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Abstract

Applications of boundary element method (BEM) to piezoelectric composites in conjunction with homogenization approach for

determining their effective material properties are discussed in this paper. The composites considered here consist of inclusion and

matrix phases. The homogenization model for composites with inhomogeneities is developed and introduced into a BE formulation to

provide an effective means for estimating overall material constants of two-phase composites. In this model, a representative volume

element (RVE) is used whose volume average stress and strain are calculated by the boundary tractions and displacements of the RVE.

Thus BEM is suitable for performing calculations on average stress and strain fields of the composites. Numerical results for a

piezoelectric plate with circular inclusions are presented to illustrate the application of the proposed micromechanics––BE formula-

tion.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The determination of effective properties for piezo-

electric composite consisting of inclusion and matrix

phases has received considerable attention during the

past decades. It is well known that the effective prop-

erties of such composites depend on the physics and

geometry of the two phases. For estimating the overall
properties of the composite, the equivalent inclusion

method is a popular approach. It is based on Eshelby’s

eigenstrain solution for single inclusions embedded into

infinite matrix [1] and the effective properties can be

expressed in terms of the volume fraction and geome-

tries of the inclusion as well as the properties of the

components. Over recent years various methods have

been developed based on this approach and have been
used widely in determining the overall properties of

various composite materials [2–4]. Among them most

typical approaches are the dilute scheme [5], the self-
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consistent method [6], the generalized self-consistent

method [7], the Mori–Tanaka method [8,9] and the

differential method [10]. Common to each of these mi-

cromechanics theories is the use of the well-known stress

and strain concentration factors obtained through an

analytical solution of a single crack, or void, or inclusion

embedded in an infinite medium. However, for a prob-

lem with complexity in the aspects of geometry and
mechanical deformation, a combination of these ap-

proaches and numerical methods such as finite element

method (FEM) and boundary element method (BEM)

presents a powerful computational tool for estimating

effective material properties. It should be mentioned that

the main disadvantage of the FEM is that domain dis-

cretization is required to perform the analysis. More-

over, in some cases it results in both an inaccurate and
an expensive technique, especially in solving crack or

some special inclusion problems. On the other hand, the

BE method involves discretization of the boundary of a

structure only, because the governing differential equa-

tion is satisfied exactly inside the domain, leading to

a relatively smaller system size with sufficient accu-

racy. Moreover, in the present micromechanics model,

the average strain and electric field (SEF) are calcu-
lated through the boundary displacement and electric
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potential (DEP) of the solid only. Therefore, BE ap-

proach is very suitable for performing this type of cal-

culation. In this paper, a BEM based micromechanics

algorithm is proposed for analyzing overall properties of
piezoelectric material with inclusions or voids of various

shapes. The algorithm is based on two typical microm-

echanics models (self-consistent and Mori–Tanaka

methods) and boundary element formulation. An iter-

ative scheme is designated for the self-consistent BE

method. Numerical results of effective material con-

stants are obtained by the proposed formulation for a

piezoelectric solid with circular inclusions.
Fig. 1. RVE model used in FE and BE analysis: (a) RVE with an

inclusion; (b) RVE with a void.
2. Homogenization approach

2.1. Basic formulations

Let us consider a piezoelectric composite in which the

inclusions or holes are in cylindrical shape. In this case

both the matrix and the inclusion can be viewed as

transversely isotropic and coupling between in-plane

stresses and in-plane electric fields takes place. For a

Cartesian coordinate system Oxyz, choose the z-axis as

the poling direction, and denote the coordinates x and z
by x1 and x2 in order to get a compacted notation. The
plane strain constitutive equations are expressed by [9]
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and simply, in matrix form

P ¼ CZ; Z ¼ FP; ð3Þ
where rij, eij, Dj and Ej are stress, strain, electric dis-

placement, and electric field, respectively; cij is elastic

stiffness; fij elastic compliance; eij and pij are piezoelectric
constants; jij and bij dielectric permittivity; F ¼ C�1; and

P ¼ fPigT ¼ f r11 r22 r12 D1 D2 gT
;

Z ¼ fZigT ¼ f e11 e22 2e12 �E1 �E2 gT
;

ð4Þ

eij ¼
1

2
ðui;j þ uj;iÞ; ð�EiÞ ¼ /;i ð5Þ

with ui being elastic displacement and / the electric

potential.
2.2. The representative volume element

In our analysis, a representative volume element

(RVE) X is chosen so as to be statistically representative
of the two-phase composite. In particular, the charac-

teristic size of the heterogeneities is supposed to be small

with respect to the dimension of the RVE, which in turn

is supposed to be small compared to the wavelength of

the macroscopic structure.

