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Abstract

On the basis of the theory of three-dimensional elasticity, this paper presents a state space finite element solution for

the stresses in cross-ply laminates subjected to combined transverse and in-plane loads. The state space formulation is

introduced to solve for through-thickness stress distributions, while the traditional finite elements are used to

approximate in-plane variations of the state variables. One of the direct applications of this solution is for the analysis

of free-edge effect in cross-ply laminates. By appropriately describing the applied in-plane boundary tractions or

boundary displacements, plates having complete free edges or boundary cross-sections with localized stress-free surfaces

can be analyzed. Compared with the traditional finite element method, the new solution provides not only continuous

through-thickness distributions of both displacements and transverse stresses, but also excellent approximations to the

stress singularities in the vicinity of free edges or the above-mentioned localized stress-free surfaces.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The rapid increase of the industrial use of structures

made of advanced composite materials, e.g. laminated

materials, has necessitated the development of new

numerical tools which are suitable for the analysis and

study of mechanical behavior of such structures. It has

been recognized that the prediction of their behavior,

including the behavior of material interfaces, should be

based on a three-dimensional rather than the conven-

tional two-dimensional approaches. However, most

existing mathematical models of multi-laminated mate-

rials have serious limitations and are incapable of giving

satisfactory predictions over full ranges of performance

of the materials.
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Conventional finite element analyses are based on a

representation for displacement field that guarantees

the continuity of all displacement components across the

element boundaries. The stress field derived from the

displacement representation by use of the stress–strain

relations leads to a stress field that is usually discontin-

uous across element boundaries. For many problems

mesh refinement or element enhancement (see, for

example, [1,17]) can minimize such discontinuities and

lead to more accurate predictions for the stress field. The

problem may also be dealt with using a two-dimensional

layer-wise mixed theory [4–6] that is based on the

application of Reissner’s variational principle [19,20] to

laminated structures. The theory uses both displace-

ments and transverse stresses as primary variables at a

layer level, where the number of unknown variables in

the final linear algebra equations depends on the number

of layers. An extensive review of the work published in

this area can be found in [7]. These analyses aim at
ed.
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Fig. 1. Nomenclature of a laminated rectangular plate.
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assessing their numerical performance in predicting

through-thickness stresses on cross-sections where stress

concentration or singularities do not present. By using

both displacements and transverse stresses as primary

variables, Fan and Ye [10] proposed a three-dimensional

state space method for analytical analysis of laminated

plates. The state space method, which was also called the

method of initial functions [23] or the transfer matrix

method [3], takes the primary variables as state vari-

ables, the values of which at a particular through-

thickness location, e.g., at bottom surface of a laminated

plate, can uniquely define the state of the plate at any

other through-thickness locations. Detailed description

of the method can be found from [8,26]. A state space

finite element method was further proposed by Sheng

and Ye [21,22]. Once again these analyses concen-

trated solely on assessing numerical performance of the

method for plates without stress singularities.

There are problems, however, that lead to stress field

singularities where the traditional finite element analysis

predictions of the stress field near such singularities are

highly inaccurate. One example of such singularities

occurs at stress-free edges of layered materials. The

singularity occurs also at the boundary between two

layers that have different material properties. Other

types of singularity occur, for example, at the tips of

ply cracks in composite laminates. In order to develop

improved methods of analysis that can be applied to

layered materials in structures subjected to complex

loadings, it is essential that the new types of methods are

capable of providing continuous fields of both interface

tractions and displacements at the interfaces between

layers. For simple loading and boundary conditions,

analytical solutions have been obtained to approximate

the singularities. For examples, a solution on the basis of

the higher order plate theory was obtained by Becker [2].

By using the theory of two-dimensional elasticity, Mc-

Cartney [13] proposed a generalized plane strain ap-

proach for some regular systems, such as flat plate

layered systems and axisymmetric layered systems (see

also, [14–16]). The model can ensure the continuity of

both interface tractions and displacements. The ap-

proach can be thought of as being equivalent to a finite

super-element where the elements are plates that are

bonded together in the through-thickness direction. The

through-thickness variations of stresses and displace-

ments are modeled by layer refinement, while the

in-plane variations are modeled by solutions of fourth

order ordinary differential equations.

