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Abstract

The dependence relation between the macroscopic effective property and the microstructure of interpenetrating

multiphase composites is investigated in this paper. The effective elastic moduli of such composites cannot be calculated

from conventional micromechanics methods based on Eshelby�s tensor because an interpenetrating phase cannot be

extracted as dispersed inclusions. Employing the concept of connectivity, a micromechanical cell model is presented for

estimating the effective elastic moduli of composites reinforced with either dispersed inclusions or interpenetrating

networks. The model includes the main features of stress transfer of interpenetrating microstructures. The Mori–

Tanaka method and the iso-stress and iso-strain assumptions are adopted in an appropriate manner of combination,

rendering the calculation of effective moduli quite easy and accurate.
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1. Introduction

Recently, considerable attention has been di-

rected toward interpenetrating or co-continuous

phase composites. In contrast with most conven-

tional composites in which only the matrix phase is

spatially continuous, an interpenetrating phase
composite has at least two phases that are each

interconnected in three dimensions and construct a

topologically continuous network throughout the
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microstructure. This new generation of composites

possesses some physical and mechanical properties

that are evidently different from and often superior

to conventional fiber- or particle-reinforced com-

posites [1–4]. The determination of the overall ef-

fective properties of interpenetrating multiphase

composites is of great interest in both their engi-
neering applications and theoretical analysis, but

little work has been done as yet on this subject.

Micromechanical analysis of heterogeneous

materials provides their overall behavior from

the known properties of individual constituents.

Various estimation schemes (e.g., non-interacting

or dilute concentration method, self-consistent

method, and Mori–Tanaka method) have been
ed.
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proposed to calculate the effective properties (e.g.,

elastic moduli, thermal conductivity, electrical

conductivity, dielectric constants, piezoelectric

coefficients, and magnetic permeability) of heter-

ogeneous materials [5,6]. However, most of the
previous work has been conducted for those ma-

terials comprised of well-defined inclusions (e.g.,

spheres, whiskers, flakes, and fibers) in a connected

matrix, because it is more difficult to treat inter-

penetrating multiphase composites.

Recently, Schmauder and coworkers [4,7,8]

developed a self-consistent matricity model to

simulate numerically the mechanical behavior of
an isotropic two-phase composite with a coarse

interpenetrating microstructure. Levassort et al. [9]

presented a unit cell model to estimate the effective

electromechanical moduli of an interpenetrating

two-phase piezoelectric composite. Wegner and

Gibson [2,3] suggested a numerical model to esti-

mate the effective properties of interpenetrating

binary composites. This model was directed
mainly towards simulating the mechanical prop-

erties of isotropic materials reinforced with coarse

particles in such a large volume fraction that they

are interconnected as a three-dimensional net-

work. These models are difficult to represent the

complicated microstructures of interpenetrating

multiphase composites, especially when the spatial

distribution of individual phases and the macro-
scopic properties of composites are anisotropic.

Using statistical correlation functions, Torquato

and coworkers [6,10] derived the multipoint

bounds for heterogeneous materials, which are

sharper than the Voigt–Reuss (or one-point)

bounds and the Hashin–Shtrikman (or two-point)

bounds. Until recently, however, applications of

high-point bounds are still very limited because of
the prohibitive complexity involved in ascertaining

the statistical correlation functions for engineering

composites.

One of the key issues in estimation of the ef-

fective constitutive relation of a composite is the

appropriate modeling of the stress transfer relation

of the constituent phases with specific micro-

structures. In interpenetrating composites, the re-
inforcing phase can transfer stresses effectively in

all directions. The present paper aims to examine

the relationship between the macroscopic effective
property and the microstructure of interpenetrat-

ing multiphase composites. The concept of con-

nectivity in [11] is used to characterize the main

topological and stress transfer features of the

complicated microstructure of composites. A unit
cell model is defined in terms of the microstruc-

tural parameters including volume fractions, con-

nectivity, and anisotropic spatial distribution of

phases. The presented micromechanics method

can calculate the effective properties of composites

with both interpenetrating phases and dispersed

inclusions.
2. Unit cell model

2.1. Characterization of microstructures

Many natural interpenetrating phase materials

in biology (e.g., bones in mammals and the trucks

and limbs of many plants) have anisotropic, in-
terpenetrating microstructures [1]. Manmade in-

