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Abstract Based on the interpolation technique with the
aid of boundary integral equations, a new differential
quadrature method has been developed (boundary
integral equation supported differential quadrature
method, BIE-DQM) to solve boundary value problems
over generally irregular geometries. The quadrature rule
of the BIE-DQM is that the first and the second deriv-
atives of a function with respect to independent variables
are approximated by a weighted linear combination of
the function values at all discrete nodal points and the
corresponding normal derivatives at all boundary
points. Several numerical examples are considered to
verify the feasibility and effectiveness of the proposed
algorithm.

Keywords Differential quadrature Æ Boundary integral
equation Æ Irregular geometry Æ Interpolation Æ
Fundamental solution

1 Introduction

Since the pioneer work of Bellman and his co-workers [1]
in the early 1970s, the differential quadrature method
(DQM) has been recognized as a numerically accurate
and computationally efficient numerical technique, and
has been successfully used to deal with a large number of
problems of physical and engineering science [2–5]. The
basic idea of DQM is that the values of the derivatives at
each sampling grid point are expressed as weighted linear
combinations of the function values at all sampling grid
points within the domain under consideration. However,
as pointed out by Bert and Malik [2], the DQM is limited

to applications to those domains having boundaries that
are aligned with the coordinate axes. Thus, in addition to
rectangular domains, the DQM has been applied to the
line domains of the axisymmetric flexure of circular solid
[6] and the annular domain [7] and to the parallelogram
domains of skew plates [8]. It is also obvious that the
DQM can be used for the analysis of irregular domains
which assemblies of such regular domains using
domain decomposition [9] or quadrature element [10]
approaches. The quadrature rule can be formulated for
curvilinear quadrilateral domains using an orthogonal
curvilinear coordinate system [11] or using the natural-to-
Cartesian geometric mapping technique [12] to transform
irregular physical domains into square computational
domains. However, irregularly shaped domains which
are not parallel to the coordinate axes, and which cannot
be segmented into regular shaped sub-domains, would be
generally inaccessible to solution by these applications of
the quadrature method. Bert and Malik [2] pointed out
that extension of the DQM to general quadrilateral
domains in conjunction with domain decomposition and
the quadrature element concepts should go a long way in
the development of the DQM for its employment in a
larger class of problems which presently are considered to
be the territory of the finite element method or the
boundary element method [13].

Very recently, Wu and Shu [7] proposed a radial-
basis-function-based DQM where three kinds of radial
basis functions were used as the test functions to con-
struct the quadrature rule. Although the interpolation
with radial basis functions has potential for dealing with
higher dimensional problems with irregular boundaries,
the numerical examples were limited to the simple
geometry of annular domains.

To circumvent the geometric difficulty inherent in the
traditional DQM, a boundary integral equation sup-
ported differential quadrature method (BIE-DQM) was
developed in the present work, based on the interpola-
tion technique with the aid of boundary integral equa-
tions, to solve boundary value problems with irregular
geometries. The technique of interpolation with the BIE
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was first suggested by Ochiai and Sekiya [14] for the
generation of free-form surfaces in CAD for dies in
industry. Shortly afterwards, this technique was em-
ployed successfully to deal with the domain integrals
encountered in the BIE method when solving a number
of problems such as static heat conduction [15], static
thermal stress [16] and elasto-plastic analysis with initial
strain formulation [17]. From the point of view of
avoiding domain integrals, this technique can be con-
sidered as a supplement to the dual reciprocity [18] or
multiple reciprocity [19] boundary element method. The
technique has an essential feature that the errors of the
approximated surfaces are almost zero at the place of
collocation points, which is called the multidimensional
interpolation [20]. The application of Ochiai’s work was,
however, limited to the functional interpolation only. In
the present work, the technique was extended to be able
to approximate function derivatives with function values
and their normal derivatives at boundary, which results
in a new quadrature rule for solving boundary value
problems with general irregular domains. In particular,
in the BIE-DQM, the first and the second derivatives of
a function with respect to independent variables can be
approximated by a linear combination of function val-
ues at all discrete nodal points and the normal deriva-
tives at all boundary points.

The layout of the paper is as follows. In Sect. 2, we
introduce in detail the BIE-DQM. In Sect. 3, simple
numerical examples are presented to show the effec-
tiveness of the interpolation technique for derivatives
with boundary integral equations and to verify the
feasibility and flexibility of the new algorithm with
the BIE-DQM by solving a Poisson equation, a
convection-diffusion equation with varying parameters
and a non-linear equation over irregular geometry. In
Sect. 4, discussions are presented to clarify what are the
distinction and the advantages of the proposed method
over the previous techniques such as BIE, DQM and
Ochiai’s method.

2 Differential quadrature with BIE

In this section the BIE-DQM is introduced in detail in
order to establish notation and to provide a common
source for reference in later sections. We first describe
the basic BIEs, based on which the interpolation of a
smooth function over domains with arbitrary geometry
can be realized. Then we describe the quadrature rules
for derivatives with BIE.

2.1 Boundary integral equations

Consider a smooth function u xð Þ defined in the domain
X with a piecewise smooth boundary C. Suppose the
following relation exists:

u½2� xð Þ ¼ u½1�;kk xð Þ ¼ u;jjkk xð Þ ð1Þ

where u½2� xð Þ represents an unknown strength of a Dirac-
type function [20]. In the one-dimensional case, u xð Þ can
be considered as the deflection of a simply supported
beam and u½1�;kk xð Þ corresponds to the moment of the
beam, which is the response to the point load u½2� xð Þ. In
the two-dimensional case, u xð Þ can be viewed as the
deformation of an imaginary thin plate and u½1�;kk xð Þ cor-
responds to the moment of the plate, all resulting from
the Dirac-type function u½2� xð Þ, i.e., the point load [16].

