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Abstract

The combination of phenomenological and micromechanical damage mechanics is a promising path to construct an

applicable damage model with firm physical foundation. In this paper, a quasi-micromechanical model is presented for

microcrack-weakened brittle or quasi-brittle materials. The microcracking damage is characterized in terms of the

orientation domain of microcrack growth (DMG) as well as a scalar microcrack density parameter. The DMG de-

scribes the complex damage and its evolution associated with microcrack growth, while the scalar microcrack density

factor defining the isotropic part of damage yields an easy calculation of the effects of microcrack interaction on ef-

fective elastic moduli. The conventional methods for estimating the effective moduli of microcracked solids, based on

the concept of effective medium or effective field, are formulated in a universal framework. A novel and efficient scheme

is suggested to calculate the microcrack interaction effects on the effective elastic moduli in a very convenient manner.

Thereby, a quasi-micromechanical model is established to simulate the constitutive response of microcrack-weakened

brittle or quasi-brittle materials under complex loading. Considering various micromechanisms of microcracking

damage, the overall effective constitutive relation for different stages including linear elasticity, pre-peak non-linear

hardening, stress drop and strain softening are expressed in a unified form.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Nucleation, growth and coalescence of micro-

cracks are typical damage mechanisms in brittle
and quasi-brittle solids like concrete, ceramics,

polycrystalline rocks and iron. Due to their
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heterogeneous microstructures, these materials

possess some complex and non-linear overall me-

chanical properties that are greatly different from

those of ductile metals. Damage mechanics of
brittle solids has been the subject of many inves-

tigations during the past three decades. Many

phenomenological and micromechanical damage

models have been established (see, e.g. Krajci-

novic, 1989, 1997; Kachanov, 1994; Nemat-Nasser

and Hori, 1993; Lacy et al., 1997; Lawn and

Marshall, 1998; Feng and Yu, 2002 for review). In
ed.
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spite of the great development, some fundamental

and important issues in this field have not been

resolved yet. First, an internal variable is usually

defined in continuum damage mechanics in the

form of scalar, vector or tensor to describe the

damage and its evolution in a solid. However, an
internal variable with a small number of damage

parameters is generally unable to describe the

damage state exactly, while it is difficult to deter-

mine the evolution laws of damage parameters,

especially when their number is large. To date, the

description of damage is still a much argued

problem (Krajcinovic, 1997; Krajcinovic and Ma-

stilovic, 1995). Second, most of the previous
damage models feel difficult to deal with problems

of complex loadings. Such reasons as the non-as-

sociation of damage evolution and the presence of

stress drop and strain softening render the estab-

lishment of the overall effective constitutive re-

lation of brittle materials very difficult. Third,

the incorporation of microcrack-induced residual

strains into the constitutive relation of brittle and
quasi-brittle solids has attracted little attention,

although both experimental observation and the-

oretical research have indicated its necessity

(Najar, 1994; Feng and Gross, 2000). Fourth, the

deformation and failure behaviors of brittle ma-

terials are very sensitive to the loading state, and

may be greatly different under tension, compres-

sion and shearing.
In addition, how to calculate the effects of mi-

crocrack interaction on the overall constitutive

relation is also an extensively argued but as yet

unsettled issue. Estimates of the overall elastic

moduli of a microcracked solid are usually ob-

tained with the dilute-concentration method

(DCM), self-consistent method (SCM) (Budiansky

and O�Connell, 1976; Horii and Nemat-Nasser,
1983), differential method (DM) (Hashin, 1988),

generalized self-consistent method (GSCM) (Ab-

oudi and Benveniste, 1987; Huang et al., 1994),

effective self-consistent method (Zheng and Du,

2001), and some other effective medium methods.

The DCM, sometimes referred to as the Taylor

model or the non-interacting approximation,

completely neglects microcrack interaction and,
therefore, is the simplest method. The SCM, DM

and GSCM account for the microcrack interaction
effects in different manners. However, they cannot

ensure a good accuracy of the results and need

cumbersome numerical calculation or very com-

plicated derivation. Analytical results can be ob-

tained only in a very few cases of microcrack

distribution. For more general cases, these
complicated estimation methods possess little

attraction for application. When a brittle solid is

subjected to complex loading, the evolution of

microcracking damage is of tri-dimensional and

complex anisotropy with the directions of its

principal axes varying with loading. In this case, it

is very difficult, if not impossible, to employ the

SCM, DM and GSCM. Therefore, it is of signifi-
cant interest to develop simpler methods to cal-

culate the impacts of microcrack interaction on

effective elastic properties.

To establish a relatively complete and applicable

constitutive relation model, a rather novel and in-

teresting path is to combine the methods and

advantages of both phenomenological and micro-

mechanical damage mechanics. To this end, two
ways seem to be considerable. The first is to con-

struct a model within the framework of continuum

damage mechanics, while the definition of damage

variable, the formulation of evolution law as well

as the determination of constitutive parameters are

specified on the basis of micromechanical consid-

eration. Such a model may be referred to as a mi-

cromechanics-based phenomenological damage
model, or a quasi-phenomenological damage

model (Krajcinovic et al., 1991; Swoboda and

Yang, 1999; Shao and Rudnicki, 2000). The second

is to build the basic framework of the model di-

rectly from micromechanical analysis, while some

concepts and skills of continuum damage me-

chanics are introduced to lead to a simple but more

exact model with solid physical background. We
refer to such a model as quasi-micromechanical.