In order to understand the key point of the homoge-

nization procedure, let us consider a RVE consisting of

the matrix material and inclusion phase (see Fig. 1). As a
RVE is comprised of different materials, the microcon-

stitutive law that governs each material or phase in a

RVE is given by the standard constitutive law. On the

other hand, the macro-SED and macro-SEF on the

macro-level are directly associated with the global anal-

ysis of a two-phase composite. On the macro-level, a

RVE is regarded just as a point with a homogenized

constitutive law. The macro-SED, Pi, is usually defined
as the volume average of SED in a RVE, hPii, as follows:

Pi ¼ hPiiX ¼ 1

V

Z
X

Pi dX; ð6Þ

where X is the domain of the RVE and V is its volume.
Similarly, the volume average of SEF Zi and the volume

average of free energy density W in a RVE is defined by

Zi ¼ hZiiX ¼ 1

V

Z
X
Zi dX; ð7Þ
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Z
X
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where ðCÞij ¼ Cij and ðFÞij ¼ Fij are, respectively, local

stiffness and local compliant coefficients which are dif-

ferent from phase to phase. Moreover, the macroscopic

strain energy should satisfy

W ¼ 1

2
PiZi: ð9Þ

The effective properties represented by effective stiff-

ness C

ij or compliancy F 


ij of the piezoelectric composites

can be defined by the average SED and SEF as
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Pi ¼ C

ijZj; Zi ¼ F 


ijPj ð10Þ

or by the equivalence of the free strain energy
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The linearity of stress–strain relation for elastic body

leads to

Cij ¼
o2W

oZioZj
: ð13Þ

Then an explicit form of the effective stiffness compo-

nents can be evaluated as below.

2.3. Homogenization model

The homogenization method for a composite with

defects has been discussed elsewhere [2,11]. For the

reader’s convenience we describe the method here

briefly.
For piezoelectric materials with inclusions or micro-

cavities, the homogenization theory may be established

based on some fundamental results in the theory of two-

phase linear piezoelectric media. In the case of two-

phase materials, the volume average of SED and SEF

tensors is defined by

hPi ¼ vð1ÞhPð1Þi þ vð2ÞhPð2Þi;
hZi ¼ vð1ÞhZð1Þi þ vð2ÞhZð2Þi; ð14Þ

where superscripts ‘‘(1)’’ and ‘‘(2)’’ denote the matrix

and inclusion phases, vð1Þ and vð2Þ their volume fractions.

Substituting Eq. (14) into Eq. (10) and noting that

PðiÞ ¼ CðiÞZðiÞ, we have

C
 ¼ Cð1Þ þ ðCð2Þ � Cð1ÞÞAð2Þvð2Þ;

F
 ¼ Fð1Þ þ ðFð2Þ � Fð1ÞÞBð2Þvð2Þ ð15Þ

in which the symmetric tensors Að2Þ and Bð2Þ are defined
by the linear relations

hZð2Þi ¼ Að2ÞZ0; hPð2Þi ¼ Bð2ÞP0 ð16Þ
with Z0 and P0 being remote SEF and SED fields ap-
plied on the effective medium. The interpretation of

hZð2Þi in Eq. (16) follows from the average strain theo-

rem [12]:

hZð2Þ
ij i ¼ 1

2X2

Z
oX2

f½1þ Hði� 3Þ�Uinjg þ Ujni dX; ð17Þ

where X2 and oX2 are the total volume and boundary of

the inclusion or void, HðiÞ is the Heaviside step function,

n ¼ fn1; n2; 0gT
is the normal local to inclusion surface,

and
fZ11; Z22; 2Z12; Z31; Z32g ¼ fe11; e22; 2e12;�E1;�E2g;
fUig ¼ fu1; u2;/g: ð18Þ