terpenetrating phase composites derived by such

approaches as directed metal oxidation and col-

loidal methods also possess somewhat anisotropic

properties. However, there is still a lack of mi-

cromechanics methods for simulating the me-

chanical behaviors of anisotropic interpenetrating

phase composites.
Now, consider a macroscopically homogeneous

n-phase composite, in which both the elastic

properties and spatial arrangements of individual

phases may be anisotropic. Assume that in the

composite, n1 phases (say Phases 1; 2; . . . ; n1) are

each continuously self-connected in three dimen-

sions, and the other n2 phases (i.e., Phases

n1 þ 1; n1 þ 2; . . . ; n with n1 þ n2 ¼ n) appear as
well-defined, disconnected inclusions. If a constit-

uent material exists both in the form of continuous

networks and dispersed inclusions, then it is trea-

ted as two different phases, a self-connected or

interpenetrating phase and a dispersed inclusion

phase. Connectivity suggested by Newnham et al.

[11] is a practical concept for describing the spatial

arrangement of each phase in such a composite
since it gives the number of dimensions in which

each component is self-connected. For example, 10

different connectivities are possible for binary
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Fig. 1. A single interpenetrating phase in the unit cell.
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composites, including 0–0, 0–1, 0–2, 0–3, 1–1, 1–2,

1–3, 2–2, 2–3, and 3–3. The connectivity charac-

terizing the microstructural feature of the above

defined n-phase composite is designated as

31–32– � � � –3n1�1–3n1–0n1þ1–0n1þ2– � � � –0n, where the
subscripts stand for the corresponding phases. A

phase of fiber or flake shape, with connectivity

being 1 and 2, respectively, can also be incorpo-

rated easily into the present model, but is omitted

here for conciseness.

Let us first specify according to the material

microstructure an interpenetrating phase, say the

n1th one, as the matrix of the composite, which
usually has a relatively high volume fraction. It

might be assumed, for simplicity, that all the iso-

lated inclusions of the n2 phases are embedded in

this host matrix. Then the interpenetrating matrix

and all the n2 constituent phases of inclusions are

regarded as a single hybrid phase, which is con-

tinuously self-connected in three dimensions.

Thus, the microstructure of the n-phase composite
is simplified as an interpenetrating n1-phase ma-

terial in which all the phases are each continuously

self-connected. Its connectivity can be simplified

by 31–32– � � � –3n1�1–3n1 (3n1–0n1þ1–0n1þ2– � � � –0n),
where the expression in the parentheses indicates

the microstructure of the composite matrix phase,

as defined above.

2.2. Unit cell

Refer to a Cartesian coordinate system

(o–x1x2x3). For such a multiphase composite with

complex, interpenetrating microstructure, a cubic

cell of unit volume, filled by the n1 interpenetrating
phases, can be specified according to the volume

fractions, connectivity and spatial arrangement of
the phases. Each self-connected phase is present in

the unit cell as three mutually orthogonal branches

with rectangular cross-sections, as shown in Fig. 1.

The dimensions of the three branches can be de-

termined according to the volume fraction and

anisotropic spatial distribution of this phase. The

anisotropic microstructures of an interpenetrating

phase, say the ath one, is described by only three
size parameters, aa , ba and ca, Fig. 1. Since the

cubic cell is assumed to be of unit volume, the

parameters aa, ba and ca are normalized or non-
dimensional. The interpenetrating phases 1; 2; . . . ;
and n1 � 1 are characterized by n1 � 1 orthogo-

nally branched components embedded in the host

matrix. This unit cell model keeps the most sig-

nificant features of microstructures and stress

transfer relations in interpenetrating multiphase

composites. More parameters may be introduced

further in the cubic cell to characterize the mi-
crostructures more exactly, but this will certainly

make the numerical computation and parameter

determination cumbersome.

Mathematically, the spatial distribution of the

phases can be determined from a certain number

of cross-sections of different directions, provided

that the composite is statistically homogeneous in

the macroscopic sense. For a two-phase composite
with its principal axes aligned in the x1-, x2- and x3-
directions, for example, a cross-section normal to

one principal axis, say x1, is shown in Fig. 2 [12].

