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Abstract

The formulation for thermal stress and electric displacement in an in®nite thermopiezoelectric plate with an interface

and multiple cracks is presented. Using Green's function approach and the principle of superposition, a system of sin-

gular integral equations for the unknown temperature discontinuity de®ned on each crack face is developed and solved

numerically. The formulation can then be used to calculate some fracture parameters such as the stress±electric dis-

placement and strain energy density factor. The direction of crack growth for many cracks in thermopiezoelectric bima-

terials is predicted by way of the strain energy density theory. Numerical results for stress±electric displacement factors

and crack growth direction at a particular crack tip in two crack system of bimaterials are presented to illustrate the

application of the proposed formulation. Ó 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction

The analysis of multiple cracks in an in®nite
thermopiezoelectric solid is of considerable impor-
tance in the ®eld of fracture mechanics. Stress
analysis of the multiple crack problems in isotropic
materials has been done by many researchers, such
as those in [1±3]. A historical review of this topic
was given in [4].

For anisotropic materials, a solution for collin-
ear cracks in an in®nite plate was obtained [5].
Treated in [6] is the elastic interaction between a
main crack and a parallel micro-crack in an ortho-
tropic plate. Based on the strain energy density cri-
terion, the direction of initial crack growth of two
interacting cracks in an anisotropic solid was also
studied [7]. Unlike the case of anisotropic elastici-
ty, relatively little work has been done for the anal-
ysis of multiple crack problems in piezoelectric
materials. This work is a continuation of our pre-

vious studies [8,9]. In this paper, Green's function
for bimaterials and the principle of superposition
are used to study thermoelectroelastic behaviour
of multiple crack in an in®nite bimaterial solid.
The geometry of the problem is shown in Fig. 1.
After introducing the extended Stroh formalism
and the thermoelectroelastic Green's function for
bimaterials, a system of singular integral equations
for the unknown thermal analog of dislocation
density de®ned on crack faces is derived by using
the principle of superposition. The integral equa-
tions are solved numerically and used to calculate
SED intensity factors and strain energy density
factor. The direction of crack growth for many
cracks in thermopiezoelectric bimaterials is then
predicted by way of the strain energy density the-
ory. One numerical example is considered to illus-
trate application of the proposed formulation.

2. Basic formulation

Summarized brie¯y are the governing equations
of 2D piezoelectricity and some descriptions on the

Theoretical and Applied Fracture Mechanics 29 (1998) 141±150

* Corresponding author. Tel.:+61 2 9351 2392; fax: +61 2 9351

3760; e-mail: qin@mech.eng.usyd.edu.au.

0167-8442/98/$19.00 Ó 1998 Elsevier Science Ltd. All rights reserved.

PII: S 0 1 6 7 - 8 4 4 2 ( 9 8 ) 0 0 0 2 5 - 1



multiple crack problem. Throughout this paper the
shorthand notation introduced in [10] and ®xed
Cartesian coordinate system �x1; x2; x3� will be
adopted. Lower case Latin subscripts will always
range from 1 to 3, upper case Latin subscripts will
range from 1 to 4 and the summation convention
will be used for repeating subscripts unless it is
otherwise indicated. In the stationary case when
no free electric charge, body force and heat source
are assumed to exist, the complete set of governing
equations for uncoupled thermo-electroelastic
problems are [11]

hi;i � 0; PiJ ;i � 0 �1�
together with

hi � ÿkijhi;j; PiJ � EiJKmuK;m ÿ viJh; �2�
in which

PiJ �
rij; i; J � 1; 2; 3;

Di; J � 4; i � 1; 2; 3;

�
�3�

uJ �
uk; J � 1; 2; 3;

#; J � 4;

�
viJ �

cij i; J � 1; 2; 3;

vi J � 4; i � 1; 2; 3;

�

EiJKm �

Cijkm; i; J ;K;m � 1; 2; 3;

emij; K � 4; i; J ;m � 1; 2; 3;

eikm; J � 4; i;K;m � 1; 2; 3;

ÿjim; J � K � 4; i;m � 1; 2; 3;