We consider now the case when inclusions become

voids which are thought of as being filled with air. This

implies that Cð2Þ ! 0;Fð2Þ ! 1. Thus we assume

Cð2Þ ¼ 0, where Cð2Þ stands for stiffness constants of the

void-phase. Then Eq. (15) become

C
 ¼ Cð1ÞðI� Að2Þvð2ÞÞ; F
 ¼ Fð1ÞðIþ Bð0Þvð2ÞÞ; ð19Þ
where I is the unit tensor and Bð0Þ is defined by

hZð2Þi ¼ Fð1ÞBð0ÞP0: ð20Þ
Therefore, the estimation of integral (17) and thus, Að2Þ

is the key to predicting the effective electroelastic moduli
C
. The calculation of integral (17) through use of

boundary element method is the subject of subsequent

section.
3. Boundary element equations

In this section, a two domain boundary element
model is introduced for DEP and SED on the boundary

of each domain. The two subdomains are separated by

the interfaces between fiber and matrix (see Fig. 1). Each

subdomain can be separately modelled by a direct BEM.

A global assembly of the boundary element subdomains

is then performed by enforcing continuity of the DEP

and SED at the subdomain interface.

In two-dimensional piezoelectric composite, the BE
formulation takes the form [13]
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where the superscript ‘‘ðaÞ’’ stands for the quantity

associated with the ath phase (a ¼ 1 being matrix and
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in which C and S are the boundaries of the RVE and

inclusions, respectively (see Fig. 1), u
ij and t
ij (i; j ¼ 1; 2)
denote, respectively, the displacement and traction

component in the jth direction at a field point x due to
an unit point force acting in the ith direction at source

point n, u
3i and t
3i (i ¼ 1; 2) represent the ith displace-

ment and traction at x due to an unit electric charge at n,

/

i and x


i (i ¼ 1; 2) stand for the electric potential and

surface charge at x due to an unit point force acting in

the ith direction at n, /

3 and x


3 denote the electric po-

tential and surface charge at x due to an unit electric

charge at n. These fundamental solutions are well doc-
umented in the literature and can be found in [13].

To obtain a weak solution of Eq. (21) as in the con-

ventional BEM, the boundary SðaÞ is divided into a series

of boundary elements. After performing discretization

using various kinds of boundary element (e.g., constant

element, linear element, higher-order element) and col-

lecting the unknown terms to the left-hand side and the

known terms to the right-hand side, as well as using
continuity conditions at the interface S (Fig. 2), the

boundary integral equation (21) becomes a set of linear

algebraic equations:

AY ¼ P; ð24Þ

where Y and P are the total unknown and known vec-

tors, respectively, and A is a known coefficient matrix.

When the fiber in Fig. 1a becomes a hole, the

boundary integral equation (21) still holds true if one

takes a ¼ 1 only. In this case the interfacial continuity
condition is replaced by the hole boundary condition:

Tj ¼ 0 along the boundary S (Fig. 1b).
4. Algorithms for self-consistent and Mori–Tanaka

approaches

4.1. Self-consistent BEM approach

As stated in [4,9], in the self-consistent method, for

each inclusion (or hole), the effect of inclusion (or hole)

interaction is taken into account approximately by

embedded each inclusion (or hole) in the effective med-

ium whose properties are unknown. In this case, the
Fig. 2. The meshes used in FE and BE calculation.
material constants appeared in the boundary element

formulation (21) are unknown. A set of initial trial

values of the effective properties is, consequently, needed

and an iteration algorithm is required. The algorithm is
described in detail below:

(a) Assume initial values of material constants C

ð0Þ.

(b) Solve Eq. (16) for UðiÞ using the values of C

ði�1Þ,

where the subscript ‘‘ðiÞ’’ stands for the variable

associated with the ith iterative cycle.

(c) Calculate A
ð2Þ
ðiÞ in Eq. (16) by way of Eq. (17) and

using the current values of UðiÞ, and then determine
C


ðiÞ, by way of Eq. (19).