In this paper, a state space finite element method

that combines the traditional finite element approxi-

mation and the recursive formulation of state space

equation [10,26] is proposed to solve the stress prob-

lems of laminated plates subjected to combinations of

transverse loads and in-plane boundary tractions and,

especially, the stress problems with the above-men-
tioned singularities. The method is based on an early

version of the method that has been used successfully

for laminated plates without considering in-plane load-

ing and stress singularities [21,22]. The state space

method was also used by Wang et al. [24] to solve prob-

lems involving stress singularities, where an analytical

solution based on eigen-expansion method was ob-

tained for laminated rectangular strips. The current

method is based on a mixed variational principle that

includes the variations of both displacements and

transverse stresses. By using the method, a plate is di-

vided into finite elements in the plane of the plate,

while the through-thickness distributions of the dis-

placements and stresses are solved directly from the

state space equation. Because of the applied boundary

tractions, the resulting state space equation is non-

homogeneous that is different to the one presented in

[21,22]. To solve the new state equation, a new numer-

ical procedure is proposed for the solution of the non-

homogeneous state equation. Apart from the new

theoretical and numerical development, this paper also

aims at assessing the effectiveness of using the state

space finite element for problems with material discon-

tinuities and stress singularities. To this end, numerical

examples are presented to validate the solution and

comparisons are made between the new results and

those obtained using alternative approaches.
2. The principles of variation and finite element approx-

imations

Consider herewith a thick plate of uniform thickness

h. The two in-plane co-ordinate parameters and the

transverse co-ordinate are denoted, respectively, by x,
y and z, while u, v and w represent the associated

displacement components. The plate is subjected to a

combination of transverse loads and in-plane boundary

tractions. It is assumed that the plate is made of N dif-

ferent orthotropic material layers, each of which may

have different thickness. For simplicity and convenience,
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it is further assumed that the material axes of the

orthotropic layers coincide with the axes of the adopted

rectangular co-ordinate system. The geometry and co-

ordinate system are shown in Fig. 1 for a rectangular

plate, though the deduction and calculations shown in

subsequent sections are not restricted to rectangular

boundaries.

On the basis of the well-known Hellinger–Reissner

variational principle [12,18,25], the following variational

equation can be established for a material layer:

Z Z Z
V
drT½EðrÞu� e�dV �

Z Z Z
V
duT½EðrÞrþ f�dV

�
Z Z

Bu

dpTðu� �uÞdS þ
Z Z

Br

duTðps � �psÞdS ¼ 0

ð1Þ
where variations are taken for both stresses and dis-

placements. The definitions of the displacement and

stress vectors and the differential operators, EðrÞ, can
be found from [22]. In the above equation, Bu and Br

denote displacement and stress boundaries, respectively.
�u and �ps are the respective displacements and tractions

prescribed on the boundaries. The stresses and strains

satisfy the Hooke’s law of orthotropic materials that has

also been defined in [22].

Assuming that the stress and displacement fields

satisfy all prescribed boundary conditions, the following

variational equation system can be used as an equivalent

form of Eq. (1):
Z Z Z
V
duT½EðrÞrþ f�dV ¼ 0 ð2Þ
Z Z Z
V
drT½e� ETðrÞu�dV ¼ 0 ð3Þ
where the equilibrium equations of stresses and the

strain-displacement relations are satisfied in the form of

Galerkin weighting.

The stress analysis in the following sections uses both

Eqs. (2) and (3) simultaneously, which forms a mixed

representation of the variational principle and provides

the theoretical foundation of the present method.

In order to solve the stress problem, the traditional

finite element method is used first to approximate the in-

plane variations of displacements and stresses. In this

paper, this is achieved by introducing an iso-parametric

element that has the traditional finite element features in

the x–y plane, while the node parameters are taken as

functions of the z-co-ordinate. Thus, the displacement

and stress fields for a typical element, e.g., the kth ele-

ment, of the laminated plate are described as follows:
uk ¼
Xn
i¼1

Nk
i ðn; gÞuki ðzÞ

vk ¼
Xn
i¼1

Nk
i ðn; gÞvki ðzÞ

wk ¼
Xn
i¼1

Nk
i ðn; gÞwk

i ðzÞ

rk
xz ¼

Xn
i¼1

Nk
i ðn; gÞrk

xzi
ðzÞ

rk
yz ¼

Xn
i¼1

Nk
i ðn; gÞrk

yzi
ðzÞ

rk
xy ¼

Xn
i¼1

Nk
i ðn; gÞrk

xyi
ðzÞ

rk
xx ¼

Xn
i¼1

Nk
i ðn; gÞrk

xxi
ðzÞ

rk
yy ¼

Xn
i¼1

Nk
i ðn; gÞrk

yyi
ðzÞ

rk
zz ¼

Xn
i¼1

Nk
i ðn; gÞrk

zzi
ðzÞ

ð4Þ

In Eq. (4), n and g are local co-ordinates; Nk
i ðn; gÞ are

shape functions and n denotes total node number of the

element. uki ðzÞ, rk
xzi
ðzÞ, etc., are functions of z and hence

are named either node displacement or node stress

function. It is worth mentioning that the three in-plane

stresses are used initially as primary variables in the fi-

nite element analysis. This is necessary for the intro-

duction of boundary tractions along edges of a plate.