8>>><>>>: �4�

where h and hi are temperature change and heat
¯ux, ui; #; rij and Di are elastic displacement, elec-
tric potential, stress and electric displacement,
Cijkm; eijk and jij are elastic moduli, piezoelectric
and dielectric constants, and kij; cij and vi are the
coe�cients of heat conduction, thermal-stress
constants and pyroelectric constants, respectively.
A general solution to Eq. (1) can be expressed as
[12]

T � Im�g0�zt��;
u � Im�Af�z�q� cg�zt��

�5�

with

A � �A1A2 A3 A4�;
f�z� � diag�f �z1�f �z2�f �z3�f �z4��;
q � q1 q2 q3 q4f gT;

zt � x1 � sx2;

zi � x1 � pix2;

in which ``Im'' stands for the imaginary part of a
complex, the prime �0� denotes di�erentiation with
the argument, g and f are arbitrary functions to be
determined, pi, s;A and c are constants determined
by

k22s
2 � �k12 � k21�s� k11 � 0;

�Q� �R� RT�pi � Tp2
i �Ai � 0;

�Q� �R� RT�s� Ts2�c � v1 � sv2;

�6�

in which superscript ``T'' denotes the transpose, vi

are 4� 1 vectors, and Q, R and T are 4� 4 matri-
ces de®ned by

vi � fci1 ci2 ci3 vigT
;

�Q�IK � E1IK1; �R�IK � E1IK2; �T�IK � E2IK2:

�7�
The heat ¯ux, h, and the stress±electric dis-
placement P, obtained from Eq. (2) can be written
as

hi � ÿIm��ki1 � ski2�g00�zt��; �8a�
P1J � ÿ/J ;2; P2J � /J ;1 �8b�
where / is the SED function given as

/ � Im�Bf�z� � dg�zt�� �9�
with

Fig. 1. Geometry of multiple cracks in bimaterial.
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B � RTA� TAP � ÿ�QA� RAP�Pÿ1;

P � diag�p1 p2 p3 p4�;
d � �RT � sT�cÿ v2 � ÿ�Q� sR�c=s� v1=s:

�10�
Green's function used in this paper is described

as follows. For a bimaterial plate, the basic solu-
tions due to a discrete temperature discontinuity
of magnitude h0 at a point in material 1,
ẑ�1�t � x̂1 � s�1�x̂2, are given by [8]

h�1� � h0Im� lny�1�1 � b1 ln y�1�2 �=2p; �11�

h�1�i � ÿ
h0

2p
Im �k�1�i1 � s�1�k�1�i2 � 1=y�1�1 ÿ b1=y�1�2

� �h i
;

�12�

U�1� � h0

2p
Im A�1�f�z�1��q1 � c�1� y�1�1 � ln y�1�1 ÿ 1�

hn
�b1y�1�2 ln y�1�2 ÿ 1

� �io
; �13�

/�1� � h0

2p
ImfB�1�f�z�1��q1 � d�1��y�1�1 � lny�1�1 ÿ 1�

� b1y�1�2 � lny�1�2 ÿ 1��g �14�
for Im�z�1�t � > 0; and

h�2� � b2h0 Im ln y�2�1

� �
=2p; �15�

h�2�i � ÿ
b2h0

2p
Im

k�2�i1 � s�2�k�2�i2

y�2�1

" #
; �16�

U�2� � Im�A�2�f�z�2��q2�
� b2h0

2p
Imfc�2�y�2�1 � ln y�2�1 ÿ 1�g; �17�

/�2� � Im�B�2�f�z�2��q2�
� b2h0

2p
Imfd�2�y�2�1 � ln y�2�1 ÿ 1�g �18�

for Im�z�2�t � < 0, where

f�z�i�� � diag�f �y��i�1 �; f �y��i�2 �; f �y��i�3 �; f �y��i�4 ��
�i � 1; 2� �19�

q1 � �B�1� ÿ B�2�A�2�ÿ1A�1��ÿ1f�b2d�2� � b1
�d�1� ÿ d�1��

ÿ B�2�A�2�ÿ1�b2c�2� � b1�c
�2� ÿ c�1��g; �20�

q2 �
h0

2p
�B�1�A�1�ÿ1A�2� ÿ B�2��ÿ1

� f�b2d�2� � b1
�d�1� ÿ d�1��

ÿ B�1�A�1�ÿ1�b2c�2� � �b1�c
�1� ÿ c�1��g �21�

together with

b1 � k�2�2 ÿ k�1�2

k�2�2 � k�1�2

;

b2 � 2k�1�2

k�2�2 � k�1�2

;

k�i�2 �
�����������������������������
k�i�11 k�i�22 ÿ �k�i�12 �2

q
; y�i�1 � z�i�t ÿ ẑ�i�t

y�i�2 � z�i�t ÿ ẑ�i�t ; f �y� � y� ln y ÿ 1�;

�22�

y��i�k � z�i�k ÿ ẑ�i�k ; ẑ�i�k � x̂1 � p�i�k x̂2

�k � 1; 2; 3; 4; i � 1; 2�; �23�
where the superscripts (1) and (2) label the quanti-
ties relating to the materials 1 and 2. Similarly,
Green's function due to a discrete temperature dis-
continuity applied at a point located in material 2
may be obtained.

In what follows, formulation will be derived for
an in®nite thermopiezoelectric plate of bimaterials
with N arbitrary located cracks 2ci�i � 1; 2; . . . ;N�
in the plane �x1; x2� and subjected to remote heat
¯ow h0. The con®guration of the crack system is
shown in Fig. 1.

Assume that all cracks are located in material 1
and material 2 has no crack. The assumption is
only for simplifying the ensuing writing and the ex-
tension to the case of cracks in the whole plane is
straightforward. The central point of ith crack is
denoted as �x1i; x2i� and the orientation angle is de-
noted as ai (see Fig. 1). The cracks are initially as-
sumed to remain open and hence be free of
tractions and charges, and to prevent the transfer
of heat between their faces. The corresponding
boundaries are, then, as follows

On the faces of each crack i

t
�1�
ni � ÿP�1�1 sin ai �P�1�2 cos ai � 0;

h�1�ni � ÿh�1�1 sin ai � h�1�2 cos ai � 0

�i � 1; 2; . . . ;N�:
�24�

At in®nity
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h12 � h0; P11 � P12 � h11 � 0; �25�

where n stands for the normal direction to the low-
er face of a crack, tni is the surface traction and
charge vector acting on the ith crack,
Pi � fri1 ri2 ri3 DigT

.
It is convenient to represent the solution as the

sum of a uniform heat ¯ux in an un¯awed solid
(which involves no thermal stress) and a corrective
solution in which the boundary conditions are

On the faces of each crack i:

t
�1�
ni � ÿP�1�1 sin ai �P�1�2 cos ai � 0; �26a�

h�1�ni � ÿh�1�1 sin ai � h�1�2 cos ai � ÿh0 cos ai

�i � 1; 2; . . . ;N�: �26b�
At in®nity

P11 � P12 � h11 � h12 � 0 �27�

3. Singular integral equations for many cracks in
bimaterials

Using the principle of superposition [2], the
present problem shown in Fig. 1 is decomposed
into N subproblems, each of which contains one
single crack. The boundary conditions given by
Eq. (26b), can be satis®ed by rede®ning the dis-
crete Green's functions h0 in Eq. (12) in terms of
distributing Green's functions h0�n� de®ned along
a given crack line, such as crack i; z�1�ti � z�0�ti

�giz
�
ti; ẑ�1�ti � z0

ti � nz�ti, where z0
ti � x1i � s�1�x2i;

z�ti � cos ai � s�1� sin ai, and ai are shown in
Fig. 1. Enforcing the satisfaction of the applied
heat ¯ux conditions on each crack face, a system
of singular integral equations for Green's function
is obtained as

1

p
Re

Zci

ÿci

24 h0i�ni�
gi ÿ ni

dni �
Zcj

ÿcj

h0j�nj�
XN

j�1;j 6�i

K0ij�gi; nj�
(

�
XN

j�1

G0ij�gi; nj�
)

dnj � 2h0 cos ai

k�1�2

�i � 1; 2; . . . ;N� �28�

in which the kernel function K0ij and G0ij are two
regular known functions and given by

K0ij�gi; nj� �
z�ti

z0
ti � giz

�
ti ÿ z0

tj ÿ njz�tj
;

G0ij�gi; nj� � b1jz�ti
z0

ti � giz
�
ti ÿ z0

tj ÿ njz�tj
;

�29�

where ``Re'' stands for the real part of a complex
number.