The cross-section fractions of the reinforcing

(white) phase and the (black) matrix in this cross-

section can be determined by image analysis and

designated as s1;x1 and s2;x1 ¼ 1� s1;x1 , respectively,
where the first subscript denotes the corresponding
phase, and the second stands for the direction of

the normal of the corresponding cross-section.

Similarly, one can get s1;x2 , s2;x2 ¼ 1� s1;x2 , s1;x3 and
s2;x3 ¼ 1� s1;x3 . In the special case of an isotropic

composite, the cross-section fractions of phases are

independent on the directions, i.e., s1;x1 ¼ s1;x2 ¼
s1;x3 and s2;x1 ¼ s2;x2 ¼ s2;x3 .



Fig. 2. A cross-section of an interpenetrating two-phase com-

posite [12].
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Fig. 3. Two unit cells of interpenetrating multiphase compos-

ites.
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Thus, the size parameters of the ath phase in the

unit cell are related to the cross-section fractions

by

baca ¼ sa;x1 ; aaca ¼ sa;x2 ; aaba ¼ sa;x3 ; ð1Þ
from which one obtains

aa ¼
sa;x2sa;x3
sa;x1

� �1=2

;

ba ¼
sa;x1sa;x3
sa;x2

� �1=2

;

ca ¼
sa;x1sa;x2
sa;x3

� �1=2

:

ð2Þ

The volume fraction of an interpenetrating

phase is related to the three size parameters by

fa ¼ aaba þ aaca þ baca � 2aabaca: ð3Þ
In the case of isotropic distribution, one obtains

aa ¼ ba ¼ ca, and then fa ¼ a2að3� 2aaÞ.
To illustrate the method for defining a unit cell,

two examples are schematized in Fig. 3, corre-

sponding to two five-phase composites. In Fig.
3(a), three phases are self-connected in three di-

mensions and the other two exist in the form of

dispersed inclusions, and in Fig. 3(b), four phases

are self-continuous and the other is of inclusion

shape. Such unit cells for multiphase composites

are of engineering interest in analysis, design and

characterization of the actual materials. On one

hand, more than two phases are often necessary to
yield better comprehensive properties of a com-
posite. On the other hand, if a constituent material

of a composite exists in different forms (network or
particles), it should be considered as different

phases in the theoretical model for easier calcula-

tion, as aforementioned.
3. Estimation of effective elastic moduli

As mentioned in Section 1, composites of cur-
rent interest not only have phases of dispersed

inclusion but also continuously self-connected

phases. To provide an analytical estimate on the

effective elastic moduli of a composite with such

complicated microstructures, some assumptions

and simplifications are always necessary. The
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effective properties (for example, elastic moduli,

elastoplastic constitutive relation and thermal

conductivity) of such composites can be estimated

from the above-defined unit cell model. We present

here a method for calculating the overall effective
elastic moduli via a two-step procedure.

First, the effective moduli of the above-defined

hybrid matrix phase, in which a self-connected

phase (the n1th one) containing the n2 inclusion-

dispersed phases, is determined by one of the

conventional micromechanics methods (e.g., dilute

concentration method, self-consistent method,

generalized self-consistent method, Mori–Tanaka
method). These methods derive the overall be-

havior of heterogeneous materials from the known

properties of the individual constituents (e.g.,

matrix and inclusions) [5]. In the present paper,

only the Mori–Tanaka method [13] will be em-

ployed because it may easily derive the effective

moduli of inclusion-dispersed composites with

good accuracy even for a high volume fraction of
inclusions. However, it is known that the Mori–

Tanaka method leads to asymmetrical elastic ten-

sors in some cases. This drawback can generally be

overcome by appropriate symmetrization of the

elastic stiffness or compliance tensors. Implemen-

tation of other estimation methods aforemen-

tioned into the present model is also thinkable but

omitted here for short.
The Mori–Tanaka method [13] estimates the

effective moduli by assuming that each inclusion is

placed in an infinite pristine matrix and subjected,

in the far field, to the average stress rm or average

strain em of the matrix. For a composite with an

interpenetrating matrix containing n2 reinforcing

phases in the form of differently oriented inclu-

sions, the Mori–Tanaka method gives the effective
stiffness tensor C as [5]

C ¼ fmCm

 
þ
Xn2
a¼1

frahCra : Aai
!