The in-plane stresses at any interior locations, however,

will subsequently be eliminated from the formulation.

Thus, the final linear algebra equation system will not

include in-plane stresses as primary variables.
3. State space equation for a material layer

Substitute Eq. (4) into Eqs. (2) and (3) and consider

all elements of the layer yield the following two varia-

tional equations that are presented in terms of the

above-mentioned node functions. In the equations, the

body forces, f, are ignored.Z
z

dp
dq

� �T

½A� d
dz

p

q

� ��
� ½B� p

q

� �
þ ½C�fSg

�
dz ¼ 0

ð5Þ
Z
z
fdSgT ½D�fSg

�
� ½E� p

q

� ��
dz ¼ 0 ð6Þ

where fpgT ¼ ½uðzÞ; vðzÞ;wðzÞ�, fqgT ¼ ½rxzðzÞ; ryzðzÞ;
rzzðzÞ� and fSgT ¼ ½rxxðzÞ; ryyðzÞ; rxyðzÞ�. These are vec-

tors composed of the node functions shown in Eq. (4).
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The node functions in the vectors are arranged in

ascending order of node number, e.g. uðzÞ ¼ ½u1ðzÞ;
u2ðzÞ; . . . ; uM ðzÞ�, where M is the total node number of

the plate. The constant matrices in Eqs. (5) and (6) can

be calculated from Eq. (12c) in [22]. Eqs. (5) and (6)

include variations of both displacements and stresses

and are called mixed variational equations.

On the basis of the principle of variation, it is evident

that Eqs. (5) and (6) are equivalent to the following

equation system:

½A� d
dz

p

q

� �
� ½B� p

q

� �
þ ½C�fSg ¼ 0 ð7Þ

½D�fSg � ½E� p

q

� �
¼ 0 ð8Þ

To facilitate the introduction of boundary condi-

tions, the node function vectors in Eqs. (7) and (8) may

be partitioned into two parts as shown below,

fpg ¼ pf
po

� �
; fqg ¼ qf

qo

� �
; fSg ¼ Sf

So

� �
ð9Þ

where pf , qf and Sf consist of all unknown node func-

tions while po, qo and So are the boundary node func-

tions that have been prescribed by either given stresses

or given displacements, i.e.

fpog ¼ f�pg; fqog ¼ f�qg; fSog ¼ fSg ð10Þ

The variation of Eq. (9) yields

fdpg ¼
dpf

0

( )
; fdqg ¼

dqf

0

( )

fdSg ¼
dSf

0

( ) ð11Þ

Accordingly, Eqs. (5) and (6) can be written as
Z
Z

dpf
0

dqf
0

8>><
>>:

9>>=
>>;

T

½A� d
dz

pf
�p
qf
�q

8>><
>>:

9>>=
>>;

0
BB@ � ½B�

pf
�p
qf
�q

8>><
>>:

9>>=
>>;

þ ½C� Sf

S

� �1CCAdz ¼ 0 ð12Þ

Z
Z

dSf

0

� �T

½D� Sf

S

� �0
BB@ � ½E�

pf
�p
qf
�q

8>><
>>:

9>>=
>>;

1
CCAdz ¼ 0 ð13Þ
that can be reduced to the following form:Z
Z
fdRgT ½Af �

d

dz
fRg

�
� ½Bf �fRg þ ½Cf �fSf g

� faf g
�
dz ¼ 0 ð14Þ
Z
Z
fdSf gT ½Df �fSf g

�
� ½Ef �fRg � fbf g

�
dz ¼ 0 ð15Þ

where fRg ¼ pTf qTf
� �T

; faf g and fbf g are known

vectors whose elements are related to f�pg, f�qg and fSg.
If f�pg, f�qg and fSg are all zero, faf g and fbf g vanish

from Eqs. (14) and (15).

Due to the variation of dRf and dSf , Eqs. (14) and

(15) are equivalent to

½Af �
d

dz
fRg ¼ ½Bf �fRg � ½Cf �fSf g þ faf g ð16Þ
½Df �fSf g ¼ ½Ef �fRg þ fbf g ð17Þ

The in-plane stress vector fSf g discontinues across

contact layers in general. Eliminating fSf g from Eqs.

