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Abstract

The boundary element formulation for analysing interaction between a hole and multiple cracks in piezoelectric
materials is presented. Using Green’s function for hole problems and variational principle, a boundary element model
(BEM) for a 2-D thermopiezoelectric solid with cracks and holes has been developed and used to calculate stress in-
tensity factors of the crack-hole problem. In BEM, the boundary condition on the hole circumference is satisfied a
priori by Green’s function, and is not involved in the boundary element equations. The method is applicable to
multiple-crack problems in both finite and infinite solids. Numerical results for stress and electric displacement intensity
factors at a particular crack tip in a crack-hole system of piezoelectric materials are presented to illustrate the appli-
cation of the proposed formulation. © 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The thermoelectroelastic analysis of a multiple-crack system in a piezoelectric solid is of importance in
the field of fracture mechanics, as piezoelectric materials often contain many internal microcracks which
may grow during service. For anisotropic materials without thermal effect, Hwu [1] obtained a solution for
collinear cracks in an infinite plate. Chen and Hasebe [2] treated the elastic interaction between a main
crack and a parallel microcrack in an orthotropic plate. Based on the strain energy density criterion, Ma
et al. [3] studied the direction of initial crack growth of two interacting cracks in an anisotropic solid.
Mauge and Kachanov [4,5] analysed the elastic crack—microcrack interaction and the effective elastic
properties of a 2-D matrix of general anisotropy, containing an arbitrary orientation distribution of cracks.
Yen et al. [6] and Ting [7] obtained Green’s functions for a line force and a line dislocation located outside,
inside and at the interface of an elliptic inclusion of a general anisotropic elastic solid. Later, Hwu et al. [§]
studied the interaction between an inclusion and a crack in an anisotropic material by the method of sin-
gular integral equations (SIE). Recently, Qin and Mai [9,10] presented thermoelectroelastic Green functions
for bi-material and half-plane problems of an infinite piezoelectric solid, and applied these to obtain SIE.
For a complex structure, however, the thermoelectroelastic analysis often requires more powerful numerical
techniques. One such technique is the boundary element method (BEM). Most developments in fracture
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mechanics by BEM can be found in Ref. [11]. In this paper, we develop a BEM for thermoelectroelastic
problems of a planar piezoelectric solid with a hole and multiple cracks. Based on the thermoelectroelastic
Green'’s function for a piezoelectric solid with a hole [12] and the potential variational principle, a system of
boundary element formulation for temperature discontinuity as well as dislocation of elastic displacement
and electric potential (EDEP) are presented and used to calculate stress and electric displacement (SED)
intensity factors. Numerical results for a piezoelectric plate with a hole and a crack are presented to il-
lustrate the application of the proposed method.

2. Green functions for a hole embedded in an infinite piezoelectric solid
Consider a hole embedded in an infinite piezoelectric solid subjected to a line temperature discontinuity

T located at (x10,%20) as shown in Fig. 1. Green functions for such a problem have been given in Ref. [12].
They are:

T = 2Re[g'(z/)] = 2Re[fo({,) + £1(C))] (1)
9 = —2Relikg'(z,)] = —2Re[ikfs(L,) + ikfi (&,)] (2)
u = 2Re{—A[F,(0) + F2(OP 2B 'd + cg(L,)} (3)
¢ = 2Re{—B[F,({) + F,(O)P 7B 'd + dg(¢,)} ()

where T, ¥, u and ¢ represent temperature, heat-flow function, EDEP and SED function vectors, re-
spectively. i=+/—1, “Re” represents the real part of a complex number, (= {6GG C4}T, P=
diag[p; p» ps ps], T and p; are heat and electroelastic eigenvalues of the materials whose imaginary parts are
positive [9,10]. k = \/ki1k»n — k?,, where ki; is the thermal conductivity, A, B, ¢ and d are the material ei-
genvector matrices and vectors which are defined in the literature (see Refs. [9,10], for example). ; and {,
are related to the complex variables z;,(= x; 4+ pyx2) and z,(= x; + tx,) by, respectively

z = ala(, + asz;l +enanl; +enanl") (5)

Zy = a(aert + aZrC;l + enla_’arC;l + en1a4‘cc;n) (6)