In order to realize the interpolation with the BIE, the
fundamental solution g x; yð Þ of Laplace equation is
employed, which satisfies

g;kk x; yð Þ þ d x; yð Þ ¼ 0 ð2Þ
where d x; yð Þ is the Dirac-d function and x and y are the
field and the source points, respectively. The funda-
mental solution g x; yð Þ has relations with its higher-order
fundamental solution

g0 ¼ g1
;kk ð3Þ

In the two-dimensional case, the fundamental solutions
are as follows:

g x; yð Þ ¼ 1

2p
ln

1

r

� �
ð4Þ

g1 x; yð Þ ¼ r2

2p
ln
1

r
þ 1

� �
ð5Þ

where r is the distance between x and y. Supposing the
number of the point load u½2� xð Þ is M in the domain X,
we can writeZ
X

u½2� xð Þf xð ÞdX xð Þ ¼
XM
l¼1

u½2� xl
� �

f xl
� �

ð6Þ

where f xð Þ represents any continuous function in the
neighborhood of xl in X. Now consider the following
integral:Z
X

u xð Þ g;kk x; yð Þ þ d x; yð Þ
� �

dX xð Þ ¼ 0 ð7Þ

Using the Green’s second identity [13] and from (6) and
(7), we obtain the following boundary integral equation:

c yð Þu yð Þ þ
Z
Ch i

u xð Þh x; yð ÞdC xð Þ

�
Z
C

q xð Þg x; yð ÞdC xð Þ

¼ �
Z
C

u½1� xð Þh½1� x; yð ÞdC xð Þ

þ
Z
C

q½1� xð Þg½1� x; yð ÞdC xð Þ

�
XM
l¼1

u½2� xl
� �

g½1� xl; y
� �

ð8Þ
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where

c yð Þ ¼
1 y 2 X
0:5 y 2 C if C is smooth
0 y 2 X [ C

8<
: ð9Þ

and

h ¼ og
on
; h½1� ¼ og½1�

on
; q ¼ ou

on
; q½1� ¼ ou½1�

on
ð10Þ

where n is the outward normal to the boundary. The first
boundary integral in the left-hand side of Eq. (8) is
strong singular, which is denoted by corner bracket Ch i,
and should be evaluated in the sense of the Cauchy
principal value [13] when y 2 C . Taking derivatives of
both sides of (8) with respect to y when y =2 C and then
taking the limit process [21], we have

c yð Þu;k yð Þ ¼ �
Z
C½ �

u xð Þhk x; yð ÞdC xð Þ

þ
Z
Ch i

q xð Þgk x; yð ÞdC xð Þ

�
Z
C

u½1� xð Þh½1�k x; yð ÞdC xð Þ

þ
Z
C

q½1� xð Þg½1�k x; yð ÞdC xð Þ

�
XM
l¼1

u½2� xl
� �

g½1�k xl; y
� �

ð11Þ

where the square bracket C½ � indicates that the first
boundary integral in the right-hand side of (11) is hy-
persingular and evaluated in the sense of the Hadamard
finite part [21] when y 2 C. The relations of the derived
fundamental solutions in Eq. (11) are as follows:

gk ¼ �
og
oxk

; hk ¼ �
oh
oxk

; g1
k ¼ �

og1

oxk
; h1

k ¼ �
oh1

oxk
ð12Þ

The explicit expressions of the derived fundamental
solutions in (12) are presented in Appendix I. Eq. (11)
can be written in the flux form by multiplying the
outward normal nk yð Þ at both sides:

c yð Þq yð Þ þ nk yð Þ
Z
C½ �

u xð Þ hk x; yð ÞdC xð Þ

� nk yð Þ
Z
Ch i

q xð Þgk x; yð ÞdC xð Þ

¼ �nk yð Þ
Z
C

u½1� xð Þh½1�k x; yð ÞdC xð Þ

þ nk yð Þ
Z
C

q½1� xð Þg½1�k x; yð ÞdC xð Þ

� nk yð Þ
XM
l¼1

u½2� xl
� �

g½1�k xl; y
� �

y 2 Cð Þ ð13Þ

We again take derivatives of both sides of (13) with
respect to y by setting y 2 X and then take the limit
process to obtain

c yð Þq;k yð Þ ¼ �nj yð Þ
Z
Cf g

u xð Þhjk x; yð ÞdC xð Þ

� nj yð Þ
Z
C½ �

q xð Þgjk x; yð ÞdC xð Þ

� nj yð Þ
Z
Ch i

u½1� xð Þh½1�jk x; yð ÞdC xð Þ

þ nj yð Þ
Z
C

q½1� xð Þg½1�jk x; yð ÞdC xð Þ

� nj yð Þ
XM
l¼1

u½2� xl
� �

g½1�jk xl; y
� �

y 2 Cð Þ ð14Þ

where the bracket Cf g indicates that the first boundary
integral in the right-hand side of (14) is supersingular
and should be evaluated in the sense of principal value
when y 2 C. The relations of derived fundamental
solutions in (14) are as follows:

gjk ¼ �
ogk

oxj
; hjk ¼ �

ohk

oxj
;

g½1�jk ¼ �
og½1�k

oxj
; h½1�jk ¼ �

oh½1�k

oxj
ð15Þ

The explicit expressions of the derived fundamental
solutions in (15) are also given in Appendix I. The orders
of singularity of various kernels in the two-dimensional
BIE (8), (11), (13) and (14) are listed in the Table A of
Appendix II.