(15) and (16) the vector yields

d

dz
fRg ¼ ½T�fRg þ fBg ð18Þ

where

½T� ¼ ½Af ��1 ½Bf �
	

� ½Cf �½Df ��1½Ef �



fBg ¼ ½Af ��1 faf g
	

� ½Cf �½Df ��1fbf g

 ð19Þ

Eq. (18) is known as non-homogeneous state equation

that can be solved either numerically or analytically. For

problems of small degrees of freedom, an analytical

expression of the solution can be obtained. Otherwise,

an approximate solution has to be sought [26].

In general, for a N-plied laminate composed of

orthotropic layers, the state space equation for an

arbitrary layer, e.g., the jth (j ¼ 1; 2; . . . ;N ) layer, can

always be expressed as

d

dz
fRjðzÞg ¼ ½Tj�fRjðzÞg þ fBjðzÞg; 06 z6 hj ð20Þ
4. Solutions of non-homogeneous state equations

In this section, a new and efficient numerical proce-

dure is introduced to solve Eq. (20). Consider first the

case where the jth material layer of the laminate is suf-

ficiently thin such that fRjðzÞg and fBjðzÞg can be,

respectively, approximated by ðfRjðhjÞg þ fRjð0ÞgÞ=2
and ðfBjðhjÞg þ fBjð0ÞgÞ=2. Thus, Eq. (20) is calculated
as follows:
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Z hj

0

dfRjg ¼
Z hj

0

½Tj�fRjgdzþ
Z hj

0

fBjgdz ð21Þ

Because ½Tj� is a constant matrix, the above equation

yields

fRjðhjÞg � fRjð0Þg ¼ hj
2
½Tj�ðfRjðhjÞg þ fRjð0ÞgÞ

þ hj
2
ðfBjðhjÞg þ fBjð0ÞgÞ ð22Þ

Introducing

½A� ¼ hj
2
½Tj�

fB�
jg ¼ hj

2
ðfBjðhjÞg þ fBjð0ÞgÞ

into Eq. (22) yields

ðI� AÞfRjðhjÞg ¼ ðIþ AÞfRjð0Þg þ fB�
jg ð23Þ

In the case where the jth material layer is not sufficiently

thin, we can divide the layer into Kj sub-layers of equal

thickness Dj, each of which is sufficiently thin. Hence,

for the first sub-layer of the jth material layer, for

example, we have

Z Dj

0

dfRjg ¼
Z Dj

0

½Tj�fRjgdzþ
Z Dj

0

fBjgdz ð24Þ

Applying the same assumption as the one used to obtain

Eqs. (22) and (23) yields

ðI� AÞfRð1Þ
j ðDjÞg ¼ ðIþ AÞfRð1Þ

j ð0Þg þ fBð1Þ
j g ð25Þ

where

½A� ¼ Dj

2
½Tj�

fBð1Þ
j g ¼ Dj

2
ðfBjðDjÞg þ fBjð0ÞgÞ

In general, for the ith sub-layer of the jth material layer,

we have

ðI� AÞfRðiÞ
j ðiDjÞg ¼ ðIþ AÞfRði�1Þ

j ðði� 1ÞDjÞg þ fBðiÞ
j g
ð26Þ

where

fBðiÞ
j g ¼ Dj

2
ðfBjðiDjÞg þ fBjðði� 1ÞDjÞgÞ

Starting with Eq. (25) and then using Eq. (26) and the

following continuity condition:

fRðiÞ
j ð0Þg ¼ fRði�1Þ

j ðði� 1ÞDjÞg ð27Þ
we obtain for the jth material layer

ðI� AÞKjfRjðhjÞg ¼ ðIþ AÞKjfRjð0Þg

þ
XKj

i¼1

ðIþ AÞKj�iðI� AÞi�1fBðiÞ
j g

ð28Þ

It is worthwhile to mention that the identity shown

below is used in the deduction process of Eq. (28):

ðI� AÞðIþ AÞ ¼ ðIþ AÞðI� AÞ ð29Þ

The matrices, ðI� AÞKj and ðIþ AÞKj , can be calculated

efficiently by using the iteration process proposed by

Zhong and Williams [27], where Kj is chosen as power of

2, i.e., Kj ¼ 2k .