The well-known Gurson�s model (Gurson, 1977)

for ductile damage is just a classic example result-

ing from the combination of phenomenologi-

cal and micromechanical analyses. To date, there

is still a lack of a satisfactory damage theory

of general applicability for microcracked brittle

solids.
The purpose of the present work is to establish

a quasi-micromechanical damage model for cal-
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culating the overall constitutive relation of brittle

materials with interacting and evolutionary mi-

crocracks. The damage evolution is characterized

in terms of orientation domain of microcrack

growth (DMG) (Feng and Yu, 1995, 2002; Feng

and Gross, 2000) as well as a scalar microcrack
density parameter (Bristow, 1960; Budiansky and

O�Connell, 1976). An outline of the paper is as

follows. Section 2 brings the conventional estima-

tion techniques of effective moduli of micro-

cracked solids into a universal framework, and

proposes a very simple and efficient scheme. Sec-

tion 3 introduces the concept of DMG and the

description of damage evolution. In Section 4, a
quasi-micromechanical damage mechanics theory

is presented on the basis of the DMG model to

calculate the effects of microcrack interaction on

the effective elastic constitutive relation using the

method suggested in Section 2. Finally, an exam-

ple of complex loading is given to illustrate the

applicability of the presented model.
Fig. 1. (a) An RVE of a microcracked solid and (b) the sim-

plified model for calculating the opening displacement of a

microcrack.
2. Estimation methods for effective moduli

2.1. Universal framework

Consider an elastic solid containing many dis-

tributed microcracks. To obtain the effective elas-

tic moduli of random heterogeneous materials, one
typically performs the ensemble-volume averaging

process within a representative volume element

(RVE) that satisfies two opposite requirements in

size, that is, it is large enough to contain a large

number, N say, of microcracks and yet small en-

ough to render its mapping on a continuum point

meaningful. The boundary oV of the RVE is

subjected either to tractions in equilibrium with a
uniform overall stress r1 or to displacements

compatible to a prescribed uniform overall strain

e1, as shown in Fig. 1(a). Then, the effective

compliance tensor S and stiffness tensor L are

defined by

�ee ¼ S : r1; �rr ¼ L : e1; ð1Þ
where �ee denotes the overall average strain over the

RVE in the case of traction boundary condition,

and �rr the overall average stress in the case of
displacement boundary condition. A colon be-

tween two tensors denotes contraction (inner

production) over two indices. The average strain

and stress can be decomposed as

�ee ¼ �eem þ �eec; �rr ¼ �rrm � �rrc; ð2Þ
where �eem and �rrm denote the matrix strain and

stress tensors averaged over the RVE, �eec and �rrc

denote the microcrack-induced variations in the
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overall average strain and stress tensors, respec-

tively. The constitutive relation of the linear elastic

matrix requires that

�eem ¼ Sm : r1; �rrm ¼ Lm : e1; ð3Þ
where Lm and Sm ¼ ðLmÞ�1

are the stiffness and
compliance of the matrix, respectively.

For simplicity in formulation, it is assumed that

all microcracks are planar. In the case of traction

boundary condition, the variation of the volume-

averaged strain due to the presence of microcracks

can be calculated by

�eec ¼ 1

2V

XN
a¼1

SðaÞð�bbnþ n�bbÞðaÞ; ð4Þ

where the superscript ðaÞ stands for a quantity of

the ath microcrack, SðaÞ, �bbðaÞ and nðaÞ denote the

surface area, the average opening displacement

discontinuity vector and the unit vector normal to

the crack faces, respectively.
Thus, the key problem becomes how to calcu-

late the opening displacement of a microcrack

embedded in a solid containing many disordered

microcracks. Evidently, it is very difficult to de-

termine analytically the exact opening displace-

ments due to the large number of interacting

microcracks. Therefore, some simplifications or

approximations are almost exclusively necessary.
On one hand, the medium surrounding a micro-

crack is weakened by the neighboring microcracks,

and then its stiffness is lower than the pristine

matrix. On the other hand, the stress field around a

microcrack is perturbed due to the existence of

other microcracks. As a straightforward approxi-

mate model, thus, the microcrack is assumed to be

surrounded by an effective medium, referred to
also as the comparison or reference matrix, with

compliance S0 (or stiffness L0) and subjected to an

effective stress r0 (or strain e0) in the far field, as

shown in Fig. 1(b). This approximation, which

renders the analytical evaluation of effective mo-

duli possible, is common to almost all the effective

medium methods and the effective field methods,

e.g. the DCM, SCM, DM and GSCM, though the
definitions of S0 (or L0) and r0 (or e0) in them are

different (Feng, 2001).