2.2 Function interpolation

Combining (8) and (13) we can obtain an interpolation
formula with BIEs in discrete forms. To simplify the
expression, supposing that the boundary has been di-
vided into N constant boundary elements, DC, we have
from (8)

HCuC �GCqC ¼ �H
½1�
C u
½1�
C þG

½1�
C q
½1�
C

�GM
C u½2� y 2 Cð Þ ð16Þ

uX þHXuC �GXqC ¼ �H
½1�
X u
½1�
C þG

½1�
X q
½1�
C

�GM
X u½2� y 2 Xð Þ ð17Þ

The subscripts C and X represent, respectively, the val-
ues on boundary (N nodes) or in domain (M nodes) for
function or function derivative vectors, u and q, in (16)
and (17). For matrices, the subscripts C and X represent,
respectively, the locations of the source points, y, on
boundary or in domain. Similarly, from (13) we can
write
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HNuC �GNqC ¼ �H
½1�
N u
½1�
C þG

½1�
N q
½1�
C

�GM
Nu
½2� y 2 Cð Þ ð18Þ

The entries of the matrices in (16)–(18) are presented in
Appendix III. Rewriting (16)–(18) in compact matrix
form, we have

HN �GN 0

HC �GC 0

HX �GX I

2
4

3
5 uC

qC

uX

8<
:

9=
;

¼
�H½1�N G

½1�
N �GM

N

�H½1�C G
½1�
C �GM

C

�H½1�X G
½1�
X �GM

X

2
64

3
75

u
½1�
C

q
½1�
C

u½2�

8><
>:

9>=
>; ð19Þ

where I is a M �M unit matrix. (19) can be concisely
written as

M0b
½0� ¼M1b

½1� ð20Þ
where

M0 ¼
HN �GN 0

HC �GC 0

HX �GX I

2
4

3
5; b½0� ¼

uC

qC

uX

8<
:

9=
;;M1

¼
�H½1�N G

½1�
N �GM

N

�H½1�C G
½1�
C �GM

C

�H½1�X G
½1�
X �GM

X

2
64

3
75; b½1� ¼

u
½1�
C

q
½1�
C

u½2�

8><
>:

9>=
>; ð21Þ

If the vector b½0� is prescribed, we can determine the
values of vector b½1� by

b½1� ¼M�11 M0b
½0� ð22Þ

Then the function values at any point, x 2 X [ C, can be
computed by using Eq. (8) in a discrete form. The pro-
cedure mentioned above is one of the forms of interpo-
lation with the BIE. It should be pointed out that
interpolation with the BIE may have many forms. The
interpolation can be realized by different combinations of
integral Eqs. [14–17]. In the present work, the purpose in
using the hypersingular Eq. (13) is to improve the accu-
racy of the interpolation for function derivatives on the
boundary.

2.3 Quadrature rules for derivatives

Assuming that the boundary has been divided into N
constant boundary elements, DC, we can write (11), (13)
and (14) in discrete forms, respectively, as follows:

uC;k ¼ �HCkuC þGCkqC �H
½1�
Cku

½1�
C

þG
½1�
Ckq

½1�
C �GM

Cku
½2� y 2 Cð Þ ð23Þ

uX;k ¼ �HXkuC þGXkqC �H
½1�
Xku

½1�
C

þG
½1�
Xkq

½1�
C �GM

Xku
½2� y 2 Xð Þ ð24Þ

qC;k ¼ �HNkuC þGNkqC �H
½1�
Nku

½1�
C

þG
½1�
Nkq

½1�
C �GM

Nku
½2� y 2 Cð Þ ð25Þ

The entries of the matrices in (23)–(25) are listed in
Appendix III. We can rewrite (23)–(25), respectively, in
compact matrix forms as

uC;k

uX;k

� �
¼
�HCk GCk

�HXk GXk

	 

uC

qC

� �

þ
�H½1�Ck G

½1�
Ck �GM

Ck

�H½1�Xk G
½1�
Xk �G½1�Xk

" # u
½1�
C

q
½1�
C

u½2�

8><
>:

9>=
>; ð26Þ

qC;k

� �
¼ �HNk GNk½ �

uC

qC

� �

þ �H½1�Nk G
½1�
Nk �G½1�Nk

h i u
½1�
C

q
½1�
C

u½2�

8><
>:

9>=
>; ð27Þ

Inserting (19) or (20) into (26) and (27), respectively, to
eliminate vector b½1�, we obtain

uC;k

uX;k

� �
¼
�HCk GCk

�HXk GXk

	 

uC

qC

� �

þ
�H½1�Ck G

½1�
Ck �GM

Ck

�H½1�Xk G
½1�
Xk �G½1�Xk

" #
M�11 M0

�
uC

qC

uX

8><
>:

9>=
>; ð28Þ

qC;k

� �
¼ �HNk GNk½ �

uC

qC

� �

þ �H½1�Nk G
½1�
Nk �G½1�Nk

h i
M�11 M0

�
uC

qC

uX

8><
>:

9>=
>; ð29Þ

Equations (28) and (29) can be rewritten in a concise
form, respectively, as

u;k ¼ Ukb
½0� ð30Þ

q;k ¼ Qkb
½0� ð31Þ

Notice that (30) is just the quadrature rule with the BIE
for the first derivatives over irregular geometries, which
can be written in a similar form with the conventional
DQM as

u;k ynð Þ ¼
XNþM

m¼1
Anm

k um þ
XN

m¼1
Bnm

k qm

n ¼ 1; 2; . . . ;N þMð Þ ð32Þ

where Anm
k ¼ Ak xm; ynð Þ and Bnm

k ¼ Bk xm; ynð Þ are the
corresponding entries in the matrix Uk , um represents
the function values at each of all the nodal points, qm the
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values of outward normal at all the boundary nodes. In
Eq. (32), both Anm

k and Bnm
k serve as the weighting coef-

ficients. Now taking derivatives at both sides of (30), we
can write

u;ik ¼ Ukb
½0�
;i ð33Þ

where

b
½0�
;i ¼

uC;i

qC;i
uX;i

8<
:

9=
; ð34Þ

Substituting (30) and (31) into (33) and after some
rearrangement, we have the quadrature rule with BIE
for the second-derivatives over irregular geometries as
follows:

u;ik ¼ Uikb
½0� ð35Þ

We also rewrite (35) in a similar form with the conven-
tional DQM as

u;ik ynð Þ ¼
XNþM

m¼1
Anm

ik um þ
XN

m¼1
Bnm

ik qm

n ¼ 1; 2; . . . ;N þMð Þ ð36Þ
where Anm

ik ¼ Aik xm; ynð Þ and Bnm
ik ¼ Bik xm; ynð Þ are the

corresponding entries in the matrix Uik . Here Anm
ik and

Bnm
ik serve also as the weighting coefficients in (36). It can

be seen from both Eqs. (32) and (36) that the function
derivatives with respect to independent variables are
approximated by a weighted linear combination of
function values at all discrete nodal points as well as
their normal derivatives at all boundary points. This
feature entails all the merits of ordinary DQM for
solution of partial differential equations. Moreover, it
can obviously be seen that there are two distinct
advantages resulting from the formation of (32) and
(36). The first is that the BIE-supported quadrature rule
can deal with boundary value problems over domains
with generally irregular geometries. The second is that
the boundary condition of the problem can be treated
naturally without any difficulty. The difference of the
BIE-DQM from the conventional DQM lies in the way
to determine the weighting coefficients.

3 Numerical examples

In this section, an interpolation problem as well as the
solutions of a Poisson equation, a convection-diffusion
equation and a non-linear equation are considered using
the proposed BIE-DQM. In all the numerical examples,
five-node boundary elements are applied to improve the
accuracy of derivative approximations on boundary.
The unconformity boundary elements are used only at
corner points to avoid indefiniteness of the outward
normal at these places. For the evaluation of hypersin-
gular and supersingular boundary integrals with kernels
hk and hjk, the following relations are used, respectively:

Z
C

hk x; yð ÞdC xð Þ ¼ 0 ð37Þ

Z
C

hjk x; yð ÞdC xð Þ ¼ 0 ð38Þ

For the evaluation of hypersingular boundary integrals
with other kernels in (14), the singular integrals are
approximated by the mean values of the two corre-
sponding nearly singular boundary integrals with dis-
tance transformation techniques [22–23]. In the
numerical examples, four-point Gauss quadrature is
used in general for evaluation of ordinary integrals and
eight-point Gauss quadrature is used for singular inte-
grals, but at most 16-point Gauss quadrature is used for
nearly singular integrals according to the distances be-
tween x and y.

3.1 Derivative approximation

The first and second derivatives are approximated,
respectively, by the quadrature rules (32) and (36). The
function values at all nodal points and the normal
derivative values at all boundary points are taken as
known over a square domain of x1 2 0; 1½ � and
x2 2 0; 1½ �. The function approximated is as follows:

u x1; x2ð Þ ¼ R2 exp x1 � x2ð Þ ð39Þ
where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x2 � 2ð Þ2

q
ð40Þ

The boundary is divided into eight elements with a total
of 36 boundary nodes. Thirty-six equally-spaced internal
nodes are employed in the domain. The relative errors in
absolute values along all the boundary nodes are shown
in Fig. 1. The relative error-surfaces of u;2 and u;12 are
shown in Figs. 2 and 3, respectively. It can be seen from
Figs. 1–3 that the accuracy for the first derivatives
is very good both in domain and on boundary. The
accuracy for the second-derivatives is acceptable

Fig. 1 Relative errors along the boundary of the square
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although it is not as good as that for the first derivatives,
as expected. The maximum relative errors of the second-
derivatives occur on the boundaries at certain directions
(Fig. 1).

3.2 Poisson equation

We first consider the following Poisson equation:

u;kk ¼ 28x1 x1; x2 2 Xð Þ ð41Þ
subject to the boundary conditions

u x1; x2ð Þ ¼ �u x1; x2ð Þ x1; x2 2 Cuð Þ;
q x1; x2ð Þ ¼ �q x1; x2ð Þ x1; x2 2 Cq

� �
ð42Þ

where �u x1; x2ð Þ and �q x1; x2ð Þ are the prescribed values of
functions and fluxes, respectively. The analytical solu-
tion is as follows:

u ¼ x31 � 3x21x2 þ 2x1x22 þ x32 ð43Þ
The above Dirichlet and Neumann boundary condi-

tions �u x1; x2ð Þ and �q x1; x2ð Þ , respectively, on Cu and Cq
can be easily evaluated using the analytical solution (43).