(d) If eðiÞ ¼ kC

ðiÞ � C


ði�1Þk=kC


ð0Þk6 e, where e is a con-

vergent tolerance, terminate the iteration; otherwise

take C

ðiÞ as the initial value and go to step (b).

4.2. Mori–Tanaka-BEM approach

The key assumption in the Mori–Tanaka theory
[8,11] is that the concentration matrix A

ð2Þ
MT (here we use

A
ð2Þ
MT, rather than Að2Þ, is just for distinction with Að2Þ in

Section 2) is given by the solution for a single inclusion

(or void) embedded in an intact solid subject to an ap-

plied strain field equal to the as yet unknown average

field in the composite, which means that the introduc-

tion of inclusions in the composite results in a value of

Z
ð2Þ

given by

Z
ð2Þ ¼ A

ð2Þ
DILZ

ð1Þ
; ð25Þ

where A
ð2Þ
DIL is the concentration matrix related to the

dilute model, which can be calculated by way of Eqs.

(16), (17) and (21). In this case, the material constants

appeared in the boundary element formulation (21) are

all known. As such, it is easy to prove that [4,11]

A
ð2Þ
MT ¼ A

ð2Þ
DILðv1Iþ v2A

ð2Þ
DILÞ

�1
: ð26Þ

It can be seen from Eq. (26) that the Mori–Tanaka

approach provides explicit expressions for effective
constants of defective piezoelectric solid. Therefore, no

iteration is required with Mori–Tanaka–BE method.
5. Numerical results

As a numerical illustration of the proposed approach,

the example of a square RVE with a circular rigid
insulating fiber was analyzed. The matrix used in the

present example is chosen to be BaTiO3 and its material

constants are as follows [9]:

c011 ¼ 150 GPa; c012 ¼ c013 ¼ 66 GPa;

c033 ¼ 146 GPa; c044 ¼ 44 GPa;

e031 ¼ �4:35 C=m
2
; e033 ¼ 17:5 C=m

2
;

e015 ¼ 11:4 C=m
2
;
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j0
11 ¼ 1115j0; j0

33 ¼ 1260j0;

j0 ¼ 8:85� 10�12 C2=Nm2:

Some numerical results were obtained and comparison

is made with those from the FE method. For simplicity,

it is assumed that the rigid fiber has infinite length so

that it can be treated as plane strain problem. When a
specific uni-axial SEF state (generally unit SEF for

simplicity) is applied in a unit cell, the average stresses

are calculated by BEM or FEM. Then the plane-strain

material coefficients of the composite can be obtained.

Both the BEM and FEM calculations are carried out

for numerical comparison. In the finite element model,

the 8-node quadratic element is employed. The BEM

model uses the mesh on the boundary of the finite ele-
ment model. The mesh used in the BEM and FEM

calculation is shown in Fig. 2. It has 96 boundary ele-

ments and 192 nodes.

The results obtained from both the FEM and BEM

are depicted in Figs. 3 and 4. Fig. 3 shows the normal-

ized effective modulus c
11=c
0
11 as a function of the

inclusion volume fraction v2. It is found that the two
methods provide almost the same results. The normal-

ized effective piezoelectric constant e
13=e
0
13 vs inclusion

volume fraction is shown in Fig. 4, where the results

from BEM and FEM method are observed to agree
within plotting accuracy. It is evident that for piezo-

electric matrix reinforced by rigid inclusions, the nor-

malized effective modulus c
11=c
0
11 increases along with

the increase of inclusion volume fraction v2, while the

normalized effective piezoelectric constant e
13=e
0
13 de-

creases with the increase of inclusion volume fraction.
6. Conclusions

A BEM based homogenization model of a piezo-

electric composite with inclusions or voids is presented

for estimating overall material properties. The proposed

formulation is capable of modeling two-phase compos-

ites with inhomogeneities such as holes or inclusions of

various shapes. The study indicates that the boundary
field values of a RVE are sufficient for calculation of the

effective properties of the two-phase composites men-

tioned above. As a consequence, the calculation of

internal fields can be omitted. The numerical example

shows that the results from BEM are in agreement with

those by FEM, but with less degree of freedom.
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