In addition to Eq. (28), the single valuedness of
the temperature around a closed contour sur-
rounding the whole crack requires thatZci

ÿci

h0i�s� ds � 0 �i � 1; 2; . . . ;N�: �30�

For convenience, normalize the interval �ÿci; ci�
by the change of variables;

gi � cis0i; ni � cisi �i � 1; 2; . . . ;N�: �31�
If we retain the same symbols for the new func-
tions caused by the change of the variables,
Eqs. (28) and (30) can be rewritten as

1

p
Re

Z1
ÿ1

h0i�si�
s0i ÿ si

dsi �
Z1
ÿ1

XN

j�1;j 6�i

K0ij�s0i; sj�
(24

�
XN

j�1

G0ij�s0i; sj�
)

h0j�sj� dsj

35
� 2h0 cos ai

k�1�2

�i � 1; 2; . . . ;N�; �32�

Z1
ÿ1

h0i�si� dsi � 0 �i � 1; 2; . . . ;N�: �33�

The coupled singular integral equations for the
temperature dislocation density in Eq. (32) com-
bined with Eq. (33) can be solved numerically
[13]. Since the solution for the functions, h0i�n�,
have a square root singular at each crack tip, it
is more e�cient for the numerical calculations by
letting

h0i�n� � Hi�n���������������
c2

i ÿ n2
q �

Pm
j�1 BijTj�t�

ci

������������
1ÿ t2
p ; �34�

144 Q.H. Qin, Y.W. Mai / Theoretical and Applied Fracture Mechanics 29 (1998) 141±150



where Hi�t� is a regular function de®ned in the in-
terval jtj6 1, Bij are the real unknown coe�cients,
and Tj�t� the Chebyshev polynomials of ®rst kind.
Thus the discretized form of Eqs. (32) and (33)
may be written as [13]

Re
Xm

k�1

1

n
Hi�sik�

ci�s0ir ÿ sik� �
XN

j�1;j 6�i

K0ij�s0ir; sjk�
("

�
XN

l�1

G0ij�s0ir; sjk�
)

Hj�sjk�
cj

#
� 2h0 cosa

k�1�2

;

Xm

k�1

Hi�sik� � 0: �35�

where

sik � sjk � cos
�2k ÿ 1�p

2m

� �
�k � 1; 2; . . . ;m�;

s0ir � cos�rp=m� �r � 1; 2; . . . ;mÿ 1�:
�36�

Eq. (35) provides a system of N � m linear alge-
braic equations to determine the coe�cients Bij.
Once the function Hi�t� has been found, the corre-
sponding stress±electric displacements can be giv-
en from Eqs. (8b) and (14) as

P�1�1 � ÿ/�1�;2

� ÿ 1

2p

XN

i�1

Im

Zci

ÿci

B�1�P�1� ln zih iq1i

h
�d�1�s�1�� ln y�1�1i � b1i ln y�1�2i

i
h0i�ni� dni;

P�1�2 � /�1�;1 �
1

2p

XN

i�1

Im

Zci

ÿci

B�1� ln zih iq1i

h
�d�1�� ln y�1�1i � b1i ln y�1�2i �

i
h0i�ni� dni;

�37�
where

ln zih i � diag ln y��1�1i ln y��1�2i ln y��1�3i ln y��1�4i

h i
:

�38�
Thus the traction-charge vector on the ith crack

faces is of the form

t0
ni�gi� � ÿP�1�1i �gi� sinai �P�1�2i �gi� cosai

� 1

2p

XN

j�1

Im

Zcj

ÿcj

B�1��I cosai � P�1� sinai� ln zj


 �
q1j

h
� d�1��cosai � s�1� sinai�� ln y�1�1j � b1jy

�1�
2j �
i

� h0j�nj� dnj: �39�
Generally t0

ni�gi� 6� 0 on the ith crack faces
jgij6 ci. To satisfy the traction-charge free condi-
tion (26a), superpose a solution of the corre-
sponding isothermal problem with a traction-
charge vector equal and opposite to that of
Eq. (39) in the range jgij6 ci. The elastic solution
for a singular dislocation of strength b0 obtained
in [14] is adopted. This solution can be straight-
forwardly extended to the case of electroelastic
problem as

P�1�1 � ÿ
1

p

XN

i�1

Im B�1�P�1� �z�1�j ÿ ẑji�ÿ1
D E

B�1�T
h i

b0i

ÿ 1

p

XN

i�1

X4

b�1

Im B�1�P�1� �z�1�j ÿ �̂zbi�ÿ1
D E

B�Ib
�B�1�Tb0i;

h
�40�

P�1�2 �
1

p

XN

i�1

Im B�1� �z�1�j ÿ �̂zji�ÿ1
D E

B�1�T
h i

b0i

� 1

p

XN

i�1

X4

b�1

Im B�1� �z�1�j ÿ �̂zbi�ÿ1
D E

B�Ib
�B�1�Tb0i;

h
�41�

where Ib � diag�d1b d2b d3b d4b�, dij � 1 for i � j;
dij � 0 for i 6� j, and

�̂zbi � x1i � �p�1�b x2i � ni�cos ai � �p�1�b sin ai�;
� �h i � diag�� �1 � �2 � �3 � �4�;

B� � B�1�ÿ1�Iÿ 2�Mÿ1
1 �Mÿ1

2 �ÿ1
Lÿ1�

with

Mj � ÿiB�j�A�j�ÿ1 �j � 1; 2�;
L � ÿ2iB�1�B�1�T:

Therefore the boundary condition (26a) will be
satis®ed if
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L

2p

Zci

ÿci

b0i�ni�
gi ÿ ni

dni �
Zcj

ÿcj

h0j�nj�
XN

j;j 6�i

K0ij�gi; nj�
(

�
XN

j�1

G0ij�gi; nj�
)

dnj � ÿt0
ni�gi�

�i � 1; 2; . . . ;N�; �42�
where

K0ij�gi; nj� � 1

p
B�1� z�ki�z0

ki � giz
�
ki ÿ z0

kj

D
ÿnjz

�
kj�ÿ1

E
B�1�T;

G0ij�gi; nj� � 1

p

X4

b�1

B�1� z�ki�z0
ki � giz

�
ki

D
ÿ�z0

bj � nj�z
�
bj�ÿ1

E
B�Ib

�B�1�T

�43�

with

z�ki � cosai � p�1�k sinai; z0
ki � x1i � p�1�k x2i:

For single valued displacements and electric po-
tential around a closed contour surrounding the
whole ith crack, the following conditions have also
to be satis®ed:Zci

ÿci

b0i�ni� dni � 0: �44�

As was done previously, let gi � cis0i, ni � cisi,
and

b0i�n� � Hi�n���������������
c2

i ÿ n2
q �

Pn
k�1

EikTk�t�

ci

������������
1ÿ t2
p ; �45�

where Eik � fEik1; Eik2;Eik3; Eik4gT
. Thus, from

Eqs. (42) and (44), we obtain

Xm

k�1

1

n
LHi�sik�

2ci�s0ir ÿ sik� �
XN

j�1;j6�i

K0ij�s0ir; sjk�
("

�
XN

j�1

G0ij�s0ir; sjk�
)

Hj�sjk�
cj

#
� ÿt0

ni�s0ir�;

Xm

k�1

Hi�sik� � 0:

�46�

Eq. (46) provide a system of 4N � m linear alge-
braic equations to determine H�ctk� and then Ek.
Once the function Hi�sik� has been found from
Eq. (46), the stresses and electric displacements,
P�1�ni �gi�, in a coordinate local to the crack line
can be expressed in the form

