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Abstract

Applications to composites of a unit-cell model in conjunction with boundary element method (BEM) for determining their effective

mechanical properties are discussed in this paper. The composite considered here consists of inclusion and matrix phases. A unit-cell model

for composites with periodically distributed inhomogeneities is developed and introduced into a boundary element formulation to provide an

effective means for estimating overall material constants of two-phase composites. In this model, the volume average stress and strain is

calculated by the boundary tractions and displacements of the unit-cell and the periodic conditions of the composite are expressed by the

periodic boundary conditions of the unit-cell. Thus BEM is suitable for performing calculations on average stress and strain fields of such

composites. Numerical results for a two-phase composite with circular rigid inclusions are presented to illustrate the application of the

proposed unit-cell boundary element formulation.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The composite material considered in this work consists

of inhomogeneities and matrix phases. The determination of

its effective properties has received considerable attention.

It is well known that the effective properties of such

composites depend on the physics and geometry of the two

phases. For estimating the effective properties of the

composite, the equivalent inclusion method is a popular

approach. It is based on Eshelby’s eigenstrain solution for

single inclusions embedded into infinite matrix [1] and the

effective properties can be expressed in terms of the volume

fraction and geometries of the inclusion as well as the

properties of the components. Over recent years various

methods have been developed based on this approach and

have been used widely in determining the overall properties

of various composite materials [2–4].

The concept of a unit-cell, or representative volume

element (RVE) in other words, has been widely applied in

the analysis of composite materials with periodic micro-

structure [5–8]. The composite is an assembled body with a

periodic RVE. A unit-cell or RVE is a repeatable cell of

composite material. Its statistical characters, for example,

the volume fraction, are taken to be the same as those

measured in the whole composite. Fig. 1 shows the periodic

microstructure and a RVE of composites considered. Earlier

investigation has focused on the approximate analytical

solutions of isolated concentric cylinders for unidirectional

fiber composites [2,5]. However, very limited analytical

solutions can be obtained due to the difficulties for direct

mathematical description of the displacement fields in the

composite cylinder. This is particularly true for a problem

with complexity in the aspects of geometry and mechanical

deformation. A combination of the micro-mechanics

models used in Refs. [2,5] and numerical methods such as

the finite element (FE) and boundary element (BE) methods

provides a powerful computational tool for estimating the

effective material properties of such composites. It should

be mentioned that the main disadvantage of the FE method

is that domain discretization is required in order to perform

the analysis. Moreover, in some cases it results in both an

inaccurate and an expensive technique, especially in solving
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inclusion-matrix problems. On the other hand, the BE

method involves discretization of the boundary of a

structure only, because the governing differential equation

is satisfied exactly inside the domain, leading to a relatively

smaller system size with sufficient accuracy. During the past

decade such combinations have been used for estimating the

effective properties of composites with fibers, particulates or

cracks [6–8]. The numerical method used in most studies

for this purpose is the FE method. However, the simple,

accurate and economic features of boundary element

method (BEM) can make prediction more efficient

[9–13], because the volume average procedure of the

local fields requires information about the boundary of the

RVE only. In this paper, a numerical approach for

determining the overall material properties of two-phase

composites is presented. This approach is based on a

proposed unit-cell model and BEM. The energy equivalence

principle [5], which is based on the assumption that the

strain energy stored in both media (the real and the

homogenized one) is equal, is used to provide equations

for determining effective material constants. Numerical

results for a two-phase composite with rigid circular

inclusions are presented to illustrate the application of the

proposed unit-cell BE approach.

2. The unit-cell model

The unit-cell model considered in this paper, shown in

Fig. 2, is an infinite two-phase composite containing perio-

dically distributed inhomogeneities, which may be cracks,

holes, fibers, etc. In the model, a RVE V is chosen so as to be

statistically representative of the two-phase composite. In

particular, the characteristic size of the heterogeneities is

supposed to be small with respect to the dimension of the RVE,

which in turn is supposed to be small compared to the

wavelength of the macroscopic structure.