The domain of an irregular geometry is shown in Fig. 4.
The Dirichlet conditions are prescribed along the
boundary C-D-E (Fig. 4). The Neumann conditions are
prescribed along the other boundaries. The boundary is
modeled by 12 boundary elements and a total of 55
boundary nodes. There are 16 internal nodes used as
shown in Fig. 4. By applying the quadrature rule (36)
into the Poisson Eq. (41), we can easily obtain the
algebraic equations

XNþM

m¼1
Anm

kk um þ
XN

m¼1
Bnm

kk qm

¼ 28xn
1 n ¼ 1; 2; . . . ;N þMð Þ ð44Þ

Suppose that there are N1 and N2 (N1 þ N2 ¼ N )
boundary nodes, respectively, on Dirichlet and Neu-
mann prescribed boundaries. Substituting boundary
conditions (42)–(44), we obtain the system equations as
follows:

XN2þM

m¼1
Anm

kk um þ
XN1

m¼1
Bnm

kk qm ¼ 28xn
1 �

XN1

m¼1
Anm

kk �um

�
XN2

m¼1
Bnm

kk �qm n ¼ 1; 2; . . . ;N þMð Þ ð45Þ

Fig. 2 Relative error surface of u;2 in the domain of the square

Fig. 3 Relative error surface of u;12 in the domain of the square

Fig. 4 Configuration of 2D irregular geometry

Fig. 5 Relative errors along the boundary and interior nodes for
Poisson equation
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which can be written concisely in matrix form as

Ax ¼ b ð46Þ
Compared with the conventional DQM [1–12], it is

obvious that the treatment of boundary conditions with
the BIE-DQM is very simple and convenient, similar to
that in the boundary element method [13]. The relative
errors along the boundary and at the interior nodes are
shown in Fig. 5 in which the maximum relative error is
1.3% over the Nuemann boundary. It can be seen from
Fig. 8 that the proposed approach can provide a very
good accuracy both in the domain and on the boundary.
The computed values of domain variables are compared
with the exact ones in the domain along the horizontal
line b� b (see Fig. 6) and along the vertical line a� a
(Fig. 7), respectively. It is found from Figs. 6 and 7 that
the computed results of both the function and the
derivative are in good agreement with the analytical
results in the domain.

3.3 Convection-diffusion equation with varying
parameters

Next we consider the following convection-diffusion
equation:

u;kk þ x2u;1 þ x1u;2 ¼ 1� x2ð Þ exp �x1ð Þ þ 1� x1ð Þ exp
� �x2ð Þ x1; x2 2 Xð Þ ð47Þ

subject to the boundary conditions still represented by
(42). The solution domain in this example is the same as
that used in Sect. 3.2, as shown in Fig. 4. The Dirichlet
conditions, however, are prescribed along the arc G-A
(Fig. 4) for the convection-diffusion problem. The
Neumann conditions are prescribed along the other
boundaries. The analytical solution for the convection-
diffusion equation is as follows:

u ¼ exp �x1ð Þ þ exp �x2ð Þ ð48Þ
By applying the quadrature rules (32) and (36) into

the convection diffusion Eq. (47) at any nodal point yn

in conjunction with the boundary conditions (42), we
obtain the system equations as follows:

XN2þM

m¼1
Anm

kk þ xn
1Anm

1 þ xn
1A

nm
2

� �
um

þ
XN1

m¼1
Bnm

kk þ xn
2B

nm
1 þ xn

1Bnm
2

� �
qm

¼ 1� xn
2

� �
exp �xn

1

� �
þ 1� xn

1

� �
exp �xn

2

� �

�
XN1

m¼1
Anm

kk þ xn
1A

nm
1 þ xn

1Anm
2

� �
�um

�
XN2

m¼1
Bnm

kk þ xn
2B

nm
1 þ xn

1Bnm
2

� �
�qm

� n ¼ 1; 2; . . . ;N þMð Þ ð49Þ

The relative errors along the boundary and interior
nodes are shown in Fig. 8 in which the maximum rela-
tive error is 0.08% over the Nuemann boundary. The
computed values of domain variables are compared with
the exact ones in the domain, respectively, along the
horizontal line b� b (see Fig. 9) and along the vertical
line a� a (see Fig. 10). It can also be seen from this
example that, with the BIE-DQM, the transform of

Fig. 6 Domain variables along the b� b line for Poisson equation

Fig. 7 The domain variables along the a� a line for Poisson equation
Fig. 8 Relative errors along the boundary and interior nodes for
convection-diffusion equation
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differential equation to algebraic equations is very sim-
ple, and the treatment of boundary conditions is con-
venient and natural. It can be seen also from Figs. 8–10
that the accuracy of the numerical results is good both in
the domain and on the boundary for both the function
and derivative values, although the accuracy of deriva-
tives is generally not as good as that of functions, which
is also true for other numerical methods.

3.4 A non-linear differential equation

The last example considered is a non-linear differential
equation as follows

L uð Þ ¼ 4uu;kk � 10u;1u;2 þ 5 ¼ 0 ð50Þ
The boundary conditions is still defined by (42). The

solution domain here is the same as that used in
Sect. 3.2, as shown in Fig. 4. The Dirichlet conditions,
however, are prescribed along the arc C-D-E-F-G
(Fig. 4) for the non-linear differential equation. The
exact solution to the above problem is given as

u ¼ cos x1 þ 0:5x2ð Þ ð51Þ

It is well-known that the difficulty in solving this non-
linear problem by the conventional BIE is to find a
corresponding fundamental solution. In contrast, with
the proposed BIE-DQM, this non-linear problem can be
solved by applying the quadrature rules (32) and (36)
without any difficulty. In this case, an iterative process is
required in handling the nonlinear term in Eq. (50). For
this purpose, we adopt Newton’s approach wherein,
beginning with an assumed field u 0ð Þ consistent with the
boundary conditions (42), the successively refined solu-
tions can be obtained through the following iterative
scheme

u jþ1ð Þ ¼ u jð Þ þ h jð Þ ð52Þ
where h ¼ h x1; x2ð Þ is the refinement of u and j is the
iteration count. The refinement h is determined by the
solution of the following equation written in the oper-
ator form as

hL0 uð Þ þ L uð Þ ¼ 0 ð53Þ
where L0 represents the Frechet derivative defined as [2]

hL0 uð Þ ¼ o

oe
L uþ ehð Þ e¼0j ð54Þ

Substituting the Frechet derivative (54) and (50) into
(53), we obtain

4uh;kk � 10u;2h;1 � 10u;1h;2 þ 4u;kkh

¼ � 4uu;kk � 10u;1u;2 þ 5
� �

ð55Þ
The above equation is a linear one in terms of the

refinement h. By applying the quadrature rules (32) and
(36) into (55) at any nodal point yn yields the system
equations as follows:

XN2þM

m¼1
4unAnm

kk � 10un
;2Anm

1 � 10un
;1A

nm
2

� �
hm

þ
XN1

m¼1
4unBnm

kk � 10un
;2Bnm

1 � 10un
;1B

nm
2

� � oh
on

m

þ 4un
;kkh

n ¼ � 4unun
;kk � 10un

;1u
n
;2 þ 5

� �

n ¼ 1; 2; . . . ;N þMð Þ ð56Þ
where the following boundary conditions for the
h-variables have been included in (56).

h x1; x2ð Þ ¼ 0 x1; x2 2 Cuð Þ;
oh
on

x1; x2ð Þ ¼ 0 x1; x2 2 Cq
� �

ð57Þ

In the calculation, the following convergence criterion
was employed.

XN2þM

m¼1
hmð Þ2þ

XN1

m¼1

ohm

on

� �2

� 10�6 ð58Þ

With an initial guess, say u 0ð Þ ¼ k cos x1 þ 0:5x2ð Þ
where 0:8 � k � 1:2 , to which the convergence of
Newton’s method is very sensitive, a converged solution
could always be obtained in a maximum of six iterations.

Fig. 9 Domain variables along the b� b line for convection-diffusion
equation

Fig. 10 Domain variables along the a� a line for convection-
diffusion equation
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The relative errors along the boundary and interior
nodes are shown in Fig. 11 in which the maximum rel-
ative error is 3.1% over the Nuemann boundary. The
computed values of domain variables are compared with
the exact ones in the domain along the horizontal line
b� b in Fig. 12 and along the vertical line a� a in
Fig. 13, respectively. It can be seen again from Figs. 11–
13 that the accuracy of the numerical results is good in
the domain and on the boundary for both the function
and derivative values. This example shows the feasibility
and convenience to deal with non-linear problems using
the proposed BIE-DQM method.

4 Discussions

In the previous section, the feasibility, versatility and
numerical accuracy of the proposed BIE-DQM are
verified by three numerical examples using relatively
small number of interior nodal points. In this section,
further discussions are made to clarify some important
questions about the BIE-DQM for the correlation with,
the difference from as well as the similarity to its two
origins, the DQM and the BIE method to identify what
are the distinction and the advantages of the proposed

method over previous approached such as Ochiai’s
method.

It is well known that, in the conventional DQM, the
values of derivative at each sampling grid point is
approximated as weighted linear conbination of all the
function values at nodal points in the whole domain
including boundary [1, 2]. The DQM uses a set of test
functions to determine the weighting coefficients where
the polynomials are the most frequently used test func-
tions. When applied to problems with globally smooth
solutions, DQM can yield very accurate numerical
results using a considerably small number of grid points.
It has been shown [2, 6, 24–25] that the DQM is essen-
tially equivalent to the general collocation method. In
other words, numerical interpolations are the mathe-
matical basis of the DQM. The quadrature rule comes
from the interpolation, which is in fact to one-dimen-
sional only. When solving a two- or three-dimensional
problem, however, the interpolations, or more particu-
larly, the quadrature rules, have to be performed inde-
pendently at each dimensional direction for the
controlling differential equation, which results in the
limitation of requiring a regular geometry of the prob-
lem in the DQM. Others are also affected by the grid
distributions and treatments of boundary conditions in
some cases (Bert and Malik [2]).

It should be pointed out that the mathematical basis
of the BIE-DQM is also the numerical interpolation of
the function itself and its derivatives, which can be done
with the aid of BIE method presented in [14] and named
as multidimensional interpolation [20] by Ochiai. The
purpose of Ochiai’s work was to deal with the domain
integrals encountered in the BIE method when solving a
number of problems [15–17], which can be considered as
a supplement to the dual reciprocity [18] or multiple
reciprocity [19] boundary element method. In Ochiai’s
work, the application was, however, limited to the
functional interpolation only. In the present work, the
limitation of Ochiai’s technique has been removed and it
can thus successively to approximate function deriva-
tives over general irregular domains. Concretely, in the
BIE-DQM, the first and the second derivatives of a

Fig. 11 Relative errors along the boundary and interior nodes for
non-linear equation

Fig. 12 Domain variables along the b� b line for non-linear
equation

Fig. 13 Domain variables along the a� a line for non-linear
equation
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function with respect to independent variables are
approximated by a weighted linear conbination of
function values at all discrete nodal points as well as the
normal derivatives at all boundary nodal points.