Solving Eq. (28) results in

fRjðhjÞg ¼ ½ZjðhjÞ�fRjð0Þg þ fHjg ð30Þ

for the jth material layer. After finding the solutions in

the form of Eq. (30) for all material layers of the lami-

nate, the final equation for the entire laminate can be

obtained by imposing the continuity conditions

fRjðhjÞg ¼ fRjþ1ð0Þg ð31Þ

at all material interfaces and recursively using Eqs. (30)

and (31), as follows:

fRN ðhN Þg ¼ ½ZN ðhN Þ�fRN ð0Þg þ fHNg
¼ ½ZN ðhN Þ�ð½ZN�1ðhN�1Þ�fRN�1ð0Þg

þ fHN�1gÞ þ fHNg
¼ � � � ¼ ½D�fR1ð0Þg þ fPg ð32Þ

where

½D� ¼
Y1
k¼N

½ZkðhkÞ�
fPg ¼
Y2
k¼N

½ZkðhkÞ�
 !

fH1g þ
Y3
k¼N

½ZkðhkÞ�
 !

fH2g þ � � �

þ ½ZN ðhN Þ�fHN�1g þ fHNg

In Eq. (32), {RN ðhN Þ} and {R1ð0Þ} are the node function
vectors consisting of displacements and transverse

stresses on the bottom (z ¼ h) and top (z ¼ 0) surfaces of

the laminate, respectively. By introducing load condi-

tions (tractions) on the two plate surfaces into Eq. (32),

a set of linear algebra equations in terms of the node

displacement functions are formed, from which the

solution of the problem can be obtained. It is worth

mentioning that the order of Eq. (32) is identical to that

of Eq. (30). Hence, it is a fact that the order of Eq. (32)

depends solely on the finite element meshes used in the

x–y plane and is completely independent of the number

of material layers of the composite plate.
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In the case of a uniformly distributed pressure, x,

applied on the top surface of the laminated plate, for

instance, the load conditions are

fqf ð0Þg
T

1 ¼ ½rxzð0Þ; ryzð0Þ; rzzð0Þ� ¼ 0 0 �x½ �

fqf ðhN Þg
T

N ¼ ½rxzðhÞ; ryzðhÞ; rzzðhÞ� ¼ 0 0 0½ �
ð33Þ

The subscripts, 1 and N , denote that the node function

vectors are those of the top and bottom layers, respec-

tively. Substituting Eq. (33) into Eq. (32), one yields the

following linear algebra equation system:

D41 D42 D43

D51 D52 D53

D61 D62 D63

2
64

3
75 uf ð0Þ

vf ð0Þ
wf ð0Þ

8<
:

9=
;

1

¼
D46

D56

D66

2
4

3
5fxg

0
@ �

P4

P5

P6

8<
:

9=
;
1
A ð34Þ

where the Dij, Pi are the relevant sub-matrices of ½D�
and fPg in Eq. (32), respectively, and fxg is the external
load vector containing loads applied at the nodes on the

top surface of the plate. Once the initial values of the

node displacement functions, i.e. the values of node

displacements at z ¼ 0 are found, the displacements and

stresses at any location throughout the thickness of the

plate can be calculated by using Eq. (30).
5. Numerical examples

To validate the new method, numerical calculations

are carried out first for a simply supported orthotropic

square plate. The plate has the following material

properties:
Table 1

Convergence rate against various values of k

z=h h=a ¼ 0:8

k ¼ 3 k ¼ 4 k ¼
�u 0.0 )0.24079 )0.24032 )0
x ¼ 0 0.5 )0.77801 )0.78239 )0
y ¼ a=2 1.0 )0.81899 )0.82372 )0

�w 0.0 1.48886 1.49099 1

x ¼ a=2 0.5 0.72290 0.72442 0

y ¼ a=2 1.0 0.46244 0.46848 0

�rxx 0.0 0.08848 0.08625 0

x ¼ a=2 0.5 1.09401 1.08836 1

y ¼ a=2 1.0 1.45488 1.45933 1

�rxz 0.0 0.00000 0.00000 0

x ¼ 0 0.5 0.32807 0.37801 0

y ¼ a=2 1.0 0.00000 0.00000 0
C12=C11 ¼ 0:246269; C13=C11 ¼ 0:0831715

C22=C11 ¼ 0:543103; C23=C11 ¼ 0:115017

C33=C11 ¼ 0:530172; C44=C11 ¼ 0:266810

C55=C11 ¼ 0:159914; C66=C11 ¼ 0:262931

ð35Þ

The plate is subjected to a uniformly distributed pres-

sure, q, on the top surface and a pair of symmetrically

applied in-plane pressure, q, along x ¼ 0 and x ¼ a. As a

result of symmetry, only a quarter of the plate is ana-

lyzed in the following calculations. Eight-node quadri-

lateral elements are used in the x–y plane and the state

equations are solved numerically by using the new

technique described in Section 4. Since the convergence

rate of the state space finite element method against fi-

nite element meshes has been tested in the previous work

[22], the numerical validation presented here is only for

assessing convergence against the number of sub-layers

used in the solution of non-homogeneous state equa-

tions (see Section 4). Table 1 shows the following non-

dimensional displacement and stress parameters for the

plate with a thickness ratio h=a ¼ 0:8, against the value

of k that has been defined below Eq. (29).