In the case of displacement boundary condition,

the microcrack-induced decrease in the volume-
averaged stress, �rrc, can be written, similarly to (4),

as

�rrc ¼ 1

2V
L0 :

XN
a¼1

SðaÞð�bbn
"

þ n�bbÞðaÞ
#
: ð5Þ

In the approximate model in Fig. 1(b), the average

opening displacement vector of a microcrack can

be expressed as

�bb ¼ BðS0;G; r0Þ � r0 � n; ð6Þ
in the case of traction boundary condition, or

�bb ¼ CðL0;G; e0Þ � e0 � n; ð7Þ
in the case of displacement boundary condition.

The second-rank symmetric tensor B in (6) is
called the crack opening displacement tensor, and

G signifies the geometry of the microcrack, and

C ¼ B : L0 is the crack opening displacement ten-

sor in terms of L0 and e0.

Define two fourth-order tensors H and G by

r0 ¼ H : r1; e0 ¼ G : e1; ð8Þ
which relate the effective stress r0 to r1, and the

effective strain e0 to e1, respectively. Assume that

the tensor H (or G) is same for all microcracks, as

is consistent with the inherent assumptions of the
effective medium or effective field methods. Thus,

all microcracks are subjected to the same far field

r0 (or e0), as shown in Fig. 1(b).

From Eqs. (4)–(8), the variations in the overall

strain and stress induced by the ath single micro-

crack are obtained as

�eeðaÞ ¼ SðaÞ

4V
r0 : ðnBnÞ
�

þ ðBnÞ : r0nþ ðnBnÞ : r0

þ nr0 : ðnBÞ
�ðaÞ

; ð9Þ

�rrðaÞ ¼ SðaÞ

4V
L0 : e0 : ðnCnÞ

�
þ ðCnÞ : e0n

þ ðnCnÞ : e0 þ ne0 : ðnCÞ
�ðaÞ

; ð10Þ

respectively. Thus, the overall compliance tensor S

and stiffness tensor L of the microcracked solid are

arrived at (Feng, 2001)

Sijkl ¼ Sm
ijkl þ

1

4V
Hstkl

XN
a¼1

SðaÞ niBjsnt
�

þ njBisnt

þ niBjtns þ njBitns
�ðaÞ

; ð11Þ
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Lijkl ¼ Lm
ijkl �

1

4V
L0
ijmnGstkl

XN
a¼1

SðaÞ nmCnsntð

þ nnCmsnt þ nmCntns þ nnCmtnsÞðaÞ; ð12Þ

which possess the Voigt symmetry, i.e. Sijkl ¼
Sjikl ¼ Sijlk ¼ Sklij and Lijkl ¼ Ljikl ¼ Lijlk ¼ Lklij.

Einstein�s summation convention for the dummy

indices is adopted herein and in the sequel.

2.2. Effective mediums and effective fields

Since the two cases of boundary condition in

Fig. 1(b) can be discussed similarly, for concise-
ness, only the traction boundary condition is

considered in what follows. Once the shapes and

orientations of all microcracks (or their probabil-

ity density functions) are specified, the overall

stiffness or compliance tensor of the microcracked

solid depends upon the tensors B and H. There-

fore, the interaction effects can be incorporated

into the overall effective compliance tensor
through an appropriate choice either of the com-

parison matrix S0 or of the far-field stress

r0 ¼ H : r1 in Fig. 1(b). Almost all the afore-

mentioned estimation techniques based on an ef-

fective medium or effective field can be formulated

in the form of Eqs. (11) and (12) and, in other

words, have a complete formal similarity. Their

differences stem only from the choices of S0 and r0,
i.e., from the ‘‘effective’’ environment where the

microcrack is assumed to be embedded. In the

DCM, for example, each microcrack is placed in

the undamaged matrix ðS0 ¼ Sm) subjected to the

unviolated remote stress r0 ¼ r1 (i.e., H ¼ I with

I being the fourth-order identity tensor). In the

SCM (Budiansky and O�Connell, 1976; Horii and

Nemat-Nasser, 1983), the environment of each
microcrack is the unviolated remote stress r0 ¼ r1

and a damaged effective medium having the as-yet-

unknown compliance ðS0 ¼ SSCM).

In addition, it can be seen from Eqs. (6) and

(11) that an effective field method may be mapped

to an effective medium method in the sense that

their estimates of effective moduli are identical.

Substituting the first equation of (8) into (6) yields

�bb ¼ ½BðS0;G; r0Þ �H� � r1 � n: ð13Þ
Therefore, provided that one compliance tensor S00

can be found such that

BðS00;G; r0Þ � I ¼ BðSm;G; r0Þ �H; ð14Þ
then the effective medium method defined by

S0 ¼ S00 and r0 ¼ r1 will lead to the same results

as the effective field method defined by S0 ¼ Sm

and r0, that is to say, these two methods are
equivalent with each other. This correspondence

relation implies that one can construct an appro-

priate method for estimating the effects of micro-

crack interaction by changing only one of S0 and

r0 while keeping the other same as that in the non-

interacting approximation.

2.3. A new estimate scheme of effective moduli

The arguments above suggest that apart from

their heuristic foundations, the conventional

methods for estimating the effective moduli are
developed by only several possible choices of S0

and r0, which are by no means better than others.