In order to understand the key point of the homogeniz-

ation procedure, let us consider a RVE consisting of the

matrix material and inclusion phase. As a RVE is comprised

of different materials, the micro-constitutive law that

governs each material or phase in a RVE is given by the

standard elastic constitutive law. On the other hand, the

macro-stress and macro-strain on the macro-level are

directly associated with the global analysis of a two-phase

composite. On the macro-level, a RVE is regarded just as a

point with a homogenized constitutive law. The macro-

stress, �sij; is usually defined as the volume average stress in

a RVE, ksijl; as follows

�sij ¼ ksijlV ¼
1

V

ð
V
sij dV ð1Þ

where V is the domain of the RVE and V is its volume.

Similarly, the volume average strain �1ij and strain-energy

density �w in a RVE are defined by

�1ij ¼ k1ijlV ¼
1

V

ð
V
1ij dV ð2Þ

�w¼
1

V

ð
V

wdV¼
1

V

ð
V

1

2
sij1ij dV

¼
1

V

ð
V

1

2
Dijkl1ij1kl dV¼

1

V

ð
V

1

2
Cijklsijskl dV ð3Þ

where w¼sij1ij=2 is density of strain energy, Dijkl are local

stiffness coefficients and CijklðC¼D21Þ are local compliant

coefficients which are different from phase to phase.

Moreover, the macroscopic strain energy should satisfy

�w¼
1

2
�sij �1ij ð4Þ

The effective properties represented by effective stiffness
�Dijkl or compliancy �Cijkl of the composites can be defined by

the average stress and strain

�sij¼ �Dijkl �1kl; �1ij¼ �Cijkl �skl ð5Þ

or by equivalence of the strain energy

1

2
�sij �1ij¼

1

V

ð
V

1

2
sij1ij dV ð6Þ

or

1

2
�Dijkl �1ij �1kl¼

1

V

ð
V

1

2
Dijkl1ij1kl dV ð7Þ

The linearity of stress–strain relation for elastic body leads

to

�Dijkl¼
›2 �w

› �1ij › �1kl

ð8Þ

Then an explicit form of the effective stiffness components

can be obtained [14].

Fig. 1. A composite with periodic cells.

Fig. 2. Unit-cell (or RVE) model.
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The effective quantities of the stress, strain and strain

energy can be calculated by corresponding boundary values

with surface average procedures. For the case of small

strain, we have

1ij ¼
1

2
ðui;j þ uj;iÞ ð9Þ

where ui are displacement components. Applying the

divergence theorem in Eq. (2) yields

�1ij ¼
1

V

ð
V
1ij dV ¼

1

2V

ð
G
ðuinj þ ujniÞdG ð10Þ

where G is the boundary of the RVE, and ni is the outward

normal vector on boundary G:

By using the divergence theorem, the volume average

stresses in Eq. (1) can also be expressed as

�sij ¼
1

V

ð
V
sij dV ¼

1

2V

ð
G
ðTixj þ TjxiÞdG ð11Þ

where xi are Cartesian coordinates, Ti are the traction

components acting on the surface of the RVE. It is

found from Eq. (11) that the volume average stresses

are related only to the tractions on the boundary of the RVE.

Let us consider, for illustration, the RVE shown in Fig. 3.

The volume average stress can be obtained as

�s11 ¼
1

b

ð
BC

s11 dG; �s22 ¼
1

a

ð
DC

s22 dG ð12aÞ

�s12 ¼ �s21 ¼
1

b

ð
BC

s12 dG ¼
1

a

ð
DC

s21 dG ð12bÞ

Using the definitions described above, the following three

types of boundary condition are usually used to evaluate the

overall material properties [15,16].

(a) Uniform traction s0
ij on the boundary G of the RVE:

Ti ¼ sijnj ¼ s0
ijnj ð13Þ

In this case, we have �sij ¼ s0
ij and �1ij ¼ �Cijkls

0
kl:

(b) Uniform displacement on the boundary V of the

RVE. The component of a displacement vector in the RVE,

ui; is given as

ui ¼ 10
ijxj ð14Þ

In this case, we have �1ij ¼ 10
ij and �sij ¼ �Dijkl1

0
kl:

(c) Periodic condition on the boundary ›V of the RVE

ui ¼ 10
ijxj þ u0

i ð15Þ

where nj are components of the outer normal unit vector, xj

are space coordinates, and u0
i is periodic and represents the

fluctuation part of the displacement.

