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Abstract

A dual variational principle is presented for Trefftz finite element analysis. The proof of the stationary conditions of

the variational functional and the theorem on the existence of extremum are provided in this paper. They are boundary

displacement condition, surface traction condition and interelement continuity condition. Based on the assumed int-

raelement and frame fields, element stiffness matrix equation is obtained which can easily be implemented into computer

programs for numerical analysis with Trefftz finite element method. Two numerical examples are considered to illus-

trate the effectiveness and applicability of the proposed element model.
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1. Introduction

Variational functionals are essential and play a central role in the formulation of the fundamental

governing equations in Trefftz finite element method (TFEM). They are the heart of many numerical

methods such as boundary element methods, finite volume methods and Trefftz finite element methods

(Qin, 2000). Herrera (1985, 2000) presented a variational formulation which is for problems with or without

discontinuities using Trefftz method. Piltner (1985) presented two different variational formulations to treat
special elements with holes or cracks. The formulation consists of a conventional potential energy and a

least square functional. The least square functional was not added as a penalty function to the potential

functional, but is minimized separately for the special elements considered. Jirousek (1978, 1993) developed

a variational functional in which either the displacement conformity or the reciprocity of the conjugate

tractions is enforced at the element interfaces. Jirousek and Zielinski (1993) obtained two complementary

hybrid Trefftz formulations based on weighted residual method. The dual formulations enforced more

strongly the reciprocity of boundary tractions than the conformity of the displacement fields. Qin (2000)

presented a modified variational principle based hybrid-Trefftz displacement frame. During the past years
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these variational functionals together with Trefftz solutions have been widely used to create new elements in

solving problems of elasticity (Jirousek and Venkatesh, 1992), Kirchhoff plates (Jirousek and Guex, 1986;

Qin, 1994), moderately thick Reissner-Mindlin plates (Jirousek, 1995; Qin, 1995), thick plates (Piltner,

1992), general 3-D solid mechanics (Piltner, 1989), axisymmetric solid mechanics (Wroblewski et al., 1992),
potential problems (Zielinski and Zienkiewicz, 1985), shells (V€or€os and Jirousek, 1991), elastodynamic

problems (Qin, 1996), transient heat conduction analysis (Jirousek, 1996), geometrically nonlinear plates

(Qin, 1997) and materially nonlinear elasticity (Freitas and Wang, 1998). The variational functional of Qin

(2000) is, however, limited to the case that nodes containing unknown displacements must connect with at

least one inter-element boundary. To remove this limitation, we present a pair of dual variational func-

tional which is based on the total potential energy and complementary energy in this paper.
2. Basic equations for TFEM in solid mechanics

2.1. Basic field equations and boundary conditions

Consider a linear isotropic body, the differential governing equation in the Cartesian coordinates xi
(i ¼ 1; 2; 3) are given by
rij;j þ �bi ¼ 0 in X ð1Þ

where rij is the stress tensor, a comma denotes partial differentiation, �bi is body force vector, X is the

solution domain, and the Einstein summation convention over repeated indices is used. For an isotropic

elastic solid, the constitutive relation is
rij ¼
oWðeijÞ
oeij

¼ sijklekl ð2aÞ
for eij as basic variable, and
eij ¼
oPðrijÞ
orij

¼ cijklrkl ð2bÞ
for rij as basic variable, where sijkl and cijkl are stiffness and compliance coefficient tensor, respectively, eij is
the elastic strain tensor, P and C are, respectively, potential energy and complementary energy functions

which defined by
WðeijÞ ¼
1

2
sijkleijekl; ð3aÞ
and
PðrijÞ ¼
1

2
cijklrijrkl ð3bÞ
The relation between strain tensor and displacement, ui, is given by
eij ¼
1