Clearly, any number of other choices is admissible

for this purpose. The relevant necessary conditions

that should be met by such S0 and r0 are as follows

(Feng, 2001):

(1) The comparison matrix compliance S0 should
be limited by a lower bound S� and an upper

bound Sþ, that is, ðSþ � S0Þ and ðS0 � S�Þ are
required to be positive self-definite. For exam-

ple, the pristine matrix compliance Sm or the

DCM compliance SDCM may be adopted as a

lower bound of S0, and the SCM compliance

SSCM may be used as an upper bound.

(2) Generally, the stress amplifying effect plays a
more significant role than the stress shielding

effect in the effective moduli of microcracked

solids. Therefore, r0 should be limited by a

lower bound r1.

In addition, three further conditions are re-

quired to yield an applicable method. First, the

effective medium S0 and the effective stress r0 can
be determined readily. Second, the calculation of

the overall effective moduli should be relatively

easy. In these two senses, the SCM, DM and

GSCM are not appropriate. Third, the results
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obtained should be of satisfactory accuracy for

general cases of microcrack arrays.

Subject to the above conditions, we choose

(Feng, 2001)

r0 ¼ r1; S0 ¼ ð1� nf gÞ�1
Sm; ð15Þ

where n and g are two adjustable parameters, and

f is the conventional scalar microcrack density

parameter defined as (Bristow, 1960; Budiansky
and O�Connell, 1976)

f ¼ 2

p

XN
a¼1

ðSðaÞÞ2

P ðaÞ ð16Þ

where P ðaÞ is the perimeter of the ath crack.

The effective medium method defined by Eq.
(15) is first used to consider, for example, an iso-

tropic solid containing penny shaped microcracks

of completely random orientations and locations.

In this case, the results of DCM, SCM and some

other approximate methods are available in the

references but omitted here for shortness. For an

open circular crack normal to the x2-axis in an

isotropic matrix with Young�s modulus E0 and
Poisson�s ratio m0, for instance, the non-zero

components of B in the local coordinate system are

(Sneddon, 1951)

B0
11 ¼ B0

33 ¼
16ð1� m20Þ
pE0ð2� m0Þ

; B0
22 ¼

8ð1� m20Þ
pE0

: ð17Þ

From Eqs. (11), (15) and (17), the normalized ef-

fective Young�s modulus and shear modulus are

obtained very easily as

E
Em

¼ 1

"
þ 16ð1� ðmmÞ2Þð10� 3mmÞf

45ð2� mmÞð1� nf gÞ

#�1

;

G
Gm

¼ 1

�
þ 32ð1� mmÞð5� mmÞf

45ð2� mmÞð1� nf gÞ

��1

; ð18Þ

where Em, Gm and mm are the Young�s modulus,

shear modulus and Poisson�s ratio of the pristine

matrix. It is seen that the new estimation scheme

defined by (15) has the following advantages. First,

the derivation of the effective moduli is as

straightforward and easy as the DCM, without

numerical iteration being required. Second, the
choice of (15) can yield the results in good agree-

ment with DCM, SCM, GSCM, DM when taking
appropriate values of n and g. For example, the

results (18) of n ¼ 0 reduce to those obtained from

the DCM. When n ¼ 1:778 and g ¼ 1:0, the results
are in a good agreement with the SCM estimates.

For application, the values of the constants n and
g can be determined by fitting experimental results

or other theoretical results of good accuracy. By

comparing the results of the present method and

the GSCM for the two extreme cases of isotropy

and complete anisotropy, we suggest that n ¼ 4=9
and g ¼ 1:0. The resulted method leads to effective

elastic moduli of satisfactory accuracy for general

arrangements of microcracks, as can be verified by
comparing with numerical examples (Feng et al.,

2003), experimental measurements (Carvalho and

Labuz, 1996) and other analytical methods of

good accuracy (Zheng and Du, 2001). Though

only two scalar parameters are used in Eq. (15), in

addition, this method is appropriate not only for

isotropic damage but also for anisotropic damage.

It is easy to understand that the modification
magnitudes to the effective elastic moduli due to

microcrack interaction are direction-dependent.
3. Quasi-micromechanical damage model

3.1. DMG and its evolution

Assume that the number density of microcracks

in a brittle material is nc, and that in the initial

undamaged state all microcracks have the same

statistically averaged radius, a0. Such failure-re-

lated properties as the tensile strength and the

strain softening behavior are sensitive to the con-

crete sizes, locations and orientations of individual

microcracks, namely, higher-order effects of mi-
crocrack interaction (Feng and Yu, 2002). How-

ever, such transport properties as the effective

elastic moduli and thermal conductivities of

microcracked solids are related merely to the sta-

tistically averaged parameters of microcrack dis-

tribution. Therefore, we adopt the assumption that

all microcracks have the same average size at the

initial state, though it is easy to incorporate any
other statistical distribution rules of microcrack

sizes into the present model. First, consider a sin-

gle microcrack in the RVE. Refer to a global
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Cartesian coordinate system ðo–x1x2x3Þ and a local

Cartesian coordinate system ðo–x01x02x03Þ for the ath
microcrack, as shown in Fig. 2, in which the x02-
axis is parallel to the normal n of the microcrack,

and the x03-axis is coplanar with x1 and x3. Then the

orientation of the microcrack is expressible in
terms of two angles, ðh;uÞ , as defined in Fig. 2.