�u �v �w
� �

¼ CðcÞ
11

qh
u v wð Þ

�rxx �ryy �rxz �rzz

� �
¼ rxx ryy rxz rzzð Þ=q

ð36Þ

It can be seen from Table 1 that the results converge

rapidly. For displacements, a division of Dj=h6 0:1 is

sufficient for obtaining a satisfactory result. For stresses,

further division is needed to achieve a result of the same

accuracy. It can be concluded from Table 1 that the new

procedure provides an effective and accurate tool for

solving non-homogeneous state equations.

After testing the convergence of the new method,

Table 2 shows stresses and displacements of a three-

plied simply supported plate. The plate has two iden-
5 k ¼ 6 k ¼ 7 k ¼ 8

.24014 )0.24009 )0.24008 )0.24008

.78190 )0.78178 )0.78175 )0.78174

.82447 )0.82465 )0.82470 )0.82471

.49151 1.49164 1.49168 1.49168

.72481 0.72491 0.72493 0.72494

.46996 0.47032 0.47043 0.47044

.08572 0.08559 0.08555 0.08555

.08646 1.08601 1.08589 1.08589

.46046 1.46074 1.46081 1.46082

.00000 0.00000 0.00000 0.00000

.37771 0.37761 0.37759 0.37758

.00000 0.00000 0.00000 0.00000



Table 2

Stresses and displacements of three-plied laminated plates with various values of h=a (d ¼ 5)

h=a ¼ 0:4 h=a ¼ 0:6 h=a ¼ 0:8

Present Analytical Present Analytical Present Analytical

�u
x ¼ 0

y ¼ a=2

T+ )0.79006 )0.79330 )0.63341 )0.63520 )0.48381 )0.48498
T) )1.47918 )1.48356 )1.10208 )1.10396 )0.85909 )0.86036
C+ )1.47918 )1.48356 )1.10208 )1.10396 )0.85909 )0.86036
C) )1.59105 )1.55045 )0.94785 )0.95049 )0.71160 )0.71364
B+ )1.59105 )1.55045 )0.94785 )0.95049 )0.71160 )0.71364
B) )1.89379 )1.89729 )1.07723 )1.08006 )0.76234 )0.76458

�w
x ¼ a=2
y ¼ a=2

T+ 3.74720 3.74918 1.74137 1.74335 1.15524 1.15620

T) 3.73358 3.73527 1.71581 1.71759 1.12581 1.12662

C+ 3.73358 3.73527 1.71581 1.71759 1.12581 1.12662

C) 2.92534 2.91861 0.84949 0.84701 0.29623 0.29516

B+ 2.92534 2.91861 0.84949 0.84701 0.29623 0.29516

B) 2.89820 2.89164 0.83686 0.83452 0.28980 0.28887

�rxx

x ¼ a=2
y ¼ a=2

T+ 1.43962 1.51988 2.92194 3.01145 3.07202 3.21483

T) 3.50041 3.68258 4.68769 4.82605 5.19854 5.40323

C+ 0.58088 0.61626 0.81639 0.85493 0.91718 0.95712

C) 1.30439 1.33912 1.03142 1.06813 0.97901 1.01654

B+ 6.55421 6.72872 5.19615 5.38059 4.93187 5.12054

B) 8.70776 8.81822 6.72535 6.80513 5.93394 6.11717

�ryy

x ¼ a=2
y ¼ a=2

T+ )4.39704 )4.46059 )3.02735 )3.10024 )2.71629 )2.78970
T) )3.02554 )3.07163 )1.85213 )1.88841 )1.34763 )1.37892
C+ )0.76995 )0.78063 )0.53796 )0.54678 )0.43897 )0.44661
C) 0.26199 0.25201 )0.01383 )0.01305 )0.11669 )0.12554
B+ 1.35459 1.30588 )0.01514 )0.02001 )0.53248 )0.57535
B) 2.77315 2.72534 0.95980 0.92332 0.06933 0.05524