2
ðui;j þ uj;iÞ ð4Þ
The boundary conditions of the boundary value problem (1)–(4) are given by
ui ¼ �ui on Cu ð5Þ

ti ¼ rijnj ¼ �ti on Ct ð6Þ
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where �ui and �ti are, respectively, prescribed boundary displacement and traction vector, an overhead bar

denotes prescribed value, C ¼ Cu þ Ct is the boundary of the solution domain X.
Moreover, in the Trefftz finite element approach, Eqs. (1)–(6) should be completed by adding following

inter-element continuity requirements:
uie ¼ uif ; ðon Ce \ Cf ; conformityÞ; ð7Þ

tie þ tif ¼ 0; ðon Ce \ Cf ; reciprocityÞ ð8Þ
where �e� and �f � stand for any two neighbouring elements. Eqs. (1)–(8) are taken as a basis to establish the

modified variational principle for Trefftz finite element analysis in solid mechanics.
2.2. Assumed fields

The main idea of the TFEM is to establish a finite element formulation whereby the intra-element

continuity is enforced on a non-conforming internal displacement field chosen so as to a priori satisfy the

governing differential equation of the problem under consideration (Qin, 2000). In other words an obvious

alternative to Rayleigh–Ritz method as a basis for a finite element formulation, the model, here, is based on
the method of Trefftz (1926). With this method the solution domain X is subdivided into elements, and over

each element ‘‘e’’, the assumed intra-element fields are
u ¼
u1
u2
u3

8<
:

9=
; ¼ u

^ þ
Xm
i¼1

Nici ¼ u
^ þNc ð9Þ
where ci stands for undetermined coefficient, and u
^ð¼ fu^1; u

^
2; u

^
3gTÞ and Ni are known functions.

If the governing differential equation (1) is rewritten in a general form
RuðxÞ þ �bðxÞ ¼ 0; ðx 2 XeÞ ð10Þ
where R stands for the differential operator matrix for Eq. (1), x for position vector, �bð¼ ff�b1; �b2; �b3gT for
known right-hand side term, and Xe stands for the sub-domain of eth element, then u

^ ¼ u
^ðxÞ and

Ni ¼ NiðxÞ in Eq. (9) have to be chosen such that
Ru
^ þ �b ¼ 0 and RNi ¼ 0 ði ¼ 1; 2; . . . ;mÞ ð11Þ
everywhere in Xe. The unknown coefficient c may be calculated from conditions on the external boundary

and/or the continuity conditions on the inter-element boundary. Thus various Trefftz element models can
be obtained by using different approaches to enforce these conditions. In the majority of them a hybrid

technique is usually used, whereby the elements are linked through an auxiliary conforming displacement

frame which has the same form as in conventional FE method. This means that, in the Trefftz finite element

approach, a conforming displacement field should be independently defined on the element boundary to

enforce the field continuity between elements and also to link the coefficient c, appearing in Eq. (9), with

nodal displacement dð¼ fdgÞ. The frame is defined as
~uðxÞ ¼ eNðxÞd; ðx 2 CeÞ ð12Þ
where the symbol ‘‘�’’ is used to specify that the field is defined on the element boundary only, d ¼ dðcÞ
stands for the vector of the nodal displacements which are the final unknowns of the finite element for-
mulation, Ce represents the boundary of element e, and eN is a matrix of the corresponding shape functions

which are the same as those in conventional finite element formulation.
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The tractions T ¼ ft1; t2; t3gT and eT can be derived from Eqs. (2), (6) and (9), and denote
T ¼
t1
t2
t3

8<
:

9=
; ¼

r1jnj
r2jnj
r3jnj

8<
:

9=
; ¼ Qcþ T

^

; eT ¼
~t1
~t2
~t3

8<
:

9=
; ¼

~r1jnj
~r2jnj
~r3jnj

8<
:

9=
; ¼ eQd ð13Þ
3. Modified variational principles

The Trefftz finite element equation for an elastic solid can be established by the variational approach