For practical applications, assume that an open

microcrack under tension will grow in a self-simi-

lar fashion when the average value of the strain

energy release rate along the microcrack edge

reaches a critical value. Then the mixed-mode

fracture criterion for a penny shaped microcrack

in an isotropic medium may be expressed as (see,
e.g. Kanninen and Popelar, 1985; Ju and Lee,

1991; Feng and Yu, 1995)

K 0
I

KIC

� �2

þ K 0
II

KIIC

� �2

¼ 1; ð19Þ

where K 0
I and K 0

II represent the mode I and II SIFs,
KIC and KIIC their intrinsic critical values, respec-

tively. K 0
I and K 0

II are defined by

K 0
I ¼ 2r0

22

ffiffiffi
a
p

r
;

K 0
II ¼

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a ½ðr0

21Þ
2 þ ðr0

23Þ
2�

r
;

ð20Þ
2� p p
where the stress tensor in the local coordinate

system, r0
ij, is related to that in the global coordi-

nate system, rij, via the relation

r0
ij ¼ g0ikg

0
jlrkl; ð21Þ

where the transformation matrix g0ij is given by

g0ij ¼
cos h cosu sin h � cos h sinu
� sin h cosu cos h sin h sinu

sinu 0 cosu

2
4

3
5: ð22Þ

As aforementioned, the growth of a microcrack is

sensitive to its direct interaction with other mi-

crocracks, which depends upon the exact posi-

tions, sizes and orientations of microcracks of a
large number. Such a problem can be solved only

by some simplified numerical methods (Feng et al.,

2003, and references therein). For simplicity,

therefore, we do not address the interaction effects

on microcrack growth in the fracture criterion

(19).

Once a microcrack satisfies the criterion (19), it

will propagate increasing its radius from a0 to a
certain characteristic value au and then be arrested

by energy barriers (such as phase boundaries of

different directions) with higher strength than in-

terfaces. The same assumption of high-energy

barriers that serve as a microcrack trapping

mechanism was adopted by Krajcinovic and Fa-

nella (1986), Ju and Lee (1991) and some others.

The radius au depends on the microstructures of
the material, such as sizes and shapes of grains or

aggregates. Because the contribution of a micro-

crack into the effective compliance is proportional

to the third power of its radius, the average radii a0
and au are defined by

a30 ¼
1

N0

XN0

a¼1

ðaðaÞ0 Þ3; a3u ¼
1

Nu

XNu

a¼1

ðaðaÞu Þ3; ð23Þ

where N0 is the total number of microcracks in the

RVE at the initial undamaged state, and Nu the

number of microcracks that have propagated.

Thus, the microcracking damage state can be

characterized by the concept of DMG, which is

defined as the possible orientation scope in the

orientation space ðh;uÞ of all microcracks that

have propagated in the aforementioned fashion (Yu
and Feng, 1995). In other words, all microcracks
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whose orientations are within the orientation

scope of DMG must have propagated and have

the radius au. The DMG can be shown in the
upper half of the unit sphere surface (Fig. 3), since

h and u take their values within the ranges ½0; p=2�
and ½0; 2p�, respectively. As the applied stresses

vary with time t, more and more microcracks may

satisfy the fracture criterion (19) and so the DMG

of the material, XðtÞ, may evolve with time. Since

the propagation of microcracks is irreversible, the

evolution of DMG is irreversible too, that is,

Xðt þ DtÞ � XðtÞ: ð24Þ
The evolution equation of DMG with loading is

expressed by the summation of sets as (Fig. 3)

Xðt þ DtÞ ¼ XðtÞ [ Xðrijðt þ DtÞÞ; ð25Þ
where XðrijÞ denotes the DMG corresponding to

the stress tensor rij under the condition of mono-
tonically proportional loading. The detailed for-

mulas for calculating XðrijÞ were given in Yu and

Feng (1995). The DMG defined above includes

few material parameters, and its evolution with

damage progress can be easily formulated by using

the calculation rules of sets. The basic idea of

DMG is to divide all the microcracks into some

groups or sets according to their different defor-
mation and growth behaviors and then to incor-

porate the contributions of various damage

mechanisms in the constitutive relation respec-

tively. Due to the special geometry feature of mi-
crocracks, their deformation and propagation are

closely related to their orientations. Therefore, the

DMG provides a heuristic and convenient ap-

proach for describing the evolving damage due to

distributed microcracks.
With further increase in applied stresses, some

microcracks normal or nearly normal to the

maximum principal tensile stress may pass through

the high-energy barriers and experience the sec-

ondary growth. Similar to (19), the criterion of

secondary growth of a circular microcrack may

take the following form (Feng and Yu, 1995)

K 0
I

KICC

� �2

þ K 0
II

KIICC

� �2

¼ 1; ð26Þ

where KICC and KIICC are respectively the critical

values of mode I and II SIFs of energy barriers,

often taken as the values of fracture toughness of

the pristine matrix. When some microcracks have
experienced the secondary growth, the damage

and deformation will generally be localized in the

material causing the rapid stress drop and strain

softening phenomena in the stress–strain curve.