�rzz

x ¼ a=2
y ¼ a=2

T+ )1.00000 )1.02562 )1.00000 )1.02562 )1.00000 )1.02562
T) )0.94979 )0.95820 )0.96532 )0.97432 )0.97629 )0.98426
C+ )0.94979 )0.95820 )0.96532 )0.97432 )0.97629 )0.98426
C) )0.05144 )0.05280 )0.06222 )0.06366 )0.05873 )0.06032
B+ )0.05144 )0.05280 )0.06222 )0.06366 )0.05873 )0.06032
B) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

�rxz

x ¼ 0

y ¼ a=2

T+ 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

T) 1.10297 1.11176 0.86236 0.84445 0.75590 0.73002

C+ 1.10297 1.11176 0.86236 0.84445 0.75590 0.73002

C) 0.59315 0.61071 0.28813 0.31171 0.14342 0.16815

B+ 0.59315 0.61071 0.28813 0.31171 0.14342 0.16815

B) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

J.Q. Ye et al. / Computers and Structures 82 (2004) 1131–1141 1137
tical face layers and a core layer that have the same

ratios of stiffness as shown in Eq. (36). The face and core

layers are distinguished by the ratio d ¼ CðFÞ
11 =C

ðCÞ
11 ,

where F and C denote face and core, respectively. The

plate has a total thickness of h, of which the thickness of

each face layer is 0:1h. The plate is subjected to a uni-

formly distributed pressure, q, on the top surface and

symmetric in-plane boundary pressures along x ¼ 0 and

x ¼ a. The boundary pressures are layer-wise constant

and are 5q, q and 5q, respectively, from the bottom

layer. The results are calculated with k ¼ 8 and com-

pared with those obtained by a three-dimensional ana-

lytical solution in [9] that was based on using Fourier
series expansion in the in-plane directions and analytical

solution of differential equation in the transverse direc-

tion.

In Table 2, T denotes top layer, C denotes core layer

and B denotes bottom layer. + and ) indicate, respec-

tively, top and bottom surfaces of a layer. From the re-

sults shown in the table, it is evident that the state space

solution approaches the three-dimensional analytical

one rapidly for both displacements and stresses. It

can also been seen from the table that the numerical

analysis provides continuous variations of both dis-

placements and transverse stresses across all material

interfaces.
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Fig. 3. Interfacial direct stress at the [0/90] interface.
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To apply the state space finite element method to

solve free edge problems, a four-layered cross-ply lami-

nate ([0/90]s) is considered. The following elastic con-

stants are assumed:

C11 ¼ C33 ¼ 15300 N=mm2; C22 ¼ 140000 N=mm2

C44 ¼ C55 ¼ 5900 N=mm2; C12 ¼ C23 ¼ 3900 N=mm2

C13 ¼ 3300 N=mm2

The plate has two opposite free edges. The other two

edges are subjected to a uniform strain e0.
In Figs. 2 and 3, the results obtained by using the

state space finite element method are compared with
-1600
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Fig. 2. Interfacial shear stress at the [0/90] interface.

Fig. 4. (a) Cross-ply laminate with transverse crac
those obtained by Becker [2] and Wang et al. [24] for

interfacial shear and direct stresses, respectively, near

the free edge at x ¼ 0.

Figs. 2 and 3 show high stress concentration near the

free edge, and the stresses decay away rapidly towards

the interior region of the laminate.

The second example of stress singularity is stresses in

cross-ply laminates with uniformly distributed trans-

verse ply cracks. Consider a composite laminate having

a combination of 0� and 90� layers (Fig. 4a). It is as-

sumed that the 90� ply has transverse cracks in the

matrix that run through the entire width along the fiber

direction. It is also assumed that the horizontal distri-

bution of the cracks is equally spaced, so that a repre-

sentative element (see Fig. 4b) in two neighboring cracks

can be taken out and analyzed to minimize computing

effort.
ks in 90� layer; (b) a representative element.
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Assuming that the element is subjected to a linearly

distributed strain, or a uniformly distributed strain when

bending is absent, along the un-cracked surfaces at the

two ends, the problem becomes a generalized plane

strain problem. A two-dimensional analytical mode has

been established by McCartney and Pierse [14] to cal-

culate stress transfer in such a cracked laminate. As a

part of validation of the present method, the interfacial

shear and normal stresses at the interface between 0�
ply and 90� ply of a four ply ([0�/90�]s) graphite/epoxy
laminate are calculated and compared with the results

obtained using McCartney and Pierse’s [14] solution.

