reviewed. Extension of the pro-
cedure to thin plate bending is briefly reviewed in this section.

For thin-plate bending the equilibrium equation and its bound-
ary conditions are well established in the literature �e.g., �61��.

In the case of a thin-plate element the internal displacement
field �9� becomes

w = w̆ + �
j=1

m

Njcj = w̆ + Nc �95�

where w is the transverse deflection, w̆ and Nj are known func-
tions, which should be chosen so that

D�4w̆ = q̄ and �4Nj = 0, �j = 1,2, ¯ ,m� �96�

everywhere in the element sub-domain �e, where q̄ is the distrib-
4 4 4 4 2 2 4 4
uted vertical load per unit area, � =� /�x1+2� /�x1�x2+� /�x2
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is the biharmonic operator, and D=Et3 /12�1−�2�. In the hybrid
approach under consideration, the elements are linked through an
auxiliary displacement frame

ṽ = � w̃

w̃,n
� = �Ñ1

Ñ2

�d = Ñd �97�

where d stands for the vector of nodal parameters and Ñ is the
conventional finite element interpolating matrix such that the cor-
responding nodal parameters of the adjacent elements are
matched. Based on the approach of variable separation, the
T-complete solution of the biharmonic equation, D�4w= q̄, can be
found �108,127�

w = �
n=0



�Re��an + r2bn�zn� + Im��cn + r2dn�zn�� �98�

where

r2 = x1
2 + x2

2, z = x1 + ix2 �99�

Hence, the T-complete system for plate-bending problems can
be taken as

T = �1,r2,Re z2,Im z2,r2 Re z,r2 Im z,Re z3, ¯ � �100�

The Trefftz FE formulation for thin-plate bending can be derived
by means of a modified variational principle �e.g., �22��. The re-
lated functional used for deriving the HT element formulation is
constructed as


m = �
e
�
e −

�e2

�M̄n − Mn�w̃,nds +
�e4

�R̄ − R�w̃ds

+
�e5

�Mnw̃,n − Rw̃�ds� �101�

where


e =
�e

Ud� +
�e1

M̃nw̄,nds −
�e3

R̃w̄ds �102�

with

U =
1

2D�1 − �2�
��M11 + M22�2 + 2�1 + ���M12

2 − M11M22��

�103�

The boundary �e of a particular element consists of the follow-
ing parts:

�e = �e1 + �e2 + �e5 = �e3 + �e4 + �e5 �104�

where

�e1 = �e � �wn
,�e2 = �e � �M,�e3 = �e � �w,�e4 = �e � �R

�105�

and �e5 is the interelement boundary of the element.
The formulation described above can be extended to the case of

thin plates on an elastic foundation. In this case, the left-hand side
of the equation D�4w= q̄ and the related plate boundary equation,

Mn=Mijninj =M̄n, must be augmented by the terms Kw and
−�Gpw, respectively:

D�4w + Kw = q̄ �in �� �106�

Mn = Mijninj − �Gpw = M̄n �on �M� �107�

where �=0 for a Winkler-type foundation, �=1 for a Pasternak-

type foundation, and the reaction operator
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K = �kw for a Winkler-type foundation

�kp − Gp�
2� for a Pasternak-type foundation

�
�108�

with kw being the coefficient of a Winkler-type foundation, and kP
and GP being the coefficient and shear modulus of a Pasternak-
type foundation. The T-complete functions for this problem are
�61�

f�r,�� = a0f0�r� + �
m=1



�amfm�r�cos m� + bmfm�r�sin m��

�109�

where fm�r�= Im�r�C2�−Jm�r�C1� and the associated internal
function Nj can be taken as

N1 = f0�r�, N2m = fm�r�cos m�, N2m+1 = fm�r�sin m�

�m = 1,2, ¯ � �110�

in which Im�� and Jm�� are, respectively, modified and standard
Bessel function of the first kind with order m, and

C1 = C2 = i�kw/D �111�

for a Winkler-type foundation, and

C1 = −
GP

2D
−��GP

2D
�2

−
kP

D
, C2 =

GP

2D
−��GP

2D
�2

−
kP

D

�112�

for a Pasternak-type foundation, and i=�−1.
The variational functional used for deriving HT FE formulation

of thin plates on an elastic foundation has the same form as that of
Eq. �101�, except that the complementary energy density U in Eq.
�103� is replaced by U*

U* =
1

2D�1 − �2�
��M11 + M22�2 + 2�1 + ���M12

2 − M11M22�� + V*

�113�

where

V* = � kww2

2
for a Winkler-type foundation

1
2 �kPw2 + GPw,iw,i� for a Pasternak-type foundation

�
�114�

6 Thick-Plate Problems
Based on the Trefftz method, Petrolito �37,38� presented a hi-

erarchic family of triangular and quadrilateral Trefftz elements for
analyzing moderately thick Reissner-Mindlin plates. In these HT
formulations, the displacement and rotation components of the

auxiliary frame field ũ= �w̃ , �̃x , �̃y�T, used to enforce conformity
on the internal Trefftz field u= �w ,�x ,�y�T, are independently in-
terpolated along the element boundary in terms of nodal values.
Jirousek et al. �34� showed that the performance of the HT thick-
plate elements could be considerably improved by the application
of a linked interpolation whereby the boundary interpolation of
the displacement w̃ is linked through a suitable constraint with

that of the tangential rotation component �̃s. This concept, intro-
duced by Xu �136�, has been applied recently by several research-
ers to develop simple and well-performing thick-plate elements
�33,34,137–140�. In contrast to thin-plate theory as described in
the previous section, Reissner-Mindlin theory �141,142� incorpo-
rates the contribution of shear deformation to the transverse de-

flection. In Reissner-Mindlin theory, it is assumed that the trans-
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verse deflection of the middle surface is w, and that straight lines
are initially normal to the middle surface rotate �x about the
y-axis and �y about the x-axis. The variables �w ,�x ,�y� are con-
sidered to be independent variables and to be functions of x and y
only. A convenient matrix form of the resulting relations of this
theory may be obtained through use of the following matrix quan-
tities:

u = �w,�x,�y�T �generalized displacement� �115�

� = ��x �y �xy �x �y�T = LTu �generalized strains� �116�

� = �− Mx − My − Mxy Qx Qy�T = D� �generalized stresses�
�117�

t = �Qn − Mnx − Mny�T = A� �generalized boundary tractions�
�118�

where L, D, and A are defined by

L = 	
0 0 0

�

�x

�

�y

�

�x
0

�

�y
− 1 0

0
�

�y

�

�x
0 − 1


, A = 	 0 0 0 nx ny

nx 0 ny 0 0

0 ny nx 0 0

 ,

D = �DM 0

0 DQ
�

DM =
Et3

12�1 − �2�	
1 � 0

� 1 0

0 0
1 − �

2

, DQ =

Etk

2�1 + ���1 0

0 1
�

�119�

with k being a correction factor for nonuniform distribution of
shear stress across thickness t, which is usually taken as 5/6.

The governing differential equations of moderately thick plates
are obtained if the differential equilibrium conditions are written
in terms of u as

L� = LDLTu = b̄ �120�

where the load vector

b̄ = �q̄ m̄x m̄y�T �121�

comprises the distributed vertical load in the z direction and the
distributed moment loads about the y- and x-axes �the bar above
the symbols indicates imposed quantities�.

The corresponding boundary conditions are given by

a. simply supported condition

w = w̄ �on �w�, �s = �isi = �̄s �on ��s
�,

Mn = Mijninj = M̄n �on �Mn
� �122�

b. clamped condition

w = w̄ �on �w�, �s = �̄s �on ��s
�,

�n = �ini = �̄n �on ��n
� �123�
c. free-edge conditions
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Mn = M̄n �on �Mn
�, Mns = M̄ns �on �Mns

�,

Qn = Qini = Q̄n �on �Q� �124�

where n and s are, respectively, unit vectors outward normal and
tangent to the plate boundary ���=��n

��Mn
=��s

��Mns
=�w��Q�.

The internal displacement field in a thick plate is given in Eq.
�9�, in which ŭ and N j are, respectively, the particular and homo-
geneous solutions to the governing differential equations �120�,
namely,

LDLTŭ = b̄ and LDLTN j = 0, �j = 1,2, ¯ ,m� �125�

To generate the internal function N j, consider again the governing
equations �120� and write them in a convenient form as

D� �2�x

�x2 +
1 − �

2

�2�x

�y2 +
1 + �

2

�2�y

�x � y
� + C� �w

�x
− �x� = 0

�126�

D� �2�y

�y2 +
1 − �

2

�2�y

�x2 +
1 + �

2

�2�x

�x � y
� + C� �w

�y
− �y� = 0

�127�

C��2w −
��x

�x
−

��y

�y
� = q̄ �128�

where

D =
Et3

12�1 − �2�
, C

5Et

12�1 + ��
�129�

and where, for the sake of simplicity, vanishing distributed mo-
ment loads, m̄x= m̄y =0, have been assumed.

The coupling of the governing differential equations
�126�–�128� makes it difficult to generate a T-complete set of ho-
mogeneous solutions for w, �x, and �y. To bypass this difficulty,
two auxiliary functions f and g are introduced �143� such that

�x = g,x + f ,y and �y = g,y − f ,x �130�

It should be pointed out that

g0,x + f0,y = 0 and g0,y − f0,x = 0 �131�

are Cauchy-Riemann equations, the solution of which always ex-
ists. As a consequence, �x and �y remain unchanged if f and g in
Eq. �130� are replaced by f + f0 and g+g0. This property plays an
important part in the solution process. Using these two auxiliary
functions, Eq. �126�–�128� is converted as the form

D�4g = p̄ and �2f − �2f = 0 �132�

with �2=10�1−�� / t2.
The relations �132� are the biharmonic equation and the modi-

fied Bessel equation, respectively. Their T-complete solutions are

Table 1 Examples of ordering of indexes

i 1 2 3 4 5 6 7 8

j 1 2 3 4 5 - 6 7
k - - - - - 1 - -

i 18 19 20 21 22

j - 14 15 16 17
k 5 - - - -
provided in Eq. �100� for the former and by Qin �61�
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f2m = Im��r�sin m�, f2m+1 = Im��r�cos m� �m = 0,1,2, ¯ �
�133�

for the latter. Thus the series for f and g can be taken as

f1 = I0��r�, f2k = Ik��r�cos k�, f2k+1 = Ik��r�sin k� k = 1,2,…
�134�

g1 = r2, g2 = x2 − y2, g3 = xy, g4k = r2 Re zk

g4k = r2 Im zk, g4k+2 = Re zk+2, g4k+3 = Im zk+2 k = 1,2¯

�135�

In agreement with relations �130�, the homogeneous solutions
wi, �xi, and �yi are obtained in terms of gs and fs as

wi = g −
D

C
�2g, �xi = g,x + f ,y, �yi = g,y − f ,x �136�

However, since the sets of functions fk �134� and functions gj
�135� are independent of each other, the submatrices Ni
= �wi ,�xi ,�yi�T in Eq. �9� will be of the following two types:

Ni = �gj −
D

C
�2gj

gj,x

gj,y

� �137�

or

Ni = � 0

fk,y

− fk,x
� �138�

One of the possible methods of relating index i to correspond-
ing j or k values in Eq. �137� or �138� is displayed in Table 1.
However, many other possibilities exist �36�. It should also be
pointed out that successful h-method elements have been obtained
by Jirousek et al. �34� and Petrolito �37� with only polynomial set
of homogeneous solutions. The effect of various loads can accu-
rately be accounted for by a particular solution of the form

ŭ = � w̆

�̆x

�̆y

� = �ğ −
D

C
�2ğ

ğ,x

ğ,y

� �139�

where ğ is a particular solution of Eq. �132�. The most useful
solutions are

ğ =
q̄r4

64D
, �140�

¯

j, and k appearing in Eqs. „137… and „138…

10 11 12 13 14 15 16 17

9 - - 10 11 12 13 -
- - 2 3 - - - - 4

3 24 25 26 27 28 29 … etc.