(Qin, 2000). Since the stationary conditions of the traditional potential and complementary variational

functional cannot guarantee the satisfaction of the inter-element continuity condition which is required in
the Trefftz finite element analysis, some new variational functionals are needed to be developed. For this

purpose, we present following two modified variational functionals suitable for Trefftz finite element

analysis:
Pm ¼
X
e

Pme ¼
X
e

Pe

�
þ
Z
Cte

ð�ti � tiÞ~ui ds�
Z
CIe

ti~ui ds
�

ð14aÞ

Wm ¼
X
e

Wme ¼
X
e

We

�
þ
Z
Cue

ð�ui � ~uiÞti ds�
Z
CIe

ti~ui ds
�

ð14bÞ
where
Pe ¼
Z Z

Xe

PðrijÞdX�
Z
Cue

ti�ui ds ð15aÞ

We ¼
Z Z

Xe

ðWðeijÞ � biuiÞdX�
Z
Cte

�ti~ui ds ð15bÞ
in which Eq. (1) are assumed to be satisfied, a priori. The terminology ‘‘modified principle’’ refers, here, to

the use of a conventional functional (Pe or We here) and some modified terms for the construction of a

special variational principle to account for additional requirements such as the condition defined in Eqs. (7)

and (8).

The boundary Ce of a particular element consists of the following parts:
Ce ¼ Cue [ Cte [ CIe ð16Þ

where
Cue ¼ Cu \ Ce; Cte ¼ Ct \ Ce ð17Þ

and CIe is the inter-element boundary of the element �e�. We now show that the stationary condition of the
functional (14a) [or (14b)] leads to Eqs. (5)–(8) and (ui ¼ ~ui on Ct), and present the theorem on the existence

of extremum of the functional, which ensures that an approximate solution can converge to the exact one.

Take Pm as an example, we have following two statements:

(a) Modified complementary principle
dPm ¼ 0 ) ð5Þ–ð8Þ and ðui ¼ ~uionCtÞ ð18Þ

where d stands for the variation symbol.

(b) Theorem on the existence of extremum
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If the expression
Z Z
X
d2PðeijÞdX�

Z
Ct

dti d~ui ds�
X
e

Z
CeI

d~ui dti ds ð19Þ
is uniformly positive (or negative) at the neighborhood of u0, where u0 is such a value that Pmðu0Þ ¼ ðPmÞ0,
and where ðPmÞ0 stands for the stationary value of Pm, we have
Pm P ðPmÞ0½or Pm 6 ðPmÞ0� ð20Þ
in which the relation that ~ue ¼ ~uf is identical on Ce \ Cf has been used.

Proof. First, we derive the stationary conditions of functional (14a). To this end, performing a variation of

Pm and noting that Eq. (1) holds true a priori by the previous assumption, one obtains
dPm ¼
Z
Cu

ðui � �uiÞdti dsþ
Z
Ct

½ð�ti � tiÞd~ui þ ðui � ~uiÞdti�dsþ
X
e

Z
CeI

½ðui � ~uiÞdti � ti d~ui�ds ð21Þ
Therefore, the Euler equations for expression (21) are Eqs. (5)–(8) and ui ¼ ~ui on Ct as the quantities dti, dui
and d~ui may be arbitrary. The principle (18) has thus been proved. This indicates that the stationary

condition of the functional satisfies the required boundary and inter-element continuity equations and can
thus be used for deriving Trefftz finite element formulation.

As for the proof of the theorem on the existence of extremum, we may complete it by way of the so-

called ‘‘second variational approach’’ (Simpson and Spector, 1987). In doing this, performing variation of

dPm and using the constrained conditions (1), we find
d2Pm ¼
Z Z

X
d2PðeijÞdX�

Z
Ct

dti d~ui ds�
X
e

Z
CeI

d~ui dti ds ¼ expression ð19Þ ð22Þ
Therefore the theorem has been proved from the sufficient condition of the existence of a local extreme of a

functional (Simpson and Spector, 1987). This completes the proof. The function Pm can be stated and

proved similarly. We omit those details for the sake of conciseness. h
4. Element stiffness matrix