Fig. 1. Temperature discontinuity in a plate with a hole.
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in which
ap = (1 —ipre)/2, ay=(1+ipe)/2, ay =71 +ipe)/2, ay =7yl —ipe)/2 (7)
ai, = (1—1ite)/2, ayp = (l+ite)/2, a3 =7y(l+ite)/2, a4 =7y(1—ite)/2 (8)

where e; =1 if i # j; e, =01f i =, 0 <e<1, nis an integer and has the same value for both subscript
and argument of the functions. y and a are real parameters. By an appropriate selection of the parameters e,
n and y, we can obtain various kinds of cavities or holes, such as ellipse (n = 1), circle (n = e = 1), tri-
angular (n = 2), square (n = 3) and pentagon (n = 4). The functions fj, fi, Fi, F, and g, can be found in
Ref. [12], and for convenience, we also list them in Appendix A. With the above solutions, the heat flow #4;
and SED II,(= {0,045 63,~D,-}T) are calculated by the relations:

hy =02, hy=9,, I=—¢, IH=a¢, ©)

where #;, ;; and D; are, respectively, heat flow, SED.

3. Boundary element method for thermopiezoelectric problem

Consider again a 2-D thermopiezoelectric solid inside of which there exist a hole and a number of cracks
with arbitrary orientation and size. The numerical approach to such a problem usually involves the fol-
lowing steps. (i) Solve a heat transfer problem first to obtain the steady-state 7 field. (i1) Calculate the
electroelastic field caused by the T field, then plus an isothermal solution to satisfy the corresponding
mechanical boundary conditions. (iii) Finally, solve the modified problem for electroelastic fields. In what
follows, we begin by deriving the variational principle for temperature discontinuity and then extend it to
the case of thermoelectroelasticity.

3.1. Boundary element method for temperature discontinuity problem

Let us consider a finite region Q; bounded by I'(=I';, + I'r), as shown in Fig. 2(a). The heat transfer
problem to be considered is stated as:

k;jT; =0 in (10)
h,=hn;=hy on I, (11)
T=Ty, on Ir (12)
hn;=0 on L (13)

(@) (b)

Fig. 2. Configuration of the plate for BEM analysis.
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where #; is the normal to the boundary I', 4y and T are the prescribed values of heat ﬂon and temperature,
which act on the b(lundaries I'y and I'r, respectively. For simplicity, we define T = T|,~ — T|;- on
L(=L* + L), where T is the temperature discontinuity, L is the union of all cracks, L* and L~ are defined
in Fig. 2(b). It should be pointed out that the boundary condition along the hole is automatically satisfied
due to the use of the Green function given in Egs. (1) and (2). Naturally, the hole boundary condition is not
involved in the following analysis.

Further, if we let Q, be the complementary region of Q; (i.e., the union of Q; and Q, forms the infinite
region Q) and T = T|r+ — T|r- = Ty, the problem shown in Fig. 2(a) can be extended to the infinite case (see
Fig. 2(b)). Here I' = I'" 4+ I'", where I'" and I'" stand for the boundaries of Q; and ., respectively (see
Fig. 2(b)). In a way similar to that in Ref. [13], the total generalized potential energy for the thermal
problem defined above is given by:

1

By transforming the area integral in Eq. (14) to a boundary integral, we have
~ 1 ~ ~
P(T7T):—E/ﬁ(T)fsds+/hans (15)
L r

in which the relation

~

b=ty and [ hTds= [[0F), - 0T )ds (16)
L L '

and the temperature discontinuity is assumed to be continuous over L and zero at the ends of L. Moreover,
temperature 7" in Eq. (15) can be expressed in terms of T through use of Eq. (1). Therefore, the potential
energy can be further written as

mﬂ:—%lwﬂﬁm+[m?m (17)

The analytical results for the minimum of potential (17) is not, in general, possible, and therefore a
numerical procedure must be used to solve the problem. As in conventional BEM, the boundaries I" and L
are divided into a series of linear boundary elements for which the temperature discontinuity may be ap-
proximated by a linear function. To illustrate this, take a particular element /2, which is a line connected by
nodes m and m + 1, as an example (see Fig. 3)

T(s) = TuFu(s) + Tos1Foi1(5) (18)
where f’m is the temperature discontinuity at node m, and functions F,,(s), F,.(s) are shown in Fig. 3.
On the use of Egs. (1), (2) and (18), the temperature and heat-flux function at point z, are