The secondary growth of a microcrack generally

corresponds to a traversing of microcrack propa-

gation in different microstructures (e.g., the tran-

sition from an interface crack to a transgranular
crack). The microscopic damage mechanisms, the

overall constitutive relation as well as the residual

strains during the stages subsequent to the occur-

rence of stress drop have been studied in detail by

Feng and Yu (1995, 2002), and Feng and Gross

(2000).

3.2. Quasi-micromechanical DMG model

As aforementioned, the DCM is very conve-

nient for providing an estimate of effective elastic

stiffness, but its evident, intrinsic shortcoming is

the complete neglect of microcrack interaction. On

the other hand, the SCM, DM and other effective

medium approaches enable the implementation of

the weak microcrack interaction effects in effective
moduli, but the prohibitive complexity and the

cumbersome computation limit their application,

especially in the case of evolutionary damage.

Under a prescribed loading path, the damage state

of a brittle material may be very complex. Al-
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though it can be proved that all damaged materials

with planar microcracks are of orthotropic an-

isotropy (Kachanov, 1994), the principal axes of

anisotropy may evolve depending upon the load-

ing path. Such problems are too complicated to be

solved with such traditional methods as SCM and
DM. Just for this reason, very little work has been

done in the field of micromechanics to consider the

calculation of overall constitutive relation of

materials with microstructural evolution under

complex loading, in spite of that some phenome-

nological models can be found in the literature

(e.g. Ortiz, 1985).

As argued in the introduction, a promising path
to achieve this aim is to combine the phenome-

nological and the micromechanical damage me-

chanics. Such an attempt is made here to present a

quasi-micromechanical damage model. Besides

the concept of DMG, the scalar microcrack den-

sity parameter f defined in (16) is adopted to de-

scribe the damage of a microcracked solid. The

DMG functions as an exact descriptor of the an-
isotropic microcracking damage state, while f ,
which defines merely the magnitude of the iso-

tropic part of damage, is introduced to render the

calculation of effective moduli much easier.

Thereby, the new estimation scheme proposed in

Section 2.3 can be implemented into the micro-

mechanics-based DMG damage model. The mi-

crocrack density parameter f ðtÞ is related to the
DMG XðtÞ by

f ðtÞ ¼ nc½�aaðtÞ�3

¼ nca30 þ nc

Z Z
XðtÞ

pða; h;uÞða3u � a30Þ

� sin hdhdu; ð27Þ

where pða; h;uÞ denotes the probability density
function describing the distribution of the orien-

tations and sizes of microcracks in the material.

Then, the effective compliance tensor of the

damage solid can be estimated by embedding each

microcrack into an effective medium with compli-

ance S0 defined in (15) and subjected to the far-

field stress r1. The non-zero components of the

crack opening displacement discontinuity vector in
(17) become
B0
11 ¼ B0

33 ¼
16ð1� m2Þ

pEð2� mÞð1� 4f =9Þ ;

B0
22 ¼

8ð1� m2Þ
pEð1� 4f =9Þ :

ð28Þ

Thus, the compliance tensor induced by the elastic

deformation of the ath microcrack of radius a and

orientation ðh;uÞ can be written as

�SScðaÞ
ijkl ða; h;u; rÞ ¼

pa3

6
B0
mnðg0minj þ g0mjniÞðg02kg0nl

þ g02lg
0
nkÞ; ð29Þ

which is similar to that of the non-interacting ap-

proximation (Feng and Gross, 2000) except the

difference in the values of B0
mn. In what follows, the

compliance tensor induced by the elastic defor-

mation of a single microcrack is simply denoted as
�SSc
ijklðaÞ.
The above discuss implies that the suggested

scheme combines the advantages of both the DCM

and thefirst-order effectivemediummethods. It con-

siders the effects of microcrack interaction on the

constitutive relation in a manner as convenient as

the DCM. As mentioned in Section 2.3, in addition,

the results obtained from the present method are ex-

pected to be better than those from the SCM, which
overestimates the effects of microcrack interaction.

Evidently, the hypothesized effective medium

defined in (15) is anisotropic provided that the

pristine matrix is anisotropic. If the pristine matrix

is isotropic, on the other hand, the suggested

method calculates the opening displacement of a

microcrack by assuming that it is embedded in an

isotropic, infinite effective medium, as is similar to
the Taylor�s model. Their difference is that the ef-

fective medium in the present method is, instead of

the pristine matrix, an approximate effective me-

dium with degraded effective elastic moduli de-

pending upon the actual damage state.