- - 18 19 20 21 - … etc.
7 - - - - 8 … etc.
i,

9

8

2

6

for a uniform load q=constant, and
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ğ =
P̄rPQ

2

8�D
ln rPQ, �141�

for a concentrated load P̄, where rPQ is defined in Sec. 3. A
number of particular solutions for Reissner-Mindlin plates can be
found in standard texts �e.g., Reismann �144��.

Since evaluation of the element matrices calls for boundary
integration only �see Sec. 3, for example�, explicit knowledge of
the domain interpolation of the auxiliary conforming field is not
necessary. As a consequence, the boundary distribution of ũ

= Ñd, referred to as “frame function,” is all that is needed.
The elements considered in this section are either p type �M

�0� �Fig. 1� or conventional type �M =0�, with three standard
degrees of freedom at corner nodes, e.g.,

dA = ũA = �w̃A,�̃xA,�̃yA�T, dB = ũB = �w̃B,�̃xB,�̃yB�T �142�

and an optional number M of hierarchical degrees of freedom
associated with midside nodes

dC = �ũC = ��w̃C1,��̃xC1,��̃yC1,�w̃C2,��̃xC2,��̃yC2, ¯ etc . �T

�143�

Within the thin limit �̃x=�w̃ /�x and w̃y =�w̃ /�y, the order of the
polynomial interpolation of w̃ has to be one degree higher than
that of �x and �y if the resulting element is to be free of shear
locking. Hence, if along a particular side A-C-B of the element
�Fig. 1�

�̃xA-C-B = ÑA�̃xA + ÑB�̃xB + �
i=1

p̃−1

ÑCi��̃xCi �144�

�̃yA-C-B = ÑA�̃yA + ÑB�̃yB + �
i=1

p̃−1

ÑCi��̃yCi �145�

where ÑA, ÑB, and ÑCi are defined in Fig. 1, p̃ is the polynomial

degree of �̃x and �̃y �the last term in Eqs. �144� and �145� will be
missing if p̃=1�, then the proper choice for the deflection interpo-
lation is

w̃A-C-B = ÑAw̃A + ÑBw̃B + �
i=1

p̃

ÑCi�w̃Ci �146�

The application of these functions for p̃=1 and p̃=2 along with
13 or 25 polynomial homogeneous solutions �137� leads to ele-
ments identical to Petrolito’s quadrilaterals Q21-13 and Q32-25
�37�.

An alternative variational functional presented by Qin �36� for
deriving HT thick-plate elements is as follows:


m = �
e
�
e +

�e2

�Q̄n − Qn�w̃ds +
�e4

�M̄n − Mn��̃nds

+
�e6

�M̄ns − Mns��̃sds −
�e7

�Mn�̃n + Mns�̃s + Qnw̃�ds�
�147�

where


e =
�e

Ud� −
�e1

Q̃nw̄ds −
�e3

M̃n�̄nds −
�e5

M̃ns�̄sds

�148�
with

Applied Mechanics Reviews
U =
1

2D�1 − �2�
��M11 + M22�2 + 2�1 + ���M12

2 − M11M22��

+
1

2C
�Qx

2 + Qy
2� �149�

and where Eqs. �126�–�128� are assumed to be satisfied a priori.
The boundary �e of a particular element consists of the following
parts:

�e = �e1 + �e2 + �e7 = �e3 + �e4 + �e7 = �e5 + �e6 + �e7

�150�

where

�e1 = �e � �w, �e2 = �e � �Q, �e3 = �e � ��n
,

�e4 = �e � �Mn

�e5 = �e � ��s
, �e6 = �e � �Mns

�151�

and �e7 is the interelement boundary of the element.
The extension to thick plates on an elastic foundation is similar

to that in Sec. 5. In the case of a thick plate resting on an elastic
foundation, the left-hand side of Eq. �128� and the boundary equa-
tion �122� must be augmented by the terms Kw and −�Gpw, re-
spectively,

C��2w −
��x

�x
−

��y

�y
� + Kw = q̄ �in �� �152�

Mn = Mijninj − �Gpw = M̄n �on �Mn� �153�

where � and K are as defined in Sec. 5.
As discussed before, the transverse deflection w and the rota-

tions �x ,�y may be expressed in terms of two auxiliary functions,
g and f , by the first part of Eq. �136� and Eq. �130�. The function
f is again obtained as a solution of the modified Bessel equation
�second part of Eq. �132��, while for g, instead of the biharmonic
equation �first part of Eq. �132��, the following differential equa-
tion now applies �36�:

D�4g +
K

C
�2g − Kg = q̄ �154�

The corresponding T-complete system of homogeneous solu-
tions is obtained in a manner similar to that in Sec. 5, as

g�r,�� = c1G0�r� + �
j=1



�c2jGj�r�cos j� + c2j+1Gj�r�sin j��

�155�

where

Gj�r� = Ij�r�C2� − Jj�r�C1� �156�

with

C1 =�� kw

2C
�2

+
kw

D
+

kw

2C
, C2 =�� kw

2C
�2

+
kw

D
−

kw

2C

�157�

for a Winkler-type foundation and

C1 =
�b + kP/C + GP/D

2�1 − GP/C�
, C2 =

�b − kP/C − GP/D

2�1 − GP/C�
�158�

b = � kP

C
+

GP

D
�2

+
4kP

D
�1 −

Gp

C
� �159�
for a Pasternak-type foundation.
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The variational functional used to derive HT FE formulation for
thick plates on an elastic foundation is the same as Eq. �147�
except that the strain energy function U in Eq. �149� is now re-
placed by U*

U* = U + V*, �160�

in which U and V* are defined in Eqs. �149� and �114�, respec-
tively.