The element matrix equation can be generated by setting dPme ¼ 0 or dWme ¼ 0. To simplify the deri-

vation, we first transform all domain integrals in Eq. (14a) into boundary ones. In fact by reason of solution

properties of the intraelement trial functions the functional Pme can be simplified to
Pme ¼
1

2

Z
Xe

�biui dXþ 1

2

Z
Ce

tiui dsþ
Z
Cte

ð�ti � tiÞ~ui ds�
Z
CIe

ti~ui ds�
Z
Cue

ti�ui ds ð23Þ
Substituting the expressions given in Eqs. (9), (12) into (13) it produces
Pme ¼ � 1

2
cTHcþ cTSdþ cTr1 þ dTr2 þ terms withoutcord ð24Þ
in which the matrices H, S and the vectors r1, r2 are as follows:
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H ¼ �
Z
Ce

QTNds

S ¼ �
Z
Cte

QT eN ds�
Z
CIe

QT eN ds

r1 ¼
1

2

Z
Xe

NT�bdXþ 1

2

Z
Ce

ðQTu
^ þNTT

^

Þds�
Z
Cue

QT�uds

r2 ¼
Z
Cte

eNTðT� T
^

Þds�
Z
CIe

eNTT
^

ds

ð25Þ
where T ¼ f�t1;�t2;�t3gT is the prescribed traction vector.

To enforce inter-element continuity on the common element boundary, the unknown vector c should be

expressed in terms of nodal DOF d. An optional relationship between c and d in the sense of variation can

be obtained from
oPme

ocT
¼ �Hcþ Sdþ r1 ¼ 0: ð26Þ
This leads to
c ¼ Gdþ g; ð27Þ

where G ¼ H�1S and g ¼ H�1r1, and then straightforwardly yields the expression of Pme only in terms of d

and other known matrices
Pme ¼ � 1

2
dTGTHGdþ dTðGTHgþ r2Þ þ terms without d ð28Þ
Therefore, the element stiffness matrix equation can be obtained by taking the vanishing variation of the
functional Pme as
oPme

odT
¼ 0 ) Kd ¼ P ð29Þ
where K ¼ GTHG and P ¼ GTHgþ r2 are, respectively, the element stiffness matrix and the equivalent

nodal flow vector. The expression (29) is the elemental stiffness-matrix equation for Trefftz finite element

analysis.
5. Numerical examples

As numerical illustrations of the proposed element formulation, two benchmark problems are consid-

ered. In order to allow for comparisons with those results appeared in the references (Timoshenko and

Woinowsky-Krieger, 1959; Zhang, 1984), the obtained numerical results are limited to a square plate of

side-length a subjected to uniformly transverse load q. To study the convergence properties of the proposed
element model, three meshes of finite element are used in the analysis. In all calculations the Poisson�s ratio
is taken to be 0.3. The two examples are described as below.
Example 1. A square plate with two opposite edges simply supported and the remaining two free (Fig. 1)

under a uniformly lateral load q. The boundary conditions are
x ¼ 0; a; w ¼ 0; Mx ¼ �D
o2w
ox2

�
þ m

o2w
oy2

�
¼ 0 ð30Þ
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Fig. 1. The square plate and finite element meshes in Example 1.
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y ¼ 0; a; My ¼ �D
o2w
oy2

�
þ m

o2w
ox2

�
¼ 0; Vy ¼ �D

o3w
oy3

�
þ ð2� mÞ o3w

ox2 oy

�
¼ 0 ð31Þ
where w stands for a deflection of the plate, m Poisson�s ratio, D ¼ Eh3=12ð1� m2Þ, E Young�s modulus and

h thickness of the plate. Treffz functions and the two independent assumed fields (non-conforming intra-

element field and conforming frame field) for thin plate problem can be found in (Qin, 2000) and we omit
those details here for conciseness.