I, —s

S
Fm+] (S) =

m m

F (s)=

m

oy
-

m(s=0) s \ m+1(s=1,) m(s=0) m+l(s=1)

element m

Fig. 3. The definitions of F,(s) and F,,.(s).
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T(z) = Z Im[a,,(z)]7, (19)
9(z) = —k Y _ Relan(z)] T, (20)

m=1

where M is the total number of nodes, “Im” represents the imaginary part of a complex number, and

an(l) = / {In(¢, =) + (¢ =)} 1,,,1,1: 2 ds
/km o)+ - G} ds (1)
in which {, can be expressed in terms of s by the relations
2= f(8) = alarcl, + @l + emaz ] + emanl;") (22)
= Go=s ) (23)
Zi !t =d,, + s(cosa, | +sine, 1), Zj = d,+s(cosa, +Tsina,) (24)

and d,, = x1,, + ™o, (X1, %2, ) 18 the coordinates at node m, o, is the angle between the element m and x;-
axis, a,_; is defined similarly. It should be pointed out that the solution of {,, in Eq. (23) is multi-valued, as
there exist n-roots located outside the unit circle [14]. The root whose magnitude has a minimum value is
chosen in our analysis [14].

Using Eq. (19), the temperature at node j can be written as

(L) = Zlm an(E))T, (25)

Substituting Eq. (18) into Eq. (17) yields

M M
~ 1 ~ A ~
P(T) =Y lE <§ijT,,,Tj) +G,T;

J=1 m=1

(26)

where K,,; is known as the stiffness matrix and G; the equivalent nodal heat-flux vector, which are given by:

.

J=1 I

K== [ Relan(@"ds +7 [ RelanCy)]as (27)

G, — / hoF(s) ds (28)

1+

The minimization of P(T) yields

>

The final form of the linear equations to be solved is obtained by selecting the appropriate ones, from
among Egs. (25) and (29). Eq. (25) will be chosen for those nodes at which the temperature is prescribed,

ﬂ)
||

(29)
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and Eq. (29) for the remaining nodes. After the nodal temperature discontinuities have been calculated, the
EDEP and SED at any point in the region can be evaluated by using Egs. (3), (4) and (9). They are

M M
u=> wi, M= xT, L= y]T (30)
j =

w=—im{z,MW@HJ%m“ﬂB“—%@”%Pﬂw}

- %Im{ AT + F,(OP'7)B'd — cg(())] 15 ds} (31)

x) = ilm{ / [BEOP + F(07B 4 - e () lf,f/_j d ds}
1 / / \p-13 / S 2
+o-Im / B, (0P + P08 — e (¢ s (32)

n=—§m{éﬂmﬂm+E@PWB“—%“MZTWM}

J—1

1 / / —1\p-13 / s
- ﬂlm{ / [B(F} () + Fy(OP' OB 'd - eg/(0)] > ds} (33)
I j
Thus, the surface traction charge and EDEP induced by the temperature discontinuity are of the form
M . M .
t(s) = iy =Y (i +ym) Ty wl(s) =D wis)T (34)
j=1 j=1

In general, t’(s) # 0 over I', (the boundary on which SED is prescribed) and u’(s) # 0 over I', (the
boundary on which EDEP is prescribed). To satisfy the SED (or EDEP) on the corresponding boundaries,
we must superpose a solution of the corresponding isothermal problem with a SED (or a EDEP) equal and
opposite to those of Eq. (34). The details will be given in the following sub-section.

3.2. Boundary element method for EDEP discontinuity problem

Consider again the domain ©,, the governing equation and its boundary conditions are described as
follows:

tu = Myn; = 1] — (t,), on I, (36)
w=u' — (), on T, (37)

tilpe = —tuili- = =), @ = wilpe — |- — (u),[- + (w)),|- onL (38)
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where I', and I', are the boundaries on which the prescribed values of SED #’ and EDEP «” are imposed,
and I1;; = (II;),. Similarly, the total potential energy for the electroelastic problem can be given as