In addition, average strain energy can be expressed by

the boundary values according to the work-energy principle

�w ¼
1

V

ð
V

1

2
sij1ij dV ¼

1

V

ð
G

Tiui dG ð16Þ

Therefore, the volume average of stress, strain and strain

energy can be calculated by either volume or surface

average processes. Once two of the three quantities are

found, then the effective properties of the composites can be

predicted from Eq. (5) to (8).

The volume average of stress, strain and strain energy

can also be expressed by the phase volume fractions and the

corresponding volume average value of each phase. For an

n-phase composite, the stress, strain and strain energy can

be expressed by

�sij ¼
Xn

i¼1

vi �s
ðiÞ
ij ; �1ij ¼

Xn

i¼1

vi �1
ðiÞ
ij ; �wij ¼

Xn

i¼1

vi �w
ðiÞ
ij ð17Þ

where superscript ðiÞ stands for the variable associated with

ith phase of the composite, and vi is volume fraction of the

ith phase.

From the homogenization procedure of field quantities

and the definition of the effective properties described

above, we can see that the traction and displacement on the

boundary of the RVE are sufficient for calculating the

effective properties of the composite. Thus the BEM is

suitable for determining the microscopic fields in RVE.

3. Boundary element equations

Let us consider a linear elastic RVE (Fig. 2) occupying

the region V with boundary G: Further, let Vð1Þ be the region

of the matrix and Vð2Þ the region occupied by the

inhomogeneities. The boundary element formulation for

such an RVE is in a different form for different

inhomogeneities (Fig. 2). They are described below.

3.1. Cracks

It is well known that a crack can be modeled by a

distributed displacement dislocation along the crack. As a

consequence, the displacement dislocation can be taken as a

basic variable in BE calculation. The fundamental solution

for an infinite plane subjected to an edge dislocation ðb1; b2ÞFig. 3. Traction condition of RVE.
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at point ðx10; x20Þ can be found in the Chapter 2 of Ref. [17]

x ¼ 24HðkÞGðx220b1 2 x110b2Þln r1 ð18Þ

where x is the Airy stress function, HðkÞ ¼ 1=2pðkþ 1Þ; G

is the shear modulus of the material, k ¼ 3 2 4m for plane

strain and k ¼ ð3 2 mÞ=ð1 þ mÞ for plane stress, m being the

Poisson’s ratio. x110 ¼ x1 2 x10; x220 ¼ x2 2 x20; r2
1 ¼

x2
110 þ x2

220: The related stresses and displacements can be

evaluated by the following relations

s11 ¼ x;22; s12 ¼ 2x;12; s22 ¼ x;11 ð19aÞ

2Gu1 ¼ 2x;1 þ ðkþ 1ÞP;

2Gu2 ¼ 2x;2 þ ðkþ 1ÞQ

ð19bÞ

where a comma followed by an argument stands for

differentiation.

The functions P and Q are given by [17]:

P ¼ 4HðkÞG b1 tan21 x220

x110

� �
þ b2 ln r1

� �
ð20aÞ

Q ¼ 4HðkÞG b2 tan21 x220

x110

� �
2 b1 ln r1

� �
ð20bÞ

Using definitions defined above, expressions for ui and sij;

due to an edge dislocation ðb1; b2Þ applied at ðx10; x20Þ of the

material can be written in the form

u1

u2

( )
¼

U11 U12

U21 U22

" #
b1

b2

( )
;

s11

s12

s22

8>><
>>:

9>>=
>>; ¼

V111 V112

V121 V122

V221 V222

2
664

3
775 b1

b2

( ) ð21Þ

in which Uij and Vijk are easily derived from Eq. (18) to (20),

and we omit those details here.

With the solution described above the boundary

formulation can be developed based on the potential

variational principle.

Let us consider a regionV bounded byGð¼ Gt þ Gu þ LÞ;

as shown in Fig. 4. For stationary behavior in the absence of

body forces, the boundary value problem to be considered is

stated as

sij;j ¼ 0 on V ð22Þ

tni ¼ sijnj ¼ �tni on Gt ð23Þ

ui ¼ �ui on Gu ð24Þ

tnilLþ ¼ 2tnilL2 ¼ 0 on L ð25Þ

where Gt and Gu are the boundaries on which the prescribed

values of stress �tni and displacement �ui are imposed,

respectively. For simplicity, we define bi ¼ uilLþ 2 uilL2

on Lð¼ Lþ þ L2Þ; where L is the union of all cracks, Lþ and

L2 are defined in Fig. 4.