Owing to the symmetry of the problem only one quarter of the plate (see Fig. 1) is modelled by three

meshes of finite element (2 · 2, 4 · 4, 8 · 8). It is noted from Fig. 1 that node B contains unknown deflection

but it does not connect with any inter-element boundary. Therefore The variational functional of Qin

(2000) cannot be directly used to solve this problem unless a triangular element connecting to the node is

used or some special treatment is made. This limitation can, however, be removed by using the proposed

formulation. Table 1 shows the results of deflection (wc ¼ a� qa4=D) at central point B (a=2; a=2) and

bending moment (Mx ¼ b� qa2) at point A (a=2; 0) and compares the related analytical results (at p219 of
Timoshenko and Woinowsky-Krieger, 1959).

Example 2. A uniformly loaded cantilever square plate with one clamped edge and the remaining edges are

free (Fig. 2). The boundary conditions of this problem are
y ¼ 0; w ¼ ow
oy

¼ 0 ð32Þ
1

l deflection (wc ¼ a� qa4=D) and moment (Mx ¼ b� qa2) at point (a=2; 0) in Example 1

a b

osed FEM

· 2 0.01300 0.1334

· 4 0.01304 0.1327

· 8 0.01305 0.1325

lytical solution (Timoshenko and Woinowsky-Krieger, 1959) 0.01309 0.1318
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Fig. 2. The square plate and finite element meshes in Example 2.
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y ¼ a; My ¼ Vy ¼ 0 ð33Þ
x ¼ 0; a Mx ¼ 0; Vx ¼ �D
o3w
ox3

�
þ ð2� mÞ o3w

oxoy2

�
¼ 0 ð34Þ
In addition two more conditions at corner points (0; a) and (a; a) required that
Rjx¼0;y¼a ¼ �2Mxy ¼ �2Dð1� mÞ o2w
oxoy

¼ 0 ð35Þ
Rjx¼a;y¼a ¼ 2Mxy ¼ 2Dð1� mÞ o2w
oxoy

¼ 0 ð36Þ
A half of the cantilever plate (Fig. 2) is modelled by three meshes of finite element (4 · 2, 8 · 4 16 · 8). Some

results obtained by the proposed element model are listed in Tables 2 and 3, and comparison is made with

the analytical ones (Zhang, 1984).

It can be seen from the three tables that the results are in good agreement with analytical solutions. As

expected for all examples, it is found from the numerical results that both deflection and bending moment

converges gradually to the analytical one along with refinement of the element meshes.
2

tions ðw ¼ a� qa4=DÞjx¼a along x ¼ a in Example 2

0 0:25a 0:5a 0:75a a

posed FEM

· 2 0 0.01179 0.04351 0.08422 0.1274

· 4 0 0.01186 0.04360 0.08433 0.1284

· 8 0 0.01188 0.04363 0.08437 0.1286

lytical solution (Zhang, 1984) 0 0.011949 0.044327 0.085046 0.12933



Table 3

Moment ðMy ¼ b� qa2Þjy¼0 along the clamped edge y ¼ 0 in Example 2

x 0:0625a 0:125a 0:25a 0:375a 0:5a

Proposed FEM

4· 2 )0.4583 )0.5043 )0.5283 )0.5306 )0.5308
8· 4 )0.4599 )0.5067 )0.5295 )0.5314 )0.5316
16· 8 )0.4605 )0.5081 )0.5301 )0.5319 )0.5322

Analytical solution (Zhang, 1984) )0.47314 )0.51270 )0.53353 )0.53550 )0.53560
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6. Conclusion

Two complementary modified variational formulations are developed for Trefftz finite element analysis.

With this formulation, the limitation(nodes containing unknown displacements must connect with at least

one inter-element boundary) occurred in the previous variational functional (Qin, 2000) has been removed.

Based on the assumed intraelement and frame fields as well as the newly constructed dual variational

functional, an element stiffness matrix equation is obtained which can easily be implemented into computer

programs for numerical analysis with Trefftz finite element method. Two numerical examples have been

considered and the numerical results of both deflection and bending moment are observed to converge
gradually to the analytical one along with refinement of the element meshes.
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