7 Transient Heat Conduction
Consider a two-dimensional heat conduction equation that de-

scribes the unsteady temperature distribution in a solid �domain
��. This problem is governed by the differential equation

k�2u + Q̄ = �c
�u

�t
, �161�

subject to the initial condition in �̄

u�x,y,0� = u0�x,y� �162�

and the boundary conditions on �

u�x,y,t� = ū�x,y,t� �on �1� �163�

p�x,y,t� = p̄�x,y,t� �on �2� �164�

q�x,y,t� = q̄�x,y,t� �on �3� �165�

in which

p = k
�u

�n
, q = hu + p, q̄ = huenv �166�

�̄ = � + �, � = �1 + �2 + �3 �167�

where u�x ,y , t� is the temperature function, Q̄ the body heat
source, k the specified thermal conductivity, � the density, and c
the specific heat. Furthermore, u0 is the initial temperature, h is
the heat transfer coefficient, and uenv stands for environmental
temperature.

The initial boundary value problem �161�–�165� cannot, in gen-
eral, be solved analytically. Hence, the time domain is divided
into N equal intervals and denoted �t= tm− tm−1. Consider now a

typical time interval �tm , tm+1�, in which u and Q̄ are approximated
by a linear function

u�t� �
1

�t
��t − tm�um+1 − �t − tm+1�um� �168�

Q̄�t� �
1

�t
��t − tm�Q̄m+1 − �t − tm+1�Q̄m� �169�

The integral of Eq. �161� over the time interval �tm , tm+1� yields

um+1 = um +
�t

2�c
�k�2um + k�2um+1 + Q̄m + Q̄m+1� �170�

From this we arrive at the following single time-step formula �48�:

��2 − a2�um = bm �171�

with the boundary conditions

um = ūm �on �1�, pm = p̄m �on �2�, qm = q̄m �on �3�
�172�

where

pm = k
�um , qm = hum + pm �173�

�n
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a2 =
2�c

k�t
, bm = − ��2 + a2�um−1 −

1

k
�Q̄m + Q̄m−1� �174�

and where ūm, p̄m, and q̄m stand for imposed quantities at the time
t= tm. Hereafter, to further simplify the writing, we shall omit the
index m appearing in Eqs. �171� and �172�.

Consider again the boundary value problem defined in Eqs.
�171�–�174�. The domain is subdivided into elements and over
each element e the assumed field is defined in Eq. �9�, where ŭ
and Nj are known functions, which satisfy

��2 − a2�ŭ = b, ��2 − a2�Nj = 0 �on �e� �175�

The second equation of �175� is the modified Bessel equation, for
which a T-complete system of homogeneous solution can be ex-
pressed, in polar coordinates r and �, as

N2m = Im�ar�sin m�, N2m+1 = Im�ar�cos m� �m = 0,1,2, ¯ �
�176�

The particular solution ŭ of Eq. �175� for any right-hand side b
can be obtained by integration of the source function

u*�rPQ� =
1

2�
K0�arPQ� �177�

As a consequence, the particular solution ŭ of Eq. �171� can be
expressed as

ŭ�P� =
1

2�


�e

b�Q�K0�arPQ�d��Q� �178�

The area integration in Eq. �178� can be performed by numeri-
cal quadrature using the Gauss-Legendre rule.

The auxiliary interelement frame field ũ used here is confined
to the interelement portion of the element boundary �e

�e = �e1 + �e2 + �e4 + �e4 �179�

where

�e1 = �e � �1, �e2 = �e � �2, �e3 = �e � �3 �180�

and where �e4 is the interelement portion of �e �see Fig. 7�, as
opposed to standard HT elements discussed previously �where ũ
extends over the whole element boundary �e�. The obvious ad-
vantage of such a formulation is the decrease in the number of
degrees of freedom for the element assembly. In our case, we
assume

ũ = Ñd �on �e4� �181�

As an example, Fig. 7 displays a typical HT element with an
arbitrary number of sides. In the simplest case, with linear shape
function, the vector of nodal parameters is defined as

d = �ũ1, ũ2, ũ3�T �182�

and along a particular element side situated on �4e, for example,

Fig. 7 A typical HT element with linear frame function
the side 1-2, we have simply
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ũ = Ñ1ũ1 + Ñ2ũ2 �183�

where

Ñ1 = 1 − �̃12, Ñ2 = �̃12 �184�

There are no degrees of freedom at nodes 4 and 5 situated on
�e�� �� is the boundary of the domain�.

To enforce the boundary conditions �172� and the interelement
continuity on u, we minimize for each element the following
least-squares functional


�e1

�u − ū�2ds + d2
�e2

�p − p̄�2ds + d2
�e3

�q − q̄�2ds

+
�e4

�u − ũ�2ds = min �185�

where d�0 is an arbitrary chosen length �in this section d is
chosen as the average distance between the element center and
element corners defined in Eq. �3.51� of Qin �61��, which serves
the purpose of obtaining a physically meaningful functional �ho-
mogeneity of physical units�. The least-squares statement �185�
yields for the internal parameter c the following system of linear
equations:

Ac = a + Wd �186�

where

A =
�e1��e4

NTNds + d2
�e2

PTPds + d2
�e3

QTQds

�187�

a =
�e1

NT�ū − ŭ�ds + d2
�e2

PT�p̄ − p̆�ds + d2
�e3

QT�q̄ − q̆�ds

�188�

W =
�e4

NTÑds �189�

From Eqs. �186�–�189�, the internal coefficients c are readily
expressed in terms of the nodal parameters d

c = c̆ + Cd �190�

where

c̆ = A−1a, C = A−1W �191�

We now address evaluation of the element matrices. In order to
enforce “traction reciprocity”

�ue

�ne
+

�uf

�nf
= 0, �on �e � � f� �192�

and to obtain a symmetric positive definite stiffness matrix, we
set, in a similar way as in �63�,

k
�e

�u

�n
�uds =

�e2

p̄�uds +
�e3

q̄�uds − h
�e4

u�uds + k�dTr

�193�

where r stands for the vector of fictitious equivalent nodal forces
conjugate to the nodal displacement d. This leads to the custom-
ary “force-displacement” relationship

r = r̆ + kd �194�
where
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r̆ = CT�Hc̆ + h� and k = CTHC �195�

The auxiliary matrices h and H are calculated by setting

�u

�n
=

�

�n
�ŭ + Nc� = t̆ + Tc �196�

and then performing the following boundary integrals:

h =
�e

NTt̆ds −
1

k�
�e2

NTp̄ds +
�e3

NT�s̄ − hŭ�ds�
�197�

H =
�e

NTTds +
h

k
�e3

NTNds �198�

Through integration by parts, it is easy to show that the first
integral in Eq. �198� may be written as


�e

NTTds =
�e

BTBds �199�

where

B = � �N

�x
,
�N

�y
�T

�200�

As a consequence, H is a symmetric matrix.