In a manner similar to that in Ref. [18], the total

generalized potential energy for the crack problem defined

above is given by

PðbÞ ¼
1

2

ð
L

RðbÞ·b;s ds 2
ð
G

�t·b ds ð26Þ

where

b ¼ {b1 b2}T; R ¼ {R1 R2}; �t ¼ {�tn1 �tn2} ð27Þ

with

Ri ¼
ð
sijnj ds ði; j ¼ 1; 2Þ ð28Þ

As in the conventional BE method, the boundaries L and G

are divided into a series of boundary elements for which the

displacement discontinuity may be approximated by a linear

function. To illustrate this, take a particular element m;

which is a line connected by nodes m and m þ 1; as an

example (Fig. 5).

bðsÞ ¼ bmFmðsÞ þ bmþ1Fmþ1ðsÞ ð29Þ

With the approximation (29), the displacements can now be

expressed in the form

uðxÞ ¼
XM
m¼1

Umbm ð30Þ

where M is the total number of nodes, x ¼ {x1; x2}; and

Um ¼
1

lm21

ð
lm21

U11 U12

U21 U22

2
4

3
5s ds

þ
1

lm

ð
lm

U11 U12

U21 U22

2
4

3
5ðlm 2 sÞds ð31Þ

For the total potential energy (26), substitution of Eq. (29)

into it yields

PðbÞ ¼
XM
i¼1

bT
i

XM
j¼1

kijbj=22gi

0
@

1
A ð32Þ

where

kij¼
1

lj21

ð
lj21

Fi
11 Fi

12

Fi
12 Fi

22

" #
ds2

1

lj

ð
lj

Fi
11 Fi

12

Fi
12 Fi

22

" #
ds ð33Þ

gj¼
1

lj21

ð
lj21

�tTsdsþ
1

lj

ð
lj

�tTðlj2sÞds ð34Þ
Fig. 4. Configuration of cracked solid for BEM analysis.
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with

Fi
11¼

1

li21

ð
ds
ð

li21

½V111ðs;xÞn1þV121ðs;xÞn2�xdx

þ
1

li

ð
ds
ð

li

½V111ðs;xÞn1þV121ðs;xÞn2�ðli2xÞdx ð35Þ

Fi
12¼

1

li21

ð
ds
ð

li21

½V112ðs;xÞn1þV122ðs;xÞn2�xdx

þ
1

li

ð
ds
ð

li

½V112ðs;xÞn1þV122ðs;xÞn2�ðli2xÞdx

Fi
22¼

1

li21

ð
ds
ð

li21

½V221ðs;xÞn1þV222ðs;xÞn2�xdx

þ
1

li

ð
ds
ð

li

½V221ðs;xÞn1þV222ðs;xÞn2�ðli2xÞdx

The minimization of Eq. (32) leads to a set of linear

equations

XM
j¼1

kijbj¼gi ð36Þ

The final form of the linear equations to be solved is

obtained by selecting either Eq. (30) or Eq. (36). Eq. (30)

will be chosen for those nodes at which displacements are

prescribed, and Eq. (36) will be chosen for the remaining

nodes.

3.2. Fibers

In this subsection, a two domain boundary element

model is introduced for displacements and tractions on the

boundary of each domain. The two subdomains are

separated by the interfaces between fiber and matrix

(Fig. 2(c)). Each subdomain can be separately modeled by

direct BEM. A global assembly of the boundary element

subdomains is then performed by forcing continuity of the

displacements and tractions at the subdomain interface.