P�1�ni �gi� � X�ai� L

2p

Zci

ÿci

b0i�ni�
gi ÿ ni

dni

264
�
Zcj

ÿcj

b0j�nj�
XN

j�1;j 6�i

K0ij�gi; nj�
(

�
XN

j�1

G0ij�gi; nj�
)

dnj � t0
ni�gi�

375
�i � 1; 2; . . . ;N�; �47�

where the 4� 4 matrix X�ai� whose components
are the cosine of the angle between the local coor-
dinates and the global coordinates is in the form

X�ai� �

cosai sinai 0 0

ÿ sinai cosai 0 0

0 0 1 0

0 0 0 1

26664
37775: �48�

The formulae for the stress and electric displa-
cement intensity factors, K� � �KII;KI;KIII;KDgT

,
at a given crack tip, e.g., at the right tip of ith
crack �gi � ci� can be evaluated by ®rst consider-
ing the traction and surface charge on the crack
line and very near the crack tip �gi ! ci� which is
given, from Eq. (47)

P�1�ni �gi� � X�ai�tin�gi� � X�ai�L Hi�ci�����������������������
8ci�gi ÿ ci�

p :

�49�
Using Eq. (49), the stress±displacement intensi-

ty factors may be evaluated by the following de®-
nition

K�ci� � fKIIKIKIIIKDgT�ci�
� lim

gi!ci

����������������������
2p�gi ÿ ci�

p
P�1�ni �gi�: �50�

Combined with the results of Eq. (49), one then
leads to
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K�ci� �
������
p

4ci

r
X�ai�LHi�ci�: �51�

Thus the solution of the singular integral equation
enables the direct determination of the stress inten-
sity factors.

4. Direction of crack initiation

The strain energy density criterion [15] will be
used to predict the direction of crack initiation in
the thermopiezoelectric bimaterials. To make the
derivation tractable, the crack tip ®elds are ®rst
studied. In doing this, a polar coordinate system
�r;x� centered at a given crack tip, say the right
tip of ith crack �x1; x2� � �x1i � ci cos ai; x2i�
ci sin ai� and x � 0 along the crack line is used
and then the variable zk becomes

zk � z0
ki � ciz�ki � r�cos�ai � x� � p�1�k sin�ai � x��:

�52�
With this coordinate system, stress±electric dis-

placement helds near the crack tip can be evaluat-
ed by taking the asymptotic limit of Eq. (47) and
using expressions (40) and (41) as r ! 0

P1i�r;x�

�
��������

1

2cir

s
Im B�1�

p�1�k��������������������������������
z�k�ai�z�k�ai � x�p* +

B�1�T
" #

Hi�ci�

�
��������

1

2cir

s
V1i�x�; �53�

P2i�r;x� �
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2cir

s
Im B�1�

1��������������������������������
z�k�ai�z�k�ai � x�p* +

B�1�T
" #

Hi�ci�

�
��������

1

2cir

s
V2i�x�; �54�

where z�k�x� � cos x� p�1�k sin x.
For a thermopiezoelectric material, the strain

energy density factor S�x� can be calculated by
considering the related thermoelectroelastic poten-
tial energy W . The relationship between the two
functions is as follows:

S�x� � rW � rfP1P2gT
FfP1P2g=2; �55�

where the matrix F is the inverse of sti�ness matrix
E. The substitution of Eqs. (53) and (54) into
Eq. (55), leads to

Si�x� � fV1iV2igT
FfV1iV2ig=4ci: �56�

Referring to the works in [16] the strain energy
density criterion states that the direction of crack
initiation coincides with the direction of the strain
energy density factor Smin, i.e., a necessary and suf-
®cient condition of crack growth in the angle x0 is
that

oS
ox

����
x�x0

� 0; �57a�

and

o2S
ox2

����
x�x0

> 0: �57b�

Substituting Eq. (56) into Eq. (57a), yields

fV1iV2igT
F@fV1iV2igT=@x � 0: �58�

Solving Eq. (58), several roots of x may be ob-
tained. The angle x0 will be the one satisfying
Eq. (57b).