8 Postbuckling Bending of Thin Plate
In this section, the application of HT elements to postbuckling

of thin-plate bending problems is reviewed. The thin plate system
is subjected to in-plane pressure with or without elastic founda-
tion.

Let us consider a thin isotropic plate of uniform thickness t,
occupying a two-dimensional arbitrarily shaped region � bounded
by its boundary � �Fig. 8�. The plate is subjected to an external
radial uniform in-plane compressive load p0 �per unit length at the
boundary ��. The field equations governing the postbuckling be-
havior of thin plate has been detailed in �145,146�.

In this application the internal fields have two parts. One is the
in-plane field uin�=�u1 ,u2�T� and the other is the out-of-plane field
uout�=w�. They are identified by subscripts “in” and “out” respec-
tively, and are assumed as follows:

u =
u̇1

= ŭ +
N1

c = ŭ + N c �201�

Fig. 8 Geometry and loading condition of the thin plate
in �
u̇2
� in �

N2
� in in in in
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uout = ẇ = w̆ + N3cout �202�

where cin and cout are two undetermined coefficient vectors and
ŭin, w̆, Nin, and N3 are known functions, which satisfy

�L1 L2

L2 L3
�ŭin =� Ṗ1

Ṗ2

�, �L1 L2

L2 L3
��N1

N2
� = 0 �in �e�

�203a�

L4w̆ = Ṗ3, L4N3 = 0 �in �e� �203b�

and where Li have been defined in �49,61�, Nin and N3 are formed
by suitably truncated T-complete systems of the governing equa-
tion �61�:

L1u̇1 + L2u̇2 = Ṗ1

L2u̇1 + L3u̇2 = Ṗ2

L4ẇ = Ṗ3 �204�

The T-complete functions corresponding to the first two lines of
Eq. �204� have been given in expressions �80�–�83�, while the
Trefftz functions related to the third line of Eq. �204� are �61�

T = �f0�r�, fm�r�cos m�, fm�r�sin m�� = �Ti� �205�

where fm�r�=rm−Jm��r�.
All that is left is to determine the parameters c so as to enforce

on u�=�u̇1 , u̇2 , ẇ�T� interelement conformity �ue=u f on �e�� f�
and the related boundary conditions, where e and f stand for any
two neighbouring elements. This can be completed by linking the
Trefftz-type solutions �201� and �202� through an interface dis-
placement frame surrounding the element, which is approximated
in terms of the same degrees of freedom, d, as used in the con-
ventional elements

ũ = Ñd �206�

where

ũ = �ũin,ũout�T �207�

ũin = �ũ1, ũ2�T = �Ñ1

Ñ2

�din = Ñindin �208�

ũout = �w̃,w̃,n�T = �Ñ3

Ñ4

�dout = Ñoutdout �209�

d = �din,dout�T �210�

and where din and dout stand for nodal parameter vectors of the

in-plane and out-of-plane displacements, and Ñi= �i=1–4� are the
conventional FE interpolation functions.

The particular solutions ŭin and w̆ in Eq. �201� and �202� are
obtained by means of a source-function approach. The source
functions corresponding to Eq. �204� can be found in �146�

uij
* �rPQ� =

1 + �

4�E
�− �3 − ���ij ln rPQ + �1 + ��rPQ,irPQ,j�

�211�

w*�rPQ� =
1

4�D�2 �2 ln rPQ − �Y0��rPQ�� �212�

where uij
* �rPQ� represents the ith component of in-plane displace-
ment at the field point P of an infinite plate when a unit point
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force �j=1,2� is applied at the source point Q, while w*�rPQ�
stands for the deflection at point P due to a unit transverse force
applied at point Q. Using these source functions, the particular
solutions ŭin and w̆ can be expressed as

ŭin =
�

Ṗj�u1j
*

u2j
* �d� �213�

w̆ =
�

Ṗ3w*d� �214�

The element matrix equation can be generated by way of follow-
ing functionals �61�:


me�in� =
1

2
�e

Ṗiu̇id� −
�e1

Ñ
˙

nu̇̄nds −
�e3

Ñ
˙

nsu̇̄sds

−
�e2

�Ṅn − N̄n
*�u̇̃nds −

�e4

�Ṅns − N̄ns
* �u̇̃sds

+
1

2
�e

tinuinds −
�e9

tinũinds �215�


me�out� =
1

2
�e

Ṗ3ẇd� +
�e5

M̃
˙

nẇ̄,nds −
�e7

R̃
˙
ẇ̄ds

+
�e6

�Ṁn − M̄
˙

n�ẇ̃,nds −
�e8

�Ṙ − R̄*�ẇ̃ds

+
1

2
�e

toutuoutds −
�e9

toutũoutds . �216�

The boundary �e of a particular element here consists of the fol-
lowing parts:

�e = �e1 + �e2 + �e9 = �e3 + �e4 + �e9 = �e5 + �e6 + �e9

= �e7 + �e8 + �e9 �217�

where

�e1 = �e � �un
, �e2 = �e � �Nn

, �e3 = �e � �us

�e4 = �e � �Nns
, �e5 = �e � �wn

, �e6 = �e � �Mn

�e7 = �e � �w, �e8 = �e � �R �218�

and �e9 represents the interelement boundary of the element.
Extension to postbuckling plate on an elastic foundation is

similar to the treatment in Sec. 5. In this case the left-hand side of

the third line of Eq. �204� and the boundary equation Ṁn

=Ṁijninj =M̄
˙

n must be augmented by the terms Kẇ and �GPẇ,
respectively,

L4ẇ + Kẇ = Ṗ3 �219�

Ṁn = Ṁijninj − �GPẇ = M̄
˙

n �220�

where �, K, and GP are defined in Sec. 5.
The Trefftz functions of Eq. �219� can be obtained by consid-
ering the corresponding homogeneous equation
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�L4 + K�g = ��4 + �2�2 + S�g = ��2 + b1���2 + b2�g = 0

�221�

As a consequence, the T-complete system of Eq. �221� is obtained
as �61�

T = �f0�r�, fm�r�sin m�, fm�r�cos m�� = �Ti� �222�

where fm�r�=Jm�r�b1�−Jm�r�b2�, with b1,2=�2���4−4kw /D for
a Winkler-type foundation.