Similar to the conventional DQM, there are two main
steps to solve a problem using the BIE-DQM. The first is
to compute the weighting coefficients and the second is
to apply the quadrature rules combined with boundary
conditions. The difference between the BIE-DQM and
the conventional DQM lies in how to determine the
weighting coefficients. Instead of using any test func-
tions, the weighting coefficients in the Eqs. (32) and (36)
are derived from the BIE-aided numerical interpolations
as described the Sect. 2. Here the BIE takes the role of
test functions in a general sense. Therefore, the func-
tional derivatives with respect to independent variables
are approximated by a weighted linear conbination of
not only the functions but also the boundary normal
derivatives in the BIE-DQM. Owing to this reason, the
BIE-DQM gets two distinct merits: it can be performed
very easily and naturally both in dealing with the
problems with irregular geometries and in treating
boundary conditions. It is noticed that the form of the
quadrature rules (32) and (36) is almost similar to that of
the conventional DQM. Therefore, when solving a
problem, incorporated with the boundary conditions,
one need simply to apply the quadrature rules (32) and
(36) to the differential equation to transform it into the
linear algebraic equations as shown in the three
numerical examples in the previous section. This is just
the same practice performed in the conventional DQM.
From this point, the BIE-DQM, as a newly developed
numerical method, would be suitable theoretically to
solve quite a number of second-order differential equa-
tions including the initial problems.

Here the difference between the BIE-DQM and the
conventional BIE method should also be mentioned. In
the BIE method [13], the corresponding fundamental
solution is required before the differential equations can
be solved. Moreover, using the BIE method yields a
domain-type integral in most of the cases, although there
are a number of efficient procedures to treat it [18–19,
26–27]. In contrast, one does not worry about the fun-
damental solution in the use of the BIE-DQM. In
determining the weighting coefficients using the BIE
method, one needs only the knowledge of fundamental
solution of Laplace’s equation and its higher-order form
(see (4) and (5)), which are easy to obtain. In fact, from
the main features of the solution procedure, the
BIE-DQM belongs to the category of DQM, which is
intrinsically a cell-free boundary-type numerical
method. It has been shown that no domain-type integral
takes place in deriving the quadrature rules (32) and
(36), although the boundary elements are still required.

In summary, as the BIE-DQM can be looked as a
combination of the DQM and the BIE method, it has
common favorable features of the two origins while
bypassing some shortcomings. It must be pointed out
that the procedure in deriving the quadrature rules (32)

and (36) is slightly complicated because the hypersin-
gular and supersingular boundary integrals have to be
treated numerically. This is a limitation in the applica-
tion of the BIE-DQM. However, these boundary inte-
grals can be computed indirectly with the techniques of
nearly singular boundary integrals [22–23] without any
difficulty.

5 Conclusions

A new differential quadrature method, the BIE-DQM, is
developed in this paper, based on the interpolation
technique with the BIE for the solution of problems over
domains with generally irregular geometries. With the
BIE-DQM, the first and the second derivatives of a
function with respect to independent variables are
approximated by a weighted sum of the function values
at all discrete nodal points and the normal derivatives at
all boundary points. As a combination of the conven-
tional DQM and the BIE method, the BIE-DQM has
common favorable features of the two origin methods
while avoiding some shortcomings of them. The feasi-
bility and versatility of the new algorithm with the BIE-
DQM are assessed through three examples of a Poisson
equation, a convection-diffusion equation with varying
parameters and a non-linear differential equation over
irregular geometry.
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Appendix I

The explicit formulations of derived fundamental solu-
tions in (8), (11), (13) and (14) are as follows:

gk x; yð Þ ¼ 1

2pr
r;k ðA1Þ

gjk x; yð Þ ¼ 1

2pr2
2r;jr;k � djk
� �

ðA2Þ

h x; yð Þ ¼ � 1

2pr
or
on

ðA3Þ

hk x; yð Þ ¼ 1

2pr2
nk � 2

or
on

r;k

� �
ðA4Þ

hjk x; yð Þ ¼ 1

pr3
djk � 4r;jr;k
� � or

on

	

þr;jnk þ r;knj
�

ðA5Þ

g½1�k x; yð Þ ¼ � r
4p

ln
1

r
þ 1

2

� �
r;k ðA6Þ

g½1�jk x; yð Þ ¼ 1

4p
ln
1

r
þ 1

2

� �
djk � rjrk

	 

ðA7Þ
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h½1� x; yð Þ ¼ r
4p

ln
1

r
þ 1

2

� �
or
on

ðA8Þ

h½1�k x; yð Þ ¼ 1

4p
or
on

r;k � ln
1

r
þ 1

2

� �
nk

	 

ðA9Þ

h½1�jk x; yð Þ ¼ 1

4pr
2r;jr;k � djk
� � or

on

	

�r;jnk � r;knj
�

ðA10Þ

Appendix II

The singularity orders of various kernels in the two-
dimensional BIE are listed in Table A. The difference
among them lies in the denominators in the kernels as a
function of r and the distance between x and y.

Appendix III

Suppose that the boundary is smooth if the source point
y is placed on the boundary in the following equations.
The entries of the matrices in Eq.(16) can be expressed as
follows:

HCnm ¼ c ynð Þ þ
Z

DCmh i

h x; ynð ÞdC xð Þ yn 2 DCmð Þ ðA11Þ

HCnm ¼
Z

DCm

h x; ynð ÞdC xð Þ yn 2 C=DCmð Þ ðA12Þ

GCnm ¼
Z

DCm

g x; ynð ÞdC xð Þ yn 2 Cð Þ ðA13Þ

H ½1�Cnm ¼
Z

DCm

h½1� x; ynð ÞdC xð Þ yn 2 Cð Þ ðA14Þ

G½1�Cnm ¼
Z

DCm

g½1� x; ynð ÞdC xð Þ yn 2 Cð Þ ðA15Þ

GM
Cnl ¼ g½1� xl; yn

� �
xl 2 C; yn 2 X
� �

ðA16Þ
The entries of the matrices in Eq.(17) are expressed as
follows:

HXnm ¼
Z

DCm

h x; ynð ÞdC xð Þ yn 2 Xð Þ ðA17Þ

GXnm ¼
Z

DCm

g x; ynð ÞdC xð Þ yn 2 Xð Þ ðA18Þ

H ½1�Xnm ¼
Z

DCm

h½1� x; ynð ÞdC xð Þ yn 2 Xð Þ ðA19Þ

G½1�Xnm ¼
Z

DCm

g½1� x; ynð ÞdC xð Þ yn 2 Xð Þ ðA20Þ

GM
Xnl ¼ g½1� xl; yn

� �
xl 2 X; yn 2 X
� �

ðA21Þ
The entries of the matrices in Eq.(18) are expressed as
follows:

HNnm ¼ nk ynð Þ
Z

DCm½ �

hk x; ynð ÞdC xð Þ

� yn 2 C=DCmð Þ ðA22Þ

HNnm ¼ nk ynð Þ
Z

DCm

hk x; ynð ÞdC xð Þ yn 2 DCmð Þ ðA23Þ

GNnm ¼ �c ynð Þ þ nk ynð Þ
Z

DCmh i

gk x; ynð ÞdC xð Þ

� yn 2 DCmð Þ ðA24Þ

GNnm ¼ nk ynð Þ
Z

DCm

gk x; ynð ÞdC

� xð Þ yn 2 C=DCmð Þ ðA25Þ

H ½1�Nnm ¼ nk ynð Þ
Z

DCm

h½1�k x; ynð ÞdC xð Þ yn 2 Cð Þ ðA26Þ

G½1�Nnm ¼ nk ynð Þ
Z

DCm

g½1�k x; ynð ÞdC xð Þ yn 2 Cð Þ ðA27Þ

GM
Nnl ¼ nk ynð Þg½1�k xl; yn

� �
xl 2 C; yn 2 X
� �

ðA28Þ

The entries of the matrices in Eq.(23) are expressed as
follows:

HCknm ¼ 2

Z
DCm

hk x; ynð ÞdC xð Þ yn 2 C=DCmð Þ ðA29Þ

HCknm ¼ 2

Z
DCm½ �

hk x; ynð ÞdC xð Þ yn 2 DCmð Þ ðA30Þ

GCknm ¼ 2

Z
DCm

gk x; ynð ÞdC xð Þ yn 2 C=DCmð Þ ðA31Þ

Table A Singularity orders of the kernels in the two-dimensional
BIE

Singularity order Eq. (8) Eq. (11) Eq. (13) Eq. (14)

Weakly singular ln 1
r

� �
g h½1�k h½1�k g½1�jk

Strong singular 1
r h gk gk h½1�jk

Hypersingular 1
r2 hk hk gjk

Supersingular 1
r3 hjk
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GCknm ¼ 2

Z
DCmh i

gk x; ynð ÞdC xð Þ yn 2 DCmð Þ ðA32Þ

H ½1�Cknm ¼ 2

Z
DCm

h½1�k x; ynð ÞdC xð Þ yn 2 Cð Þ ðA33Þ

G½1�Cknm ¼ 2

Z
DCm

g½1�k x; ynð ÞdC xð Þ yn 2 Cð Þ ðA34Þ

GM
Cknl ¼ 2g½1�k xl; yn

� �
xl 2 C; yn 2 X
� �

ðA35Þ
The entries of the matrices in Eq.(24) are expressed as
follows:

HXknm ¼
Z

DCm

hk x; ynð ÞdC xð Þ yn 2 Xð Þ ðA36Þ

GXknm ¼
Z

DCm

gk x; ynð ÞdC xð Þ yn 2 Xð Þ ðA37Þ

H ½1�Xknm ¼
Z

DCm

h½1�k x; ynð ÞdC xð Þ yn 2 Xð Þ ðA38Þ

G½1�Xknm ¼
Z

DCm

g½1�k x; ynð ÞdC xð Þ yn 2 Xð Þ ðA39Þ

GM
Xknl ¼ g½1�k xl; yn

� �
xl 2 X; yn 2 X
� �

ðA40Þ

The entries of the matrices in Eq.(25) are expressed as
follows:

HNknm ¼ 2nj ynð Þ
Z

DCm

hjk x; ynð ÞdC xð Þ

yn 2 C=DCmð Þ ðA41Þ

HNknm ¼ 2nj ynð Þ
Z

DCmf g

hjk x; ynð ÞdC xð Þ

yn 2 DCmð Þ ðA42Þ

GNknm ¼ 2nj ynð Þ
Z

DCm

gjk x; ynð ÞdC xð Þ

yn 2 C=DCmð Þ ðA43Þ

GNknm ¼ 2nj ynð Þ
Z

DCm½ �

gjk x; ynð ÞdC xð Þ

yn 2 DCmð Þ ðA44Þ

H ½1�Nknm ¼ 2nj ynð Þ
Z

DCm

h½1�jk x; ynð ÞdC xð Þ

yn 2 C=DCmð Þ ðA45Þ

H ½1�Nknm ¼ 2nj ynð Þ
Z

DCmh i

h½1�jk x; ynð ÞdC xð Þ

yn 2 DCmð Þ ðA46Þ

G½1�Nknm ¼ 2nj ynð Þ
Z

DCm

g½1�jk x; ynð ÞdC xð Þ yn 2 Cð Þ ðA47Þ

GM
Nknl ¼ 2nj ynð Þg½1�k xl; yn

� �
xl 2 C; yn 2 X
� �

ðA48Þ
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