In two-dimensional linear elasticity, the BE formulation

takes the form [19–22]

cðaÞðjÞuðaÞ
i ðjÞ

¼
ð

SðaÞ
½UðaÞ

ij ðx;jÞT ðaÞ
j ðxÞ2FðaÞ

ji ðx;jÞuðaÞ
j ðxÞ�dSðxÞ ð37Þ

where the superscript ðaÞ stands for the quantity associated

with the ath phase, (a¼1 being matrix and a¼2 being

fiber) and

SðaÞ ¼
SþG a¼1

S a¼2

(

cðaÞðjÞ¼

1 if j[VðaÞ

0:5 if j[SðaÞ ðSðaÞ smoothÞ

0 if j�VðaÞ<SðaÞ

8>><
>>:

ð38Þ

For plane strain the integral kernels Gij and Fij are given by

UðaÞ
ij ðx;jÞ¼

1

8pGðaÞð12mðaÞÞ

� ð324mðaÞÞln
1

r

� �
dijþ

rirj

r2

� �
ð39aÞ

FðaÞ
ji ðx;jÞ¼2

1

4pð12mðaÞÞr
ð122mðaÞÞ nj

ri

r
2ni

rj

r

� ��

þ ð122mðaÞÞdijþ
2rirj

r2

� �
rn

r

�
ð39bÞ

with

ri¼xi2ji; rn¼rini; r¼
ffiffiffiffi
riri

p
ð40Þ

Eq. (39) can be used for plane stress if mðaÞ is replaced by

mðaÞð12mðaÞÞ:

To obtain a weak solution of Eq. (37) as in the

conventional BEM, the boundary SðaÞ is divided into

Fig. 5. Definitions for FmðsÞ; lcþm l and lc2m l:
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a series of boundary elements. After performing

discretization using various kinds of boundary element

(e.g. constant element, linear element, higher-order

element) and collecting the unknown terms to the left-

hand side and the known terms to the right-hand side, as

well as using continuity conditions at the interface S (Fig.

2(b)), the boundary integral Eq. (37) becomes a set of linear

algebraic equations

AY ¼ P ð41Þ

where Y and P are the total unknown and known vectors,

respectively, and A is the known coefficient matrix.

3.3. Holes

When the fiber in Fig. 2(c) becomes a hole, the boundary

integral equation still holds true if one takes a ¼ 1 only. In

this case the interfacial continuity condition is replaced by

the hole boundary condition: Tj ¼ 0ðj ¼ 1; 2Þ along the

boundary S (Fig. 2(b)).

4. Periodic boundary conditions

Consider a rectangular unit-cell, as shown in Figs. 2

and 3, whose dimensions are a in x-direction and b in y-

direction. The presence of periodically distributed inclusion

phase results in periodic microscopic displacement and

stress fields under remote uniform loads. Without loss of the

generality, denote the periodic conditions of the displace-

ment and stress fields by

uiðyÞ ¼ uiðy þ YÞ ;y [ V ð42Þ

sijðyÞ ¼ sijðy þ YÞ ;y [ V ð43Þ

where Y ¼ ðY1; Y2; Y3Þ is the vector of periodicity

(Y ¼ ða; bÞ in our analysis), V and G are again the domain

and its boundary of the RVE, respectively. For illustration,

Fig. 6 shows a typical periodic deformation of the

composite. For any point, y0; located on the boundary G;

the periodic displacement boundary condition of the RVE is

given by

uiðy
0Þ ¼ uiðy

0 þ YÞ; ;y0 [ G ð44Þ

The stress periodicity of the RVE requires an anti-periodic

traction boundary condition

Tiðy
0Þ ¼ 2Tiðy

0 þ YÞ; ;y0 [ G ð45Þ

For a two-dimensional rectangular RVE, as shown in Fig. 7,

for example, the periodic displacement boundary conditions

are expressed by

u1ðy
0
1; y2Þ ¼ u1ðy

0
1 þ Y1; y2Þ ð46aÞ

u2ðy
0
1; y2Þ ¼ u2ðy

0
1 þ Y1; y2Þ ð46bÞ

for the left and right sides, and

u1ðy1; y
0
2Þ ¼ u1ðy1; y

0
2 þ Y2Þ ð47aÞ

u2ðy1; y
0
2Þ ¼ u2ðy1; y

0
2 þ Y2Þ ð47bÞ

for the upper and lower sides (Fig. 7). The anti-periodicity

of the traction boundary conditions yields

s11ðy
0
1; y2Þ ¼ 2s11ðy

0
1 þ Y1; y2Þ ð48aÞ

s12ðy
0
1; y2Þ ¼ 2s12ðy

0
1 þ Y1; y2Þ ð48bÞ

for the left and right sides and

s22ðy1; y
0
2Þ ¼ 2s22ðy1; y

0
2 þ Y2Þ ð49aÞ

s21ðy1; y
0
2Þ ¼ 2s21ðy1; y

0
2 þ Y2Þ ð49bÞ

for the upper and lower sides. In the case of symmetric

RVE, the periodic boundary conditions can be reduced to

ordinary boundary conditions [23–25]. The periodic

boundary conditions described above can easily be

implemented into a standard boundary element program,

because the boundary tractions and boundary displacements

are the basic variables in BEM.