9 Geometrically Nonlinear Analyses of Thick Plates
Employment of Trefftz-element approach enabled Qin �50� and

Qin and Diao �52� to solve for the first time a large deflection
problem of thick plate with or without elastic foundation. Formu-
lations presented in this section are based on the developments
mentioned above.

Consider a Mindlin-Reissner plate of uniform thickness t, oc-
cupying a two-dimensional arbitrarily shaped region � with
boundary �. The nonlinear behavior of the plate for moderately
large deflection is governed by the following incremental equa-
tions �147�:

L1u̇1 + L2u̇2 = Ṗ1 �223�

L2u̇1 + L3u̇2 = Ṗ2 �224�

L33ẇ + L34�̇1 + L35�̇2 = Ṗ3 + q̇ �225�

L43ẇ + L44�̇1 + L45�̇2 = 0 �226�

L53ẇ + L54�̇1 + L55�̇2 = 0 �227�

together with

u̇n = u̇ini = u̇̄n �on �un
�, u̇s = u̇isi = u̇̄s �on �us

� �228�

Ṅn = Ṅij
l ninj = N̄

˙
n − Ṅij

n ninj = N̄n
* �on �Nn

� �229�

Ṅns = Ṅij
l nisj = N̄

˙
ns − Ṅij

n nisj = N̄ns
* �on �Nns

� �230�

for in-plane boundary condition and

ẇ = ẇ̄ �on �w�, �̇n = �̇ini = �̄
˙

n �on ��n
�, �̇s = �̇isi = �̄

˙
s �on ��s

�

�231�

for clamped edge, or

ẇ = ẇ̄ �on �w�, �̇s = �̄
˙

s �on ��s
�, Ṁn = Ṁijninj = M̄

˙
n �on �Mn

�

�232�

for simply supported edge, or

Ṁn = M̄
˙

n �on �Mn
�, Ṁns = Ṁijnisj = M̄

˙
ns �on �Mns

�,

Ṙ = Q̇ini = R̄
˙

− Ṙn = R̄* �on �R� �233�

for free edge, where Rn=Nnw,n+Nnsw,s, L1 ,L2 ,L3, and Ṗ1 , Ṗ2 , Ṗ3
are defined in �61�, q̇ represents the transverse distributed load,
and

L33 = C�2, L34�� = − L43�� = − C��,1, L35 = − L53 = − C��,2
L44 = DL1 − C, L45 = L54 = DL2, L55 = DL3 − C �234�

Applied Mechanics Reviews
As noted before, the HT FE model is based on assuming two
sets of distinct displacements, the internal field u and the frame
field ũ. The internal field u fulfil’s the governing differential equa-
tions �223�–�227� identically and is assumed over each element as

u = � uin

uout
� = � ŭin

ŭout
� + �Nin 0

0 Nout
�� cin

cout
� = ŭ + Nc

�235�

where

uin = �u̇1, u̇2�T, uout = �ẇ,�̇1,�̇2�T, ŭin = �ŭ1, ŭ2�T,

ŭout = �w̆,�̆1,�̆2�T �236�

and where ŭin , ŭout , Nin , Nout are known functions, which satisfy

Linŭin =� Ṗ1

Ṗ2

�, LinNin = Lin�N1

N2
� = 0 �on �e� �237�

Loutŭout = �Ṗ3 + q̇

0

0
�, LoutNout = Lout�N3

N4

N5
� = 0 �on �e�

�238�

with

Lin = �L1 L2

L2 L3
�, Lout = 	L33 L34 L35

L43 L44 L45

L53 L54 L55

 �239�

The interpolation functions Nin and Nout are formed by suitably
truncated complete systems �80�–�83�, �134�, and �135�.

In order to enforce on u the conformity, ue=u f on �e�� f
�where e and f stand for any two neighboring elements�, as was
done before, an auxiliary conforming frame field of the form

ũ = Ñd �240�

is defined at the element boundary �e in terms of parameter d,
where

ũ = � ũin

ũout
�, d = � din

dout
� �241�

ũin = �ũ1

ũ2
� = �Ñ1

Ñ2

�din, ũout = � w̃

�̃1

�̃2

� = 	Ñ3

Ñ4

Ñ5


dout �242�

and where Ñi �i=1–5� are the usual interpolation functions.
The in-plane particular solution ŭin can be calculated through

use of Eqs. �211� and �213�, whereas the source functions used for
calculating the particular solutions of deflection and rotations ŭout
are now as follows �147�:

w*�rPQ� = −
1

2�D�2� 2

1 − �
ln��rPQ� −

�2rPQ
2

4
�ln��rPQ� − 1��

�243�

�1
*�rPQ� = −

rPQrPQ,1 �ln��rPQ� − 1/2� �244�

4�D
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�2
*�rPQ� = −

rPQrPQ,2

4�D
�ln��rPQ� − 1/2� �245�

where �2=10�1−�� / t2. Hence, the particular solution ŭout is
given by

ŭout = � w̆

�̆1

�̆2

� =
�e

�Ṗ3 + q̇��w*

�1
*

�2
* �d� �246�

The functionals used for deriving the HT FE formulation of non-
linear thick plates can be constructed as �61�:


me �in� =
1

2
�e

Ṗiu̇id� −
�e1

Ṅnu̇̄nds −
�e3

Ṅnsu̇̄sds

−
�e2

�Ṅn − N̄n
*�u̇nds −

�e4

�Ṅns − N̄ns
* �u̇sds

+
1

2
�e

tinuinds −
�e11

tinũinds �247�


me �out� =
1

2
�e

�Ṗ3 + q̇�ẇd� −
�e5

Ṙẇ̄ds −
�e7

Ṁn�̄
˙

nds

−
�e9

Ṁns�̄
˙

sds −
�e6

�Ṙ − R̄*�ẇds

−
�e8

�Ṁn − M̄
˙

n��̇nds −
�e10

�Ṁns − M̄
˙

ns��̇sds

+
1

2
�e

toutuoutds −
�e11

toutũoutds �248�

where

�e = �e1 + �e2 + �e11 = �e3 + �e4 + �e11 = �e5 + �e6 + �e11 = �e7

+ �e8 + �e11 = �e9 + �e10 + �e11 �249�

with

�e1 = �e � �un
, �e2 = �e � �Nn

, �e3 = �e � �us

�e4 = �e � �Nns
, �e5 = �e � �w, �e6 = �e � �R

�e7 = �e � ��n
, �e8 = �e � �Mn

, �e9 = �e � ��s
, �e10

= �e � �Mns
�250�

and �e11 representing the inter-element boundary of the element.
The extension to thick plates on elastic foundation is similar to

that in Sec. 5. In the case of thick plates on an elastic foundation,
the formulation presented in this section holds true provided that
the following modifications have been made:

a. The interpolation function Nout should be formed from a
suitably truncated complete system of Eqs. �134� and
�155� rather than Eqs. �134� and �135�.

b. The source function �w* ,�1
* ,�2

*�, used in calculating the
particular solution ŭout is now replaced by �22�

w*�rPQ� = AC2K0�rPQ
�C2��1 − DC2/C�

�
+ BC1Y0�rPQ C1��1 + DC2/C� �251�
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�1
*�rPQ� = − �B�C1Y1�rPQ

�C1�

+ A�C2K1�rPQ
�C2��cos�� − �� �252�

�2
*�rPQ� = − �B�C1Y1�rPQ

�C1�

+ A�C2K1�rPQ
�C2��sin�� − �� �253�

where � and � are defined in Fig. 9, C1 and C2 are defined
in Eqs. �157� and �158�, and

A =
1

2�D�C1 + C2�
, B = −

1

4D�C1 + C2�
�254�

10 Numerical Examples
This section briefly describes some representative numerical

examples to illustrate applications of the Trefftz-element approach
discussed above.

Example 1: A Skew Crack in a Square Plate Under Uniform
Tension. To show the efficiency of the special purpose element, a
skew crack in a square plate under tension p̄ is considered �Fig.
10�. For comparison, the element mesh used is the same as that of
Jirousek et al. �59�. Using the formulations �93� and �94�, one can
easily prove that

KI = �1
�2�w, KII = �1

�2�w �255�

The results for stress intensity factors are listed in Table 2 and
comparison is made to those obtained by the conventional

Fig. 9 Illustration for � and �
Fig. 10 Stretched skew crack plate „�=0.3…
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p-element method �59�. It can be seen from Table 2 that the solu-
tion from the HT p-element method may converge to a fixed value
relatively quickly compared to the conventional p-element
method.

Example 2: Morley’s Skew Plate Problem (Fig. 11). The per-
formance of a special-purpose corner element in singularity cal-
culations is exemplified by analyzing the well-known Morley’s
skew plate problem �Fig. 11�. For the skew plate angle of 30 deg,
the plate exhibits a very strong singularity at the obtuse corners
�the exponent of the leading singularity term Cr� of the deflection
expansion is equal to 1.2�. Such a problem is considered difficult
and has attracted the attention of research workers �29,148,149�.
The difficulty is mainly attributable to the strong singularity at the
obtuse corner, which causes most FE models either to converge
very slowly to the true solution or not to converge at all. The
analytical solution of the problem based on the series expansion
with coefficients determined by the least-squares method was pre-
sented by Morley �150�, whose results are generally used as

Table 2 Comparison of various predictions o
10. Conventional results „mesh 1… taken
=cutoff function method…. HT results „mesh 2…

KI / p̄�2�w

m
Conv. p elem.a

HT-pCIM CFM

0 0.54127 0.42259 0.46535
2 0.49708 0.55588 0.59012
4 0.58909 0.56161 0.59983
6 0.57864 0.59232 0.60142
8 0.60588 0.59825 0.60149
10 0.59672 0.60043 0.60151
12 0.60313 0.60119 —
14 0.60032 0.60132 —

aData taken from �59�.

Fig. 11 Uniformly loaded simply supported 30 deg skew plate
„L / t=100…

Fig. 12 Configuration of meshes used in finite element
analysis

Table 3 Solution with special purpose corn
Morley’s simply supported uniformly loaded s

Mesh quantity M =

2�2 wc −6.0
M11c −5.0
M22c −27.8

3�3 wc −1.9
M11c

0.92
M22c

3.25
4�4 wc −1.5

M11c
0.39

M22c
2.25
Applied Mechanics Reviews
reference.
The numerical results for different meshes �2�2, 3�3, 4�4,

shown in Fig. 12� are obtained at the plate center and displayed in
Tables 3 and 4, and are compared to Morley’s results �wc
=0.000408qL4 /D, M11c=0.0108qL2 and M22c=0.0191qL2�. In the
calculation, 10 corner functions have been used.

The high efficiency of special-purpose corner functions for the
solution of singularity problems can be seen from Tables 3 and 4.
Such functions play an even more important role within the
T-element model where, by definition, the expansion basis of each
element is optional. This feature enables involved singularity or
stress concentration problems to be efficiently solved without
troublesome mesh refinement. It is also evident from Tables 3 and
4 that the Trefftz-element model performs well with regard to p
convergence, i.e., the numerical results converge quickly to the
analytical results along with increase of M.