: fmI

 
þ
Xn2
a¼1

fra Aah i
!�1

; ð4Þ

where the subscripts m and r represent quantities

of the hybrid matrix and the reinforcing phase,

respectively, a implies the ath reinforcing phase, fm
and fra denote the volume fractions, and Cm and

Cra the elastic stiffness tensors of the correspond-

ing phases. Throughout this paper, a boldface

letter stands for a two- or four-order tensor, and a
colon between two tensors denotes contraction

(inner product) over two indices. The fourth-order

tensor Aa, which is the average strain-concentra-

tion tensor, is defined by

era ¼ Aa : em; ð5Þ

where era denotes the average strain in the ath re-
inforcing phase (inclusions). The partial concen-

tration factor Aa was given by Walpole [14] as

Aa ¼ I
h

þ Sa : ðCmÞ�1
: ðCra � CmÞ

i�1

; ð6Þ

where Sa denotes Eshelby�s tensor. Eqs. (4)–(6) are
adopted here to determine the elastic moduli of the
above-defined hybrid matrix in the unit cell.

The second step is to estimate the effective

elastic moduli of the cubic cell, either by a finite

element method or by an approximate analytical

method. For a composite with dispersed inclu-

sions, the iso-stress and iso-strain assumptions

lead, respectively, to the lower and upper bounds

of elastic moduli. These two methods were first
introduced by Voigt and Reuss, and, therefore, are

also referred to as the Voigt and Reuss methods,

respectively. However, an appropriate combina-

tion of the iso-stress and iso-strain assumptions

may yield the effective elastic moduli of the cubic

cell in a manner much easier than the finite ele-

ment numerical analysis.

To this end, the unit cell, which consists of n1
self-connected phases (see Fig. 3), is divided into

n1 � n1 sub-cells, each consisting of n1 series

blocks. The effective moduli of each sub-cell are

determined by adopting the iso-stress assumption.

Finally, the elastic moduli of the whole cell can be

calculated from the n1 � n1 parallel sub-cells by

using the iso-strain assumption.

Such a parallel-series decomposition method is
schematized in Fig. 4 for an interpenetrating two-

phase composite. Evidently, there are three possi-

ble directions to divide the cell. If the composite is

isotropic, estimates of the effective Young�s mod-

ulus and shear modulus are independent of the

dividing direction. For an anisotropic composite
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Fig. 4. (a) A unit cell for an interpenetrating two-phase composite, and (b) its decomposition.
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with oriented network phases, the effective elastic

moduli in different directions should be derived
from the corresponding decomposition direction.

In the isotropic case, for example, the effective

Young�s modulus can be determined by

E ¼
Xn1
a¼1

Xn1
b¼1

Xn1
c¼1

Vabc
Eabc

 !�1Xn1
c¼1

Vabc

2
4

3
5

8<
:

�
Xn1
c¼1

Vabc

9=
;; ð7Þ

where ða; b; cÞ denotes the serial number of a sub-

cell in the x1-, x2- and x3-directions (Fig. 4(b)), Eabc

and Vabc denote the Young�s modulus and volume

of the ða; b; cÞ sub-cell.
For composites reinforced by distributed in-

clusions, only the matrix phase is self-connected in

three dimensions. Then the unit cell is reduced to a
representative volume element (RVE), which is

extensively employed in the micromechanics of

composites. In this simple case, therefore, the

present model is completely equivalent to the

conventional micromechanics models. The effec-

tive moduli of the composite can be given di-

rectly from such methods as that of Mori–Tanaka

[5,13].
4. Illustrations and discussions

4.1. An interpenetrating two-phase composite

For an interpenetrating binary composite, the

effective moduli can be estimated easily from the

unit cubic cell in Fig. 4(a) by adopting the com-

bination of iso-stress and iso-strain assumptions,

as shown in Fig. 4(b). We take a simple case of

engineering significance as an example, where both
the interpenetrating phases are isotropic, linearly

elastic and uniformly distributed in all directions.