1
(@) = 5 / ($(8) -6, + 2t @] ds — / (€ — ) - ds (39)
L r
where the elastic solutions of the functions ¢(u) and u(u) have been given in Ref. [14]. These solutions are
1 _ —
u(@) = ~Im[A({In(Z, — C,0))B"]d Zlm '~ Z,))B'BI,B'Ju (40)
T
~ 1 Ty~ 1 4 1 - 1oy 5li~
$(@) = Im[B{In(Z, — Lo))B'Ja +— " Im[B{In(Z; " — ))B BB Ja (41)
=1
where
I, = diag[1,0,0,0], I,=diag[0,1,0,0], I;=diag[0,0,1,0], L = diag0,0,0,1] (42)

As before the boundaries L and I' are divided into a series of boundary elements, for which the EDEP
discontinuity may be approximated through linear interpolation as

U(s) = UpFou(s) + i1 Fir (5) (43)

With approximation (43), the EDEP and SED functions given in Egs. (40) and (41) can now be expressed
by

M M
u(() =Y Im(AD,(Dfd,, () =Y ImBD,(O)]u, (44)
m=1 m=1
where
D (c):l/ (In(, — ¢ BT+24:1n G- yB BB b Y g
" TSl =1 ! -1
1 4 —1| s
+—/ (In(¢, — T+ (In C’ —C B 'BI;B ; —ds (45)
T I =1 lm
in which {, and {,, can be expressed in terms of s by the relations
z, = f(() = alanl, + anl,' + enasnl + enasnl,") (46)
Go =07, Go=r""(Z) (47)
2% =y + 5(COS Uy | + Py SINO, 1), 2% = dyy + S(COS &, + Py sin ) (48)
and docm = Xtm + PaXom-
In particular the displacement at node j is given by
M .
= _Im[AD,()]u, (49)

m=1

Substituting Eq. (44) into Eq. (39), we have

ZOEDY [ﬁ? - (Zku—ﬁ,) / 2- gi] (50)



584 Q.-H. Qin, Y.-W. Mai | Engineering Fracture Mechanics 69 (2002) 577-588

where
1 . 1 .
kj;=-— / Im[D] (& ")B"]ds — - / Im[D/ (&})B"]ds (51)
lisv Ji, i Ji,
5= GEG (52)
Lol
and G; = —t° when node j is located at the boundary L, G; = t” — t” for other nodes. The minimization of

Eq. (50) leads to a set of linear equations
M
ZKU“/‘ =8 (53)
=1

Similarly, the final form of the linear equations to be solved is obtained by selecting the appropriate ones,
from among Egs. (49) and (53). Eq. (49) will be chosen for those nodes at which the EDEP is prescribed,
and Eq. (53) for the other nodes. Once the EDEP discontinuity u has been found, the SED at any point can
be expressed by

M M
I, = =) Im[BPD,(z)]u,, IT,=> Im[BD, (z)u, (54)
m=1 m=1
Therefore the SED, II,, in a coordinate system local to the crack line, is given by
I, = ®(a){—1I, sino+ [T, cos o} (55)
where @ («) is defined by [14]

cosa sina 0 O
—sina cosa O O
1 0
0 1

Pl =1 0 (56)
0 0
Using Eq. (55) we can evaluate the SED intensity factors by the following definition:
K(c) = {Ky K, Ky Kp}' = lin8\/2nrﬂn(r) (57)

We can evaluate the SED intensity factors in several ways: by extrapolation, traction and J-integral for-
mulae [15]. In our analysis, the first method is used to calculate the SED intensity factors in BEM. Here, I1,
at points A and B ahead of a crack tip (see Fig. 4) is first derived and then substituting them into Eq. (57),
we obtain

crack tip

— N

A B

Fig. 4. Geometry of near-tip points A and B.
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K* = a®/2nra, KB =0®\/2mrp (58)

where r5 (or rg) are the distance from crack tip to point A (or B). Finally, the SED intensity factors K can
be obtained by the linear extrapolation of K* and K® to the crack tip, that is

K® — K

g —Tra

K:KA A (59)

4. Numerical results

Since the main purpose of this paper is to outline the basic principles of the proposed method, the
numerical assessment is limited to an infinite thermopiezoelectric material containing an elliptic hole and a
crack as shown in Fig. 5, in which x;g = 0, x,0 = 2b and ¢ = 0.5b. The uniform heat flow 4, is applied on
each crack face only. The material is assumed to be BaTiO;, whose constants are [14]

¢ = 150 GPa, c¢1» = 66 GPa, c¢13 = 66 GPa, ¢35 = 146 GPa, cu = 44 GPa,

o =853 x 10 K™ a3 =199 x10° K™, 13 =0.133 x 10° N/CK,

e3 = —4.35C/m?, ey =17.5C/m? ej5 =114 C/m* Ky = 1115k, K33 = 1260k,
Ko = 8.85 x 10712 C?/N'm? = permitivity of free space.