The laminate is subjected to a uni-axial average stress of

r ¼ 0:2 GPa. The material properties used in the cal-

culations for the graphite/epoxy laminates [11] are as

follows:

EL ¼ 144:78 GPa; ET ¼ 9:58 GPa

GLT ¼ 4:785 GPa; mLT ¼ 0:31; mTT ¼ 0:55

The laminate has a crack separation space 2L ¼ 4:0 mm

and an equal ply thickness hply ¼ 0:25 mm.

In Figs. 5 and 6, the results obtained by using the

state space finite element method and the two-dimen-

sional plane strain model [14] are shown by the dotted
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Fig. 5. Interfacial shear stress distribution at 0�/90� interface.
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Fig. 6. Interfacial direct stress distribution at 0�/90� interface.
lines and the solid lines, respectively. Excellent agree-

ment is observed.

For through-thickness distributions of displacements

and stresses, it has been shown from previous publica-

tions [21,22] that the results obtained from the state

space finite element method agreed very well with

existing three-dimensional analytical solutions, where

stresses were calculated for plates without free edges

or at locations away from free edges. In the follow-

ing example, the transverse direct stress and the dis-

placement in the x direction for the cracked laminate

considered above are shown against the transverse

co-ordinate at the location where stress singularity or

material discontinuity occurs.

Fig. 7 presents the horizontal displacement at x ¼ L
in the x direction of the representative element shown in

Fig. 4b. Due to symmetry, only the distribution across

top half of the element is plotted. In the figure, the state

space finite element solution is denoted by the dots and

the solution from the plane strain analytical model [14]

is presented by the solid line. The displacement is vir-

tually constant along the un-cracked surface (�0:56
z=h6 �0:25), while it is distributed non-linearly along

the cracked surface (�0:256 z=h6 0).

Fig. 8 shows the transverse direct stress at x ¼ L
across the thickness of the element shown in Fig. 4b.
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Fig. 7. Through-thickness horizontal displacement at x ¼ L.
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Fig. 8. Through-thickness distribution of transverse direct

stress at x ¼ L.
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Once again the present results are compared with the

ones based on the plane strain analytical model. It can

be seen that stress concentration of the transverse direct

stress near the crack tip (z=h ¼ �0:25) is evident. The

direct stress along the un-cracked surface is significantly

smaller than that along the cracked surface.
6. Concluding remarks

A state space finite element method has been pre-

sented to solve three-dimensional stress problems of

laminated plates subjected to combined transverse loads

and in-plane boundary tractions. The applications of the

method to the stress analysis of free edge effect were

shown by numerical examples. The method was based

on a mixed variational representation of the three-

dimensional equations of elasticity. The in-plane fields

of both displacements and stresses were approximated

by finite elements while their through-thickness distri-

butions were obtained by solving a system of non-

homogeneous state equations.

A new numerical technique has been proposed to

solve the non-homogeneous state equations. Numerical

tests and comparisons have been carried out to validate

the method. By comparing with existing three-dimen-

sional analytical solutions, it was observed that the new

method converged very fast and provided accurate re-

sults. It is worthwhile to mention that due to the use of

the finite element approximation in the in-plane direc-

tions, the well-known singularities of interfacial shear

stress that would have appeared at the interface near the

free edges have been smoothed out. Numerical tests,

which are not presented here, show that as more ele-

ments are used in the calculation, the peak shear stress

increases and its location moves further towards the free

edges. Thus, it is concluded that the proposed method

can approximate the stress singularities near free edges

or ply cracks of laminated composites.

Since the recursive formulation (see Eq. (31)) was

used to derive the state equations of laminated plates,

unlike most layer-wise based method, the dimension of

the final linear algebra equation system did not depend

on the number of material layers. This reduces the size

of the final linear algebra equation system significantly

and, hence, reduces the computer effort on solving the

equation system. As a consequence, it can be concluded

that this method is particularly suitable to solve stress

problems of multi-layered composites.

The method always provides continuous distribu-

tions of both displacements and transverse stresses

across perfectly bonded material boundaries. This re-

duces further the computer effort that has to be used in

the traditional displacement-based finite element analy-

ses to recover transverse stresses.
The method can be used to provide accurate

numerical solutions that are useful for benchmark tests

of new plate theories and finite element codes, especially

when dealing with stress singularities or discontinuities.

Since the present work aims at establishing the element

and its numerical performance in dealing with free edges

and cracks, the applications of the element to large

complex structures are subjected to further investiga-

tion. However, due to the use of the standard finite

element procedure in the proposed analysis, it is ex-

pected that it will be a straightforward extension to

apply the method to, e.g., laminated plates with non-

rectangular boundaries and plate assemblies, etc.
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