Example 3: Large Deflection for an Annular Plate on a
Pasternak-Type Foundation. The annular plate is subjected to a
uniform distributed load q �Q=qa4 /Et4� and rests on a Pasternak-
type foundation. The inner boundary of the plate is in a free-edge
condition, whereas the outer boundary condition is clamped im-
movable. Some initial data used in the example are given by

GPa2/Et3 = 1, K = kPa4/Et3 = 5, b/a = 1/3, � = 1/3

where a and b are the outer and inner radii of the annular plate
�Fig. 13�. In the example, a quarter of the plate is modeled by the
three meshes shown in Fig. 13. The loading step is taken as �Q
=5. Some results obtained by the proposed method are listed in
Tables 5 and 6.

11 Conclusions and Future Developments
On the basis of the preceding discussion, the following conclu-

sions can be drawn. In contrast to conventional FE and boundary

I and KII for the skew crack problem from Fig.
m †59‡ „CIM=contour integral method, CFM
tained from Eq. „255….

KII / p̄�2�w
Conv. p elem.a

HT-pCIM CFM

−0.37480 −0.29005 −0.28433
−0.25578 −0.28292 −0.28669
−0.28951 −0.27474 −0.29067
−0.28319 −0.29022 −0.29092
−0.29398 −0.29012 −0.29095
−0.28997 −0.29097 −0.29096
−0.29196 −0.29091 —
−0.29042 −0.29095 —

functions applied to all corner elements for
30 deg plate

Percentage error
3 5 7

0.55 0.0 0.0
3.32 1.08 0.01
5.44 0.97 0.03
0.31 0.0 0.0
0.27 0.0 0.0
1.02 0.03 0.0
0.01 0.0 0.0
0.11 0.0 0.0
0.98 0.01 0.0
f K
fro
ob
er
kew

1

8
3
6

8

8
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element models, the main advantages of the HT FE model are: �i�
the formulation calls for integration along the element boundaries
only, which enables arbitrary polygonal or even curve-sided ele-
ments to be generated. As a result, it may be considered as a
special, symmetric, substructure-oriented boundary solution ap-
proach, which thus possesses the advantages of the boundary el-
ement method �BEM�. In contrast to conventional boundary ele-
ment formulation, however, the HT FE model avoids the
introduction of singular integral equations and does not require
the construction of a fundamental solution, which may be very
laborious to build; �ii� the HT FE model is likely to represent the
optimal expansion bases for hybrid-type elements where inter-
element continuity need not be satisfied, a priori, which is particu-
larly important for generating a quasi-conforming plate bending
element; �iii� the model offers the attractive possibility of devel-
oping accurate crack singular, corner or perforated elements, sim-
ply by using appropriate known local solution functions as the
trial functions of the intra-element displacements. Remarkable
progress has been achieved in the field of potential flow problems,
fracture mechanics, plane elasticity, thin and thick plate bending,
elastodynamics, and nonlinear problems of plate bending by the
Trefftz FE approach. In addition, Herrera’s version of Trefftz

Table 4 Solution without special-purpose cor
formly loaded skew plate

Mesh quantity M =1

2�2 wc −29.45
M11c −7.45
M22c −22.52

3�3 wc −22.98
M11c −9.55
M22c −23.45

4�4 wc −19.65
M11c −8.22
M22c −19.55

Fig. 13 Three element meshes in Example 3

Table 5 Maximum deflect

Method mesh Q=10

HT FE 16 cells 0.491
32 0.508
48 0.513

Ref. �151� 0.510

Table 6 Maximum deflection wm

M 0 1 3

Q=10 0.508 0.512 0.513
15 0.732 0.735 0.736
20 0.929 0.933 0.935
25 1.095 1.099 1.099
30 1.238 1.242 1.244
334 / Vol. 58, SEPTEMBER 2005
method expands very much the scope of the method of Trefftz. In
particular, Applications of Trefftz method to non-symmetric prob-
lems has been made using Trefftz method.

It is recognized that the Trefftz FE method has become increas-
ingly popular as an efficient numerical tool in computational me-
chanics since their initiation in the late seventies. However, there
are still many possible extensions and areas in need of further
development in the future. Among those developments one could
list the following:

1. Development of efficient HT FE-BEM schemes for complex
engineering structures and the related general purpose com-
puter codes with preprocessing and postprocessing capabili-
ties.

2. Generation of various special-purpose functions to effec-
tively handle singularities attributable to local geometrical or
load effects. As discussed previously, the special-purpose
functions warrant that excellent results are obtained at mini-
mal computational cost and without local mesh refinement.
Extension of such functions could be applied to other cases
such as the boundary layer effect between two materials, the
interaction between fluid and structure in fluid-structure
problems, and circular hole, corner and load singularities.

3. Development of HT FE in conjunction with a topology op-
timization scheme to contribute to microstructure design.

4. Development of efficient adaptive procedures including er-
ror estimation, h-extension element, higher order
p-capabilities, and convergence studies.

5. Extensions of HT FE to soil mechanics, thermoelasticity,
deep shell structure, fluid flow, piezoelectric materials, and
rheology problems.

6. Indirect Trefftz method in conjunction with parallel process-
ing to numerical models of continuous systems of science

functions for Morley’s simply supported uni-

Percentage error

3 5 7

−6.44 1.46 −1.22
−7.33 −3.44 −1.55
−9.89 5.78 3.67
−4.88 −1.98 0.44
−6.78 −1.59 −0.76
−11.55 −2.66 1.65
−3.98 −1.79 0.34
−4.95 −1.22 −0.62
−5.88 3.53 2.12

wm / t in Example 3 „M=0…

15 20 25 30

.725 0.920 1.082 1.227

.732 0.929 1.095 1.238

.738 0.935 1.105 1.243

.740 0.930 1.100 1.240

ersus M in Example 3 „32 cells…

5 6 8 10

0.515 0.518 0.518 0.519
0.736 0.739 0.740 0.742
0.936 0.940 0.942 0.943
1.100 1.103 1.103 1.104
1.244 1.248 1.250 1.251
ner
ion

0
0
0
0

/ t v
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and engineering; Application of the indirect method of Tref-
ftz to space-time problems, including parabolic �heat con-
duction�, hyperbolic �wave propagation� transport
�advection-diffusion� equations.
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