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Highlights

• Excessive storage requirements and ill-conditioning of the BEM are avoided.
• The Burton–Miller formulations are used to overcome the non-uniqueness difficulties.
• The FMM is adopted to expedite the solving process.
• The acoustic scattering characteristics of the Kilo-class submarine are investigated.
• The acoustic scattering characteristics of an A-320 aircraft are investigated.

Abstract

Large-scale sound field analysis is a difficult task for numerical simulations. In this study, a modified dual-level fast multipole
boundary element method is proposed for analyzing this challenging problem. The proposed method is based on the Burton–
Miller formulation to overcome the non-uniqueness issues in exterior acoustic problems. By transforming the fully-populated
matrix formed from fine mesh to a large-scale locally supported sparse matrix induced from coarse mesh, the method overcomes
computational bottleneck of the boundary element method originating from excessive storage requirements and the large number
of operations. In this article, we further combine the method with the fast multipole method to expedite its matrix vector
multiplications process. By testing the method to a series of complicated engineering cases, it is observed that the method performs
44% faster than COMSOL in the analysis of acoustic scattering characteristics of an A-320 aircraft. In the analysis of underwater
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acoustic scattering characteristics of the Kilo-class submarine, the method is 56% faster than the traditional fast multipole boundary
element method.
c⃝ 2018 Elsevier B.V. All rights reserved.

Keywords: Modified dual-level algorithm; Boundary element method; Fast multipole method; Finite element method; Large-scale sound field
analysis

1. Introduction

Sound field analysis plays an important role in practical engineering computation, such as the vibration analysis [1],
the underwater sonar imaging detection [2] and the active noise control [3]. It is recognized that large-scale sound field
analysis is a difficult and challenging topic in numerical computation, especially for the large-scale high frequency
sound field analysis [4–6]. That is because most of the acoustic problems are usually posted on infinite domain [7],
and one has to solve the resulting large-scale and highly ill-conditioned linear system of equations [8,9].

The traditional finite element method (FEM) [10–13] has to be artificially truncated to satisfy the radiation
conditions at infinity. As a global discretization method, the number of degree of freedoms (DOFs) of the FEM
increases by cube of wavenumber, and in fact worse than that due to the pollution effect [14].

The boundary element method (BEM) [15–18] and the boundary collocation methods [19–21], such as the singular
boundary method (SBM) [22–25] and the method of fundamental solutions (MFS) [26–29], use the fundamental
solutions as their basis function. This type of methods need only boundary discretization and satisfy automatically
the radiation conditions at infinity. Therefore, one dimension is reduced for solving problems. Their number of DOFs
increases by square of wavenumber. Unfortunately, these methods usually result in a fully-populated matrix, which
brings a large number of operations and excessive storage requirements for large-scale problems. To remedy this
drawback, a variety of fast algorithms has been proposed in the past decades, such as the fast multipole method
(FMM) [30–32], the precorrected-fast Fourier transform method (PFFT) [33] and the multilevel fast multipole
algorithm (MLFMA) [34,35]. However, all these methods have their own merits and drawbacks. The FMM is not
efficient in evaluating the far-field contributions. The PFFT requires uniform discretization of the whole boundary.
The MLFMA is too complicated in terms of programming. In addition, all of these above-mentioned methods need
to be combined with the preconditioning techniques [36,37] to reduce iteration number of the iterative solver, such as
the generalized minimal residual algorithm (GMRES) [38] solver.

In this study, we propose a modified dual-level fast multipole boundary element method (DL-FMBEM) based on
the Burton–Miller formulation for large-scale sound field analysis. The DL-FMBEM is a novel numerical method to
solve the computational bottleneck encountered by the traditional BEM in simulation of large-scale problems. The
core feature of the DL-FMBEM is that the fully-populated matrix formed from the fine mesh is transformed to a sparse
matrix induced from the coarse mesh. The large number of operations and excessive storage requirements originating
from the fully-populated and highly ill-conditioned matrix are hereby avoided.

As a well-known powerful fast algorithm, there are two types of FMM. They are the low frequency FMM [39,40]
and the high frequency FMM [41,42]. The low frequency FMM relies on the partial wave expansion of the
fundamental solutions and has O (N) computation complexity. Its expansion formulations are related to O(p5),
where p is truncation term of the FMM. The required truncation term number increases fast with the increase of
wavenumber. Therefore, the low frequency FMM in general are good only for lower frequency acoustic problems.
The high frequency FMM relies on the plane wave expansion of the fundamental solutions and has O(N log N )
computation complexity. This diagonal form FMM can be used to expedite the computations of all the translations.
Unfortunately, it breaks down at a lower frequency. In this study, we first use the above low frequency FMM to
expedite the matrix vector multiplications process of the DL-FMBEM. The total number of operations and storage
requirements of the DL-FMBEM are hereby reduced to O (N) from O(N 2).

Prior to this study, the modified dual-level algorithm [43] has already been applied for potential theory. However,
Ref. [43] focuses only on establishment of the algorithm for potential theory, and the complicated engineering
analysis is missing. This study extends the DL-FMBEM to acoustic theory, and the Burton–Miller formulation [44] is
combined with the DL-FMBEM to overcome the non-uniqueness issues for exterior acoustic problems.
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In subsequent section, a variety of complicated engineering cases is investigated by using the DL-FMBEM,
such as the underwater acoustic scattering characteristics of the Kilo-class submarine and the acoustic scattering
characteristics of an A-320 aircraft. In particular, we make a comparison between the DL-FMBEM and the mature
commercial software COMSOL to show potential of the DL-FMBEM for large-scale sound field analysis.

