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SUMMARY

Based on the concept of discontinuity displacement, an analytical solution for cracked thin plates has been
derived in which displacements and stresses in a solid can be expressed by the linear distributed discontinuity
displacements on the whole boundary. By way of the potential variational principle and the analytical
solution newly developed, a boundary element model for 2D multiple crack problems has been presented
and applied to fracture and damage analysis of thin plates with many cracks. Two numerical examples are
considered to illustrate applications of the proposed element model. # 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The numerical models of brittle materials with many cracks are of considerable interest to
engineers and have consequently received a great deal of attention.1 Current research into the
development of e�cient methods for crack problems to evaluate the fracture behaviour has
mostly concentrated on the self-consistent method,2 di�erential scheme,3 Mori±Tanakamethod,4

generalized self-consistent method,5 dislocation method,6 displacement discontinuity method,7;8

®nite element method (FEM)1;9 and boundary element method.10 Of all the methods, FEM and
the boundary element methods are the most versatile, but the main disadvantage of FEM is that a
domain discretization is required to perform the analysis. Moreover, in some cases, it results in
both an inaccurate and expensive technique, especially in solving crack problems. On the other
hand, the boundary element method involves only discretization of the boundary of the structure
due to the governing di�erential equation being satis®ed exactly inside the domain leading to a
relatively smaller system size with su�cient accuracy. This is an important advantage over
`domain' type solutions, such as FEM or the ®nite di�erence method.

This study presents a new formulation about the displacement discontinuity method, which is
the extension of Crouch's solution from a constant element to a linear element.7 The formulation
is based on the analytical solution to the problem of a linearly varying discontinuity in
displacement over a ®nite line segment in the x; y plane of an in®nite elastics solid developed in
Section 2. Using the solution, the stress intensity factor (SIF) and e�ective material properties of
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a cracked solid are obtained. It forms the basis of understanding of the statistics of microcracks in
composite materials.

2. STATEMENT OF THE PROBLEM

2.1. Basic relations

Consider a two-dimensional elastic body inside of which there exist a number of microcracks with
arbitrary orientations and sizes. Throughout this paper, indices i and j have values in the range
{1,2} and the summation convention is used over repeated indices. The problem may then be
stated as:

sij;j � 0 in O �1�
pi � sij;jnj � �Ti on Gs �2�
ui � �ui on Gu �3�

pi j G�� � ÿ pi j Gÿ� on Gs
� �4�

ûi � ui j G�� ÿ ui j Gÿ� on Gu
� �5�

where sij denotes the stress tensor, ni is the unit normal to the boundary @O�@O � Gs [ Gu [ G��,
Gs and Gu are the boundaries on which the stresses and displacements are prescribed, respect-
ively, G� � Gs

� [ Gu
� designates the crack surface, ui is the displacement vector, the over bar

denotes the prescribed variable, and G�� and Gÿ� are shown in Figure 1.

2.2. Boundary element formulation

For the boundary value problem (1)±(5), the standard boundary integral equations can be
obtained by using the principle of potential energy,8

dP�ûi� � 1

2

Z
@O
�dRiûi;s � Ridûi;s� ds ÿ

Z
Gs

�Tidûi ds � 0 �6�

in which d denotes a variational symbol, a comma followed by an argument stands for
di�erentiation with respect to the argument, s is the arc variable on the boundary, and

Ri �
Z

sijnj ds �7�

The analytical solution of (6) is not, in general, possible, and therefore a numerical procedure
must be used to solve the equation. As in the conventional boundary element method, the

Figure 1. The con®guration of the solid
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boundary integral equation (6) is approximated by using the BE technique with N boundary
elements, and the unknown variable, ûi, in each element is interpolated by some shape
functions. As an illustration, consider a particular crack line, say the jth crack, in the region O,
and then divide the line into Mj straight segments, joined end to end. The displacement
discontinuity �û � fû1; û2g� may then be approximated by the sum of elemental displacement
discontinuities

û�s� �
XMj

k�1
û �k�Fk�s� �8�

where û �k� is the vector of discontinuity displacements at node k, and Fk�s� is a global shape
function associated with the kth node. Fk is zero-valued over the whole mesh except within two
elements connected to the kth node (see Figure 2). Over these two elements Fk�s� is assumed to
be linear, i.e.