5. Numerical example

As numerical illustration of the proposed for-
mulation, we consider a thermopiezoelectric bima-
terial plate with two cracks of the same length 2c

Fig. 2. Geometry of bimaterial with two cracks for d=c � 2 and

e � c.
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and its interface coinsided with x1-axis shown in
Fig. 2. The con®guration of the crack system is
given in Fig. 2. The upper and lower materials
are assumed to be BaTiO3 [17] and cadmium sel-
enide [18], respectively. The material constants
for the two mateials are as follows:(1) Material
properties for BaTiO3 [17]

c11 � 150 GPa; c12 � 66 GPa; c13 � 66 GPa;

c33 � 146 GPa; c44 � 44 GPa;

a11 � 8:53� 10ÿ6 Kÿ1; a33 � 1:99� 10ÿ6 Kÿ1;

k3 � 0:133� 105 N=CK;

e31 � ÿ4:35 C=m2; e33 � 17:5 C=m2;

e15 � 11:4 C=m2; j11 � 1115j0;

j33 � 1260j0; j0 � 8:85� 10ÿ12 C2=Nm2: �59�

(2) Material properties for Cadmium Selenide [18]

c11 � 74:1 GPa; c12 � 45:2 GPa;

c13 � 39:3 GPa; c33 � 83:6 GPa;

c44 � 13:2 GPa;

c11 � 0:621� 106 N=Km
2;

c33 � 0:551� 106 N=Km
2
; v3 � ÿ0:294 C=Km

2
;

e31 � ÿ0:160 C=m2; e33 � 0:347 C=m2;

e15 � 0:138 C=m2; j11 � 82:6� 10ÿ12C2=Nm2;

j33 � 90:3� 10ÿ12 C2=Nm
2: �60�

Since the values of the coe�cient of heat con-
duction both for BaTiO3 and Cadmium Selenide
could not be found in the literature, the value
k�1�33 =k�1�11 � 1:5; k�2�33 =k�2�11 � 2 and k�1�13 � k�2�13 � 0 are
assumed.

In our analysis, the plane strain deformation is
considered and the crack line is assumed to be in
the x1±x3 plane, i.e., D2 � u2 � 0. Therefore the
stress intensity factor vector K� has now only three
components �KI;KII;KD�. Fig. 3 shows the numer-
ical results for the coe�cients of stress±electric in-
tensity factors bi versus the crack orientation a,
where bi are de®ned by

KI�B� � h0c
�����
pc
p

c�1�11 b1�a�=k�1�2 ;

KIII�B� � h0c
�����
pc
p

c�1�33 b2�a�=k�1�2 ;

KD�B� � h0c
�����
pc
p

v�1�3 bD�a�=k�1�2 : �61�
It can be seen from Fig. 3 that the coe�cient b1

will decrease slowly along with the increase of the
crack orientation a, while bD will increase weakly

Fig. 3. Stress±electric displacement intensity factors versus crack angle.
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along with the increase of the crack orientation a.
Unlike the previous two parameters, b2 reaches its
peak value at about a � 43� and is insensitive to
changes of the orientation a. Fig. 4 shows the vari-
ation of fracture angle x0 with the crack orienta-
tion a. It is found from the ®gure that the
fracture angle x0 varies between ÿ59� and ÿ38�

and reach its peak value at about a � 38�.

6. Conclusion

This investigation presented a formulation for
the problem of a thermopiezoelectric bimaterial
plate with multiple cracks. A system of singular in-
tegral equations is developed with the aid of
Green's function approach and the principle of su-
perposition. Solutions for the thermal, electric and
elastic ®elds are then obtained for multiple cracks
in an in®nite themopiezoelectric bimaterial plate
subjected to far heat ¯ux disturbances. For an in-
®nite plate with two cracks (one is in horizontal di-
rection and another is in arbitrary orientation) in a
bimaterial plate, the numerical results show that
the crack orientation a has a weak e�ect on the
values of b2. While both b1 and bD varies quasi-lin-
early with the crack orientation a. The numerical
results also show that the fracture angle x0 varies
between ÿ59� and ÿ38� and reaches its peak value
at about a � 38�.
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