In our analysis, plane strain deformation is assumed and the cracks are assumed to be in the x;—x, plane,
i.e., D3 = u3 = 0. Therefore the stress intensity factor vector K* has only three components (K;, Ky, Kp). In
all calculations, 7o = 1/7 and rg = /5 have been used, where / is the length in the related element. Four
meshes (N = 10, 20, 40 and 80 elements) for the crack have been used to study the convergence of the BEM
results, in which N represents the element number of the crack. In Fig. 6 the coefficients of SED intensity
factors f3; at point B (see Fig. 5) are presented as a function of crack orientation angle o for N = 80, where
p; are defined by [14]

Fig. 5. Geometry of the crack-hole system.
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Fig. 6. SED intensity factors versus crack angle.
Table 1
SED intensity factors versus mesh refinement
Mesh (N =) B B> B
10 0.6969 0.4697 0.3188
20 0.6990 0.4722 0.3205
40 0.7011 0.4743 0.3223
80 0.7021 0.4752 0.3231

K (A) = hocyss i () v/me/k
Ki(4) = hOC’yIIBZ((x)\/%/k (60)
Kp(A) = hocysfp(oa)v/nc/k

Table 1 shows the results of SED intensity factors at point B versus mesh refinement for o = 0. It is
found from Fig. 6 that the SED intensity factors are sensitive to the crack orientation in this example. It is
also found from Table 1 that the BEM results can converge to a particular value along with mesh re-
finement.

5. Conclusion

This study presented a boundary element formulation for the crack-hole problem of a thermopiezo-
electric plate. A system of boundary element equations is developed with the aid of Green’s function ap-
proach and variational principle. Solutions for the thermal, electric and elastic fields are then obtained for
the crack-hole system in a piezoelectric plate under external heat-flux disturbances. For an infinite plate
with a hole and a crack, the numerical results show that the crack angle o has a strong effect on the SED
intensity factors. Moreover, it is obvious that there are two independent unknowns (7 (P) and T~ (P) for
temperature or u*(P) and u™ (P) for displacements) at any point P on crack faces. However, the conven-
tional boundary element formulation can generally provide one equation at each point only. The present
method can bypass this problem by combining the above two unknowns into one variable
(T(P) = T*(P) — T~ (P) for temperature field and 6(P) = u(P) — u~(P) for displacement field).
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Appendix A

The expressions of fy, f1, fi, f» and g, in Egs. (1)—(4)

~

T

ﬁ](CZ) = rm ln(ét - é/tO) (Al)
T .

.fl(Ct) r ln(C - CIO) (AZ)

f:({) = diag[fi((1)/i()fi(G) ()] ((=1,2) (A.3)

~

g(Ct) = Z_ZC; {al‘[[ﬂ (én CZO) - B(C;l 9 Et())} + ar [B(Ch CtO) - E (C;l ) Et())] + ejla3‘r [F'3 (Cn CtO) - F;‘(C;l 9 Et())]

+ Aaa [El(én é’t()) - FB(C;I ) C_tO)}} (A4)
where
aT _ _
NG = g AR (G Go) + B(G L) = R Go) =BG L))
+ e17[F3 (s Co) + Fa(le, Co) — E(G Y Go) — B Lol (A.5)
£la) =B =R lo) + Bl lo) = A o) + B Go)
+ ey [F (G, Go) — Fa(G, Co) + Fs(gl ,Co) — F4(C,§1 ,Co)l} (A.6)
F (Cn é/zo) = (é/t - Cto)[ln(Ct - Czo) - 1] (A7)
Fa(ls o) = (G = G In(G = Lo) + o' Ing, (A-8)
F}(Cn gtO) = (aﬂ - C[ ) Czo Z <£0> (A9)
—m —m —m —m 2 1 CtO
Altnd) = (6" = GG — L)+ L= 47 31 () (A10)
n=1
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