Fk�s� �
lÿk � s

lÿk
if s4 0

l�k ÿ s

l�k
if s5 0

8>><>>: �9�

As was done in Reference 7, the resultant force Ri�x; y�, displacement ui�x; y� and
stress sij�x; y� can be deduced from a particular function, say fm�x; y�. The function is deter-
mined by

4p�1 ÿ n� @fm�x; y�
@y

� @

@y

Z l�i

lÿi

ûm�x�ln��x ÿ x�2 � y2� dx �10�

Substituting (8) into (10) and noting thatZ
x ln��x ÿ x�2 � y2� dx �

Z
1

2
ln z dz � x ln z dx

� �
1

2

Z
ln��x ÿ x�2 � y2� dx � y tanÿ1

y

x ÿ x

� �
ÿ 1

2�x ÿ x�ln��x ÿ x�2 � y2� ÿ x �11�

with

z � �x ÿ x�2 � y2

Figure 2. The de®nitions for lÿk , l�k and Fk�s�
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we have

fm�x; y� �
�lÿi � x�ûm
4p�1 ÿ n�lÿi

�
ÿy tanÿ1

y

x � lÿi

� �
� y tanÿ1

y

x

� �
ÿ lÿi

� �x � lÿi �ln
�������������������������������
�x � lÿi �2 � y2

q
ÿ x ln

����������������
x2 � y2

p �
� �l

�
i ÿ x�ûm

4p�1 ÿ n�l�i

�
y tanÿ1

y

x ÿ l�i

� �
ÿ y tanÿ1

y

x

� �
ÿ l�i

ÿ �x ÿ l�i �ln
�������������������������������
�x ÿ l�i �2 � y2

q
� x ln

����������������
x2 � y2

p �
� ûm

16p�1 ÿ n�lÿi
f�x2 � y2�ln�x2 � y2� � 2xlÿi � �lÿi �2

ÿ ��x2 � lÿi �2 � y2�ln��x2 � lÿi �2 � y2�g

ÿ ûm

16p�1 ÿ n�l�i
fÿ�x2 � y2�ln�x2 � y2� � 2xl�i ÿ �l�i �2

� ��x2 ÿ l�i �2 � y2�ln��x2 ÿ lÿi �2 � y2�g �12�

Note that the formulation developed above is based on the analytical solution to the problem
of a linear displacement discontinuity over an arbitrarily oriented, ®nite line segment in an
in®nite solid. In applications, it proves useful to express this solution in the global co-ordinate
system, which can be done with the aid of a simple co-ordinate transformation. Denoting the
local and global Cartesian co-ordinate systems by �x; y� and �X;Y� illustrated in Figure 3, the
local co-ordinates �x; y� are related to the global co-ordinates �X;Y� by

x � �X ÿ cx�cos y � �Y ÿ cy�sin y

y � ÿ �X ÿ cx�sin y � �Y ÿ cy�cos y �13�

where cx, cy and y are de®ned in Figure 3.

Figure 3. The local and global co-ordinate systems
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Correspondingly, the displacements and stresses in two co-ordinate systems are related by

uX � ux cos y ÿ uy sin y

uY � ux sin y � uy cos y

sXX � sxx cos2 y ÿ 2sxy cos y sin y � syy sin2 y

sXY � �sxx ÿ syy�cos y sin y � sxy�cos2 y ÿ sin2 y�
sYY � sxx sin2 y � 2sxy cos y sin y � syy cos2 y �14�

Substituting (8) into (6) and noting (14), one obtains

KIJDJ � FI �15�
where DJ � fûJX ûJY gT is the nodal displacement discontinuity vector in the global co-ordinate
system, EÿJ and E�J are two elements connected to the Jth node: EÿJ is to the left and E�J to the
right, lÿj and l�j stand for their length, and

KIJ � HTK̂IJH

H � cos y sin y

ÿsin y cos y

� �
K̂IJ � 1

lÿj

Z
EÿJ

CI
xx CI

xy

CI
yx CI

yy

" #
ds ÿ 1

l�j

Z
E�

J

CI
xx CI

xy

CI
yx CI

yy

" #
ds

FI � HT

Z
EÿI [E�I

�T�s�FI �s�ds

CI
xx � ÿ 2G�fI

;x � yfI
;xy�; CI

xy � ÿ2GyfI
;yy

CI
yx � CI

xy; CI
yy � 2G�yfI

;xy ÿ fI
;x� �16�

with

fI
m�x; y� � ûImf

I �x; y� �I not summed�
Solving (15), the displacement discontinuities of the whole structure are obtained and then other
®eld variables can be evaluated from ûi.

3. OVERALL MODULI AND STRESS INTENSITY FACTORS

3.1. Overall moduli

The e�ective mechanical properties due to the presence of microcracks are discussed in this sub-
section. Consider a rectangular element with area A, bounded by the exterior G and weakened by
many cracks with lengths lk �k � 1; . . . ;N; see Figure 4). The strain±stress relation for the
cracked element can be written as

�eij � s0ijkl �skl �
1

2A

XN
k�1

Z
lk

�b0kin 0j � b0kjn
0
i� dl � �s0ijkl � s�ijkl� �skl �17�
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where s0ijkm is the compliance tensor of the undamaged solid, and b
0
ki and n

0
i are, respectively, the

displacement discontinuity and the normal to the kth crack faces, �eij and �sij the average strain and
stress tensors over the area A, and the prime refers to the co-ordinate system local to the crack in
which the x1-axis coincides with the crack line. Consider further, following three loading cases
(see Figure 4), the related components of the inelastic compliance, given by