In the case that all microcracks are uniformly

distributed in the orientation space, i.e.,

pða; h;uÞ ¼ 1

2p
; ð30Þ

the microcrack density f in (27) is recast as

f ¼ nc½�aaðtÞ�3

¼ nca30 þ
nc
2p

ða3u � a30Þ
Z Z

XðtÞ
sin hdhdu: ð31Þ



270 X.-Q. Feng et al. / Mechanics of Materials 36 (2004) 261–273
It is immediately evident that f ¼ nca30 at the

initial state, and f ¼ nca3u when all microcracks

have experienced the first growth. The integral in

(31) represents the area of the DMG XðtÞ in the

upper half of the unit sphere surface, as shown in

Fig. 3.
O

x3

x1

x2

σ

45˚

σ

Fig. 4. A rotating brittle solid under uniaxial tension in the 45�
direction.
3.3. Constitutive relation

In this paper, only open microcracks are con-

sidered. If the stress component normal to a mi-

crocrack is compressive, assume that the effective

shear stress between the crack faces is smaller than

the maximum friction stress and no frictional
sliding occurs, that is, all closed microcracks are

assumed to be inactive. The DMG model includ-

ing the complex mechanisms of closed microcracks

under compression can be found in Yu and Feng

(1995).

Considering the various mechanisms of micro-

cracking damage, the overall effective constitutive

relation for all the four stages including linear
elasticity, pre-peak non-linear hardening, stress

drop and strain softening can be expressed in the

following unified form

eij ¼ ½S0
ijkl þ Sc1

ijkl þ Sc2
ijkl þ Sc3

ijkl�rkl þ eRij ; ð32Þ

where Sc1
ijkl, S

c2
ijkl, S

c3
ijkl denote the increments of the

compliance tensor due to microcracks that have

not propagated (a ¼ a0), that have experienced the
first growth (a ¼ au) and that have undergone the

secondary growth (a > au), respectively. eRij de-

notes the strains due to the residual deformation of

microcracks. We have

Scl
ijkl ¼

Z 2p

0

Z p=2

0

ncpða; h;uÞ�SSc
ijklða0Þ sin hdhdu

�
Z Z

X
ncpða; h;uÞ�SSc

ijklða0Þ sin hdhdu;

Sc2
ijkl ¼

Z Z
X
ncpða; h;uÞ�SSc

ijklðauÞ sin hdhdu

�
Z 2p

0

Z hcc

0

ncpða; h;uÞ�SSc
ijklðauÞ sin hdhdu;

Sc3
ijkl ¼

Z 2p

0

Z hcc

0

ncpða; h;uÞ�SSc
ijklðasÞ sin hdhdu;

ð33Þ
eRij ¼
Z Z

X
ncpða; h;uÞ�eeRij ðauÞ sin hdhdu

þ
Z 2p

0

Z hcc

0

ncpða; h;uÞ �eeRij ðasÞ
h

� �eeRij ðauÞ
i
sin hdhdu; ð34Þ

where hcc is an angle parameter related to the

number of microcracked that have experienced

the secondary growth (Feng and Yu, 1995), �eeRij ðaÞ
the residual strains induced by a microcrack of

radius a, and as the radius of a microcrack during
the secondary growth.
4. Illustration

Assume that all microcracks are distributed

uniformly in the orientation space. In general cases

of complex loading, the overall constitutive rela-
tion of brittle materials weakened by microcracks

can be calculated from the present model with the

aid of a simple computer program, because its

derivation is often tedious, though straightfor-

ward. In this section, we consider an example of

complex loading as shown in Fig. 4. The specimen

is subjected to a uniaxial tensile stress r with

rc 6r6 rcc in the direction of p=4 measured from
the x1- or x2-axis, and rotates with respect to the

x2-axis. During the first cycle of rotation, more and

more microcracks propagate and the DMG

evolves. However, no microcrack will grow during
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the subsequent cycles because the fatigue growth

of microcracks is disregarded here. The analytical

solution of this example can be derived easily by

using the present model. For short, only the

damage and the stress–strain relation after the first

circle of rotation are given in what follows. The
DMG is expressed as

XðrÞ ¼ fh1ðrÞ6 h6 h2ðrÞ; 06u6 2pg; ð35Þ

where h1ðrÞ ¼ p=4� hmaxðrÞ, h2ðrÞ ¼ p=4þ
hmaxðrÞ, and hmaxðrÞ is a function of the tensile

stress defined by

tan2 hmaxðrÞ ¼
B2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
2 � 4B1B3

p
B1

;

B1 ¼ � p
4a0

K2
IIC; B2 ¼ � p

2a0
K2

IIC � 2r
2� m

� �2

;

B3 ¼
rKIIC

KIC

� �2

� p
4a0

K2
IIC: ð36Þ

The corresponding stress–strain relation can be

obtained readily by substituting the DMG in (35)

into (32). Some components of the elastic com-

pliance tensor are given as

S2222 ¼
1

E
þ qð10� 3mÞa30

E0 þ qða3u � a30Þ
E0

� ½F1ðh2Þ � F1ðh1Þ�;

S1111 ¼
1

E
þ qð10� 3mÞa30

E0 þ qða3u � a30Þ
E0

� ½F2ðh2Þ � F2ðh1Þ�;

S1122 ¼ � m
E
� qma30

E0 � qmða3u � a30Þ
2E0 ½F3ðh2Þ � F3ðh1Þ�;