Here, it is seen that the geometrical parameters

a1 ¼ b1 ¼ c1 ¼ a and a2 ¼ b2 ¼ c2 ¼ 1� a, and the

volume fraction of the reinforcing phase

f1 ¼ 3a2 � 2a3. Then, the effective Young�s mod-

ulus E and shear modulus G of such a 3–3 com-

posite are derived from Eq. (7) in the following
explicit form:

E ¼ a2Er þ ð1� aÞ2Em

þ 2að1� aÞ a
Er

�
þ 1� a

Em

��1

;

G ¼ a2Gr þ ð1� aÞ2Gm

þ 2að1� aÞ a
Gr

�
þ 1� a

Gm

��1

ð8Þ
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which are functions merely of the volume fraction

of the reinforcing phase via the relation

f1 ¼ 3a2 � 2a3, though the effects of interpene-

trating microstructures have been included.
To examine the accuracy of the above method

based on the decomposition of parallel and series

sub-cells, commercial FE program ABAQUS-6.2.1

was used to calculate the effective elastic moduli of

the unit cell in Fig. 4(a). The periodic displacement

boundary conditions are prescribed on the unit

cell. A bi-continuous composite made of 420

stainless steel and 150P bronze is taken as an ex-
ample. The Young�s modulus and shear modulus

of the stainless are 210 and 81.4 GPa, and those of

the bronze are 110 and 41.35 GPa, respectively

[2,3]. The analytical solution in Eq. (8), the results

of the finite element method and the experimental

results of Wegner and Gibson [2] are shown in Fig.

5. Evidently, the approximate analytical method

based on the sub-cell decomposition agrees very
well with the numerical method and the experi-

mental results.

4.2. A four-phase composite with two self-connected

phases

A four-phase composite synthesized by Torqu-

ato et al. [12] is analyzed here, in which the B4C
and Al phases are self-connected in three dimen-

sions and the AlB2 and Al4BC phases exist in the

form of dispersed inclusions. The elastic properties

and volume fractions of all the phases are given in

Ref. [12] and, for completeness, are listed in Table

1.

The B4C phase is chosen as the self-connected

host matrix. According to the two-step calculation
procedure, the effective moduli of the composite

matrix comprising of the B4C, AlB2 and Al4BC

phases are first determined from the Mori–Tanaka
Table 1

Volume fractions and elastic moduli of phases in a four-phase compo

Phase number, a Phase material Volume fraction, fa

1 Al 0.16

2 B4C 0.66

3 AlB2 0.02

4 Al4BC 0.16
method. Its Young�s modulus and shear modulus

are determined, respectively, as Em ¼ 414:72 GPa

and Gm ¼ 176:19 GPa. Using the relation:

f1 ¼ 3a2 � 2a3 and the volume fraction of Al,

f1 ¼ 0:16, the parameter a equals to 0.2533. Then,

the effective bulk modulus and shear modulus are
derived from Eq. (8) as K ¼ 169:9 GPa and
site [12]

Bulk modulus, Ka (GPa) Shear modulus, Ga (GPa)

67.6 25.9

226.0 192.0

170.0 120.0

175.0 129.0
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G ¼ 126:8 GPa, which agree well with the experi-

mental data of Torquato et al. [12], K ¼ 176 GPa

and G ¼ 125 GPa.
5. Conclusions

The mechanical properties, for example, stiff-

ness, strength, and fracture toughness, of com-

posites depend not only on the volume fractions

but also, to varying extents, on the spatial distri-

bution of the constituents. The effective elastic

moduli of interpenetrating phase composites can-
not be obtained from the Eshelby�s tensor, which
has provided a sound physical basis for the con-

ventional micromechanics of composites, because

an interpenetrating phase cannot be extracted as

dispersed inclusions. By using the concept of

connectivity, a unit cell model is presented in this

paper to determine the overall effective properties

of composites reinforced with either dispersed in-
clusions or interpenetrating networks. The Mori–

Tanaka method together with the iso-stress and

iso-strain assumptions are employed and com-

bined in an appropriate manner, which enables an

easy and accurate determination of the effective

elastic moduli. Although the attention of this work

is focused mainly on the effective elastic moduli,

the presented cell model can also be extended
easily to evaluate the three-dimensional elasto-

plastic constitutive relation and other effective

properties of composites.
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