S11

S21

S61

8<:
9=; � s1111

s2211
s1211

8<:
9=; � 1

s1

e11
e22
2e12

8<:
9=;

s�s1

�18�

for the load case in Figure 5(a),

S22

S62

� �
� s2222

s1222

� �
� 1

s2
e22
2e12

� �
s�s2

�19�

Figure 4. Load con®guration of the cracked body
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for Figure 5(b), and

S66 � s1212 � 2e12
s3

����
s�s3

�20�

for Figure 5(c), in which

e11 � 1

A

Z
Ga

û1 dl ÿ
Z
Gc

û1 dl

� �
�21�

e22 � 1

A

Z
Gb

û2 dl ÿ
Z
Gd

û2 dl

� �
�22�

2e12 � 1

A

Z
Gd

û1 dl ÿ
Z
Gb

û1 dl �
Z
Gc

û2 dl ÿ
Z
Ga

û2 dl

� �
�23�

3.2. Stress intensity factors

There are several ways for evaluating the stress intensity factors from the boundary element
method, such as extrapolation of displacement discontinuities to the crack tip, the J-integral, the
energy approach and the virtual crack extension technique. The last method is used to calculate
the stress intensity factors in our study. In this method, the change of dU due to a particular crack
extension, say the kth crack, is evaluated by displacing the nodal points within the crack tip
element by an incremental distance dlk. Then the stress intensity factor can be calculated from the
strain energy release rate G�k� using the relation

G�k� � dU
dlk
� �A�K2

I�k� � K2
II�k�� �24�

Figure 5. One crack in horizontal and another in inclined position
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in which �A � �1 ÿ n2�=E for plane strain, �A � 1=E for plane stress, and dU stands for the
strain energies before and after the kth crack extension. Therefore, we have

G�k� � dU
dl�k�
� ÿ d

2dlk

X
m

Z
lm

tj ûj ds � ÿ d
2dlk

X
m

�t �m�j û
�m�
j lm� �25�

where tj is the traction vector. If the load is due to forces outside the crack tip element, we
have

G�k� � ÿ 1

2

X
m

�t �m�j dû �m�j lm � t
�m�
j û

�m�
j dlm�=dlk �26�

KI may then be evaluated by

K2
i�k� �

dUi

dlk
= �A �i � I; II� �27�

where

UI � ÿ 1

2

X
k

X2
j�1

t
�k�
j û
�k�
j n
�k�
j lk

UII � ÿ 1

2

X
k

X2
j�1

t
�k�
j û
�k�
j s
�k�
j lk �28�

4. NUMERICAL EXAMPLES

As an illustration, the proposed element model is applied to two numerical examples. In all
the calculations, we take Dl=l � 10ÿ4 and n � 0�3, and each crack is divided into ten elements.

Example 1: Consider an in®nite thin plate weakened by two cracks (one crack in the horizontal
position and another in inclined angle a; see Figure 5). The plate is subjected to a far ®eld as
shown in Figure 5. In the calculation, we take d � 1 and a � 0�45 and each crack is divided into
ten elements. For the problem, it su�ces to consider the associated problem in which crack
surfaces are subjected to an equivalent load. For example, for a particular crack, say the kth
crack, the equivalent loads acting at the crack surfaces are

tn � s cos y

ts � ÿ s sin y �29�

where tn and ts are the tractions in the normal and tangential directions of the crack line, and y is
de®ned in Figure 3. In this case the displacements and stresses at in®nity are zero and we need not
consider the boundary at in®nity.

Table I gives the variation of bi � Ki=s
����������pa�p

, i � IA, IIA, IB, IIB, IC, IIC, with the angle a,
and compares with the results in Reference 11. It can be seen from the Tables that, for a relatively
small number of elements, the results obtained are in good agreement with those given in
Reference 11.

Commun. Numer. Meth. Engng., Vol. 13, 327±336 (1997) # 1997 by John Wiley & Sons, Ltd.

334 Q. H. QIN AND S. W. YU



Example 2 : Consider again the two-crack solid in example 1, but with the solution domain taken
to be a square with side length � 20. In the calculation, the boundary of the square is modelled
by 40 elements and each crack is divided into ten elements. Table II displays the variation of
predicted �S11 and �S22 with angle a. The results seem to be reasonable. However, there are no
reference values of the e�ective compliance for this example.

5. CONCLUSIONS

A new boundary element model and a computer program for analysing plane problem with many
cracks have been developed in the paper. In this method, the displacement discontinuity (i.e. the
jump displacement across crack faces for cracks, the displacement for external boundary) is taken
as the basic unknown variable. Using Crouch's method,7 we obtain an analytical solution for the
plane problem of a linearly varying displacement discontinuity over a ®nite line segment in an
in®nite elastic solid. With the solution, the SIF and overall moduli of a cracked body are
obtained. The formulation can be applied to both the in®nite domain (example 1) and the ®nite
domain (example 2). It should be noted that the formulation is only valid for equal length
elements within each crack. However, the element length in one crack may be di�erent from that
in another crack.
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