S1133 ¼ � m
E
� qma30

E0 � qmða3u � a30Þ
8E0 ½F4ðh2Þ � F4ðh1Þ�;

S1212 ¼
2ð1þ mÞ

E
þ qð5� mÞa30

E0

þ 15qða3u � a30Þ
2E0 ½F5ðh2Þ � F5ðh1Þ�;

S1313 ¼
2ð1þ mÞ

E
þ qð5� mÞa30

E0

þ 15qða3u � a30Þ
2E0 ½F6ðh2Þ � F6ðh1Þ�; ð37Þ
with

q ¼ 16ð1� m2Þnc
45ð2� mÞ ; E0 ¼ E

ð1� 4f =9Þ ;

F1ðhÞ ¼ 6 cos5 h� 10 cos3 hþ 3ð2� mÞð1� 5 cos5 hÞ;

F2ðhÞ ¼ 5ð2� 3 cos hþ cos3 hÞ

� 3m
8
ð8� 15 cos hþ 10 cos3 h� 3 cos5 hÞ;

F3ðhÞ ¼ 3 cos5 h� 5 cos3 h;

F4ðhÞ ¼ 8� 15 cos hþ 10 cos3 h� 3 cos5 h;

F5ðhÞ ¼
2

3
� 1

2
cos h� 1

6
cos3 h

� m
2

15

�
� 1

3
cos3 hþ 1

5
cos5 h

�
;

F5ðhÞ ¼
2

3
� cos hþ 1

3
cos3 h

� m
4

8

15

�
� cos hþ 1

3
cos3 h� 1

5
cos5 h

�
:

ð38Þ
All the other components of S can be obtained

from its three properties: (1) the Voigt symmetry,

i.e. Sijkl ¼ Sjikl ¼ Sijlk ¼ Sklij, (2) Sijkl ¼ 0 whenever

a subscript appears an odd number of times, and

(3) the transversal isotropy with respect to the x2-
axis. The above solution of the effective compli-
ance is reduced to the non-interacting or DCM

solution by replacing E0 with E.
The residual strains after the first cycle are given

as

�eeR22 ¼
1

3
pnca2u�bb

RðauÞðcos3 h1 � cos3 h2Þ;

�eeR11 ¼
1

6
pnca2u�bb

RðauÞðcos3 h2 � 3 cos h2

� cos3 h1 þ 3 cos h1Þ;

ð39Þ

where �bbRðauÞ denotes the average residual opening
displacement of a microcrack of radius au and is

formulated in Feng and Gross (2000).

More examples illustrating the application of

the present model are omitted here. It is seen that

the quasi-micromechanical model can yield rela-
tively easily the constitutive relation with micro-

crack interaction for quasi-brittle materials under

complex loading.
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5. Conclusions

Most of the previous damage models can be

divided into two classes, phenomenological and

micromechanical. A phenomenological one reflects
the damage effects in terms of an internal variable

of scalar, vector or tensor form, without deep re-

search on physical mechanisms. Such a model

usually possesses a relatively simple framework,

but cannot explain some complicated phenomena

associated with microcracking evolution due to its

unsubstantial physical foundation. On the other

hand, a micromechanical model can provide an
insight into some failure behaviors of materials.

Due to the prohibitive complexity of micromech-

anisms and the numerous factors influencing

damage process, however, a series of simplifying

assumptions are usually made in such a model

yielding the results quantitatively unsatisfactory.

Quasi-phenomenological or quasi-micromechani-

cal models that combine the concepts and methods
of the two kinds of conventional damage me-

chanics seem promising to construct an applicable

damage constitutive theory with firm physical

basis.

This paper presents a quasi-micromechanical

damage model for brittle materials weakened by a

large number of distributed microcracks. The mi-

crocracking damage is characterized in terms of
DMG and the scalar microcrack density, which

function as an exact representation of the complex

anisotropic damage and a key parameter in the

proposed scheme for calculating the impacts of

microcrack interaction, respectively. The concept

of DMG, which may be formulated in the form of

sets of microcrack orientations, has clear physical

and geometrical meaning in the orientation space.
The problem of damage evolution under complex

loading can be solved with the aid of the compu-

tation rules in set theory. In addition, the effects of

microcrack interaction on effective moduli can be

calculated in this model as easily as the non-

interacting or DCM. After considering various

microcracking mechanisms, the formulated con-

stitutive equations can be applied for the whole
deformation process of brittle or quasi-brittle

materials, including the stages of linear elasticity,

non-linear damage hardening, post-peak stress
drop and strain softening, though the physical

process of damage localization and its implemen-

tation in constitutive relations are worth of further

research.

In this paper, our attention is focused on the

material behavior under tension, though the main
idea can be extended to the case of compression

by incorporating the more complex microcracking

mechanisms of closed microcracks (Horii and

Nemat-Nasser, 1985; Feng and Yu, 2002). In ad-

dition, further investigation to other microcrack-

related problems, such as microcrack coalescence

and microcrack-induced scale effects, will certainly

deepen our understanding to the deformation and
failure behavior of brittle engineering materials.
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