5. Numerical comparison between BEM and FEM

As a numerical illustration of the proposed approach, the

example of a square RVE with a circular rigid fiber was

analyzed. The Poisson’s ratio of the matrix used in the

present example is 0.35. Some numerical results were

obtained and comparison is made with those from the FEFig. 6. A typical periodic deformation of composite.

Fig. 7. The periodic RVE.
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method. For simplicity, it is assumed that the rigid fiber has

infinite length so that it can be treated as plane strain

problem. When a specific uni-axial strain state (generally

unit strain for simplicity) is applied in a unit-cell, the average

stresses are calculated by BEM or FEM. Then the plane-

strain stiffness coefficients of the composite can be obtained.

Both the BEM and FE calculations are carried out for

numerical comparison. In the finite element model, the 8-

node quadratic element is employed. The BEM model uses

the mesh on the boundary of the finite element model. To

study the convergence, three meshes of the BEM and FEM

are used, as shown in Fig. 8. They have 48 boundary

elements and 96 nodes, 64 boundary elements and 128

nodes, and 96 boundary elements and 192 nodes, respect-

ively. The calculated effective stiffness coefficients of the

composite are listed in Table 1 for the three meshes. It is

shown that the stiffness coefficients are insensitive to the

meshes and a good convergence is demonstrated.

The results obtained from both the FE method and BEM

with Mesh b are listed in Figs. 9–11. Present composite is

transversely isotropic elastic body. The effective engineer-

ing constants can be calculated through the plane-strain

stiffness matrix by

m ¼
D1111

D1111 þ D1122

ð50aÞ

E ¼
D1111ð1 þ mÞð1 2 2mÞ

1 2 m
ð50bÞ

G ¼ D1212 ð50cÞ

where E; m and G are Young’s modulus, Poisson’s ratio and

shear modulus, respectively.

Fig. 9 shows the Young’s modulus as a function of the

inclusion volume fraction. It is seen that the two methods

lead to very similar results. A lower bound of the Young’s

modulus obtained from the Reuss approximation [3,5] is

also plotted in Fig. 9 for numerical comparison. The

effective Poisson’s ratio vs inclusion volume fraction is

shown in Fig. 10, where the results from BEM and FE

method are seen to agree within plotting accuracy. Fig. 11

plots the variation of the effective shear modulus with the

inclusion volume fraction. It is evident that for composite

reinforced by rigid inclusion, the Young’s modulus and

shear modulus increase along with the increase of inclusion

volume fraction, while the Poisson’s ratio decreases with

Fig. 8. Three meshes of FE and BE for convergence study.

Fig. 9. Young’s modulus vs inclusion volume fraction.

Table 1

Numerical result for different meshes

Mesh a Mesh b Mesh c

D1111=E0 3.34642 3.34643 3.34643

D1122=E0 1.31500 1.31501 1.31500

Fig. 10. Poisson’s ratio vs inclusion volume fraction.
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the increase of inclusion volume fraction. More numerical

examples are expected following this approach and will be

reported elsewhere.

6. Conclusions

A BEM-based micro-mechanics model for composites

with periodic inclusions or defects is presented for

estimating overall elastic properties. The proposed formu-

lation is capable of modeling two-phase composites with

inhomogeneities such as cracks, holes or inclusions. The

study indicates that the boundary field values of a RVE

are sufficient for calculation of the effective properties of

the two-phase composites mentioned above. As a

consequence, the calculation of internal fields can be

omitted. It is also indicated that the periodic boundary

condition can be easily implemented by the BEM

program. The numerical example shows that the results

from BEM are in agreement with those by FE method, but

with less degree of freedom.
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