The article is organized as follows: Section 2 introduces the methodology of the DL-FMBEM and its conjunction
with the Burton–Miller formulation. Section 3 investigates a variety of complicated engineering cases by using the
DL-FMBEM based on the Burton–Miller formulation. Section 4 makes some conclusions about the results reported.
Section 5 gives an outlook based on the present study.

2. Numerical methodology

This section is organized as follows: Sections 2.1 and 2.2 review respectively the basic formulations of the BEM
and the FMBEM based on the Burton–Miller formulation. Section 2.3 presents the methodology of the DL-FMBEM
based on the Burton–Miller formulation, which constitutes the main contribution of this study.

2.1. Basic formulations of the boundary element method

The governing equation of the propagation of sound wave in isotropic medium can be reduced to the Helmholtz
equation [45]

∇
2φ(x) + k2φ(x) = 0, ∀x ∈ Ω , (1)

φ(x) = φ(x), ∀x ∈ S1, (2)

q(x) = q(x), ∀x ∈ S2, (3)

where φ(x) is the acoustic pressure, q(x) denotes the normal derivative of acoustic pressure. k = 2π f/c is the
wavenumber, c the sound speed, f the frequency, Ω the computational domain, S the computational boundary and
∇

2 represents the Laplacian operator.
The acoustic pressure φ(x) is expressed by [46–48]

φ(x) =

∫
S

[
G(x, y)q(y) −

∂G(x, y)
∂n(y)

φ(y)
]

d S(y) + φ I (x), ∀x ∈ Ω , (4)

where φ I (x) represents the incident wave, x and y are the source point and field point, respectively. The fundamental
solutions of the 3-D Helmholtz equation are⎧⎪⎪⎨⎪⎪⎩

G(x, y) =
eikr

4πr

F(x, y) =
∂G(x, y)
∂n(y)

=
eikr

4πr2 (ikr − 1) ⟨(x, y) · n(y)⟩ ,

(5)

where i =
√

−1, r = |x − y| and n(y) is the outward normal at point y.
When x →S, the following conventional boundary integral equation (CBIE) is given

C(x)φ(x) =

∫
S

[
G(x, y)q(y) −

∂G(x, y)
∂n(y)

φ(y)
]

d S(y) + φ I (x), ∀x ∈ S, (6)

where C(x) =
1
2 when the boundary S is smooth.

Similarly, we have the following hypersingular boundary integral equation (HBIE)

C(x)q(x) =

∫
S

[
∂G(x, y)
∂n(x)

q(y) −
∂2G(x, y)
∂n(y)∂n(x)

φ(y)
]

d S(y) + q I (x), ∀x ∈ S, (7)

where C(x) =
1
2 when the boundary S is smooth, and⎧⎪⎪⎨⎪⎪⎩

K (x, y) =
∂G(x, y)
∂n(x)

= −
eikr

4πr2 (ikr − 1) ⟨(x, y) · n(x)⟩

H (x, y) =
∂2G(x, y)
∂n(y)∂n(x)

=
eikr

4πr3

[
(1 − ikr ) ⟨n(y) · n(x)⟩
+ (k2r2

− 3 + 3kri) ⟨(x, y) · n(y)⟩ ⟨(x, y) · n(x)⟩

]
.

(8)
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One combines Eq. (6) with Eq. (7) (CHBIE) to overcome the non-uniqueness difficulties for exterior acoustic
problems, which is also referred to as the Burton–Miller formulation [44].[∫

S

∂G(x, y)
∂n(y)

φ(y)d S(y) + C(x)φ(x) − φ I (x)
]

+ α

∫
S

∂2G(x, y)
∂n(y)∂n(x)

φ(y)d S(y)

=

∫
S

G(x, y)q(y)d S(y) + α

[∫
S

∂G(x, y)
∂n(x)

q(y)d S(y) − C(x)q(x) + q I (x)
]

, ∀x ∈ S,

(9)

where α = i/k [49] is the coupling constant.
The discretized form of CHBIE is given by Eq. (10). It is noted that the constant element and boundary collocation

method are adopted in this study,

N∑
j=1

fi jφ j =

N∑
j=1

gi j q j + b̂i , (10)

where b̂i is the value of the incident wave at the ith node, and

fi jφ j =

∫
∆S j

∂G(x, y)
∂n(y)

φ j d S(y) +
1
2
δi jφ j + α

∫
∆S j

∂2G(x, y)
∂n(y)∂n(x)

φ j d S(y), (11)

gi j q j =

∫
∆S j

G(x, y)q j d S(y) + α

[∫
∆S j

∂G(x, y)
∂n(x)

q j d S(y) −
1
2
δi j q j

]
. (12)

By moving the unknown terms to left-hand side and moving the known terms to right-hand side. Eq. (10) is
reformulated as

Aλ = b, (13)

where A is the interpolation matrix, λ the unknown terms and b the known right-hand side terms. The subtraction and
adding-back technique (see, e.g., [43,50–52]) is used to evaluate the singular and hypersingular terms in Eq. (13). The
details of the technique are given in Appendix.

2.2. Basic formulations of the fast multipole boundary element method based on the Burton–Miller formulation

The basic formulations of the FMBEM based on the Burton–Miller formulation are reviewed in this section. Most
of the expansions and translations can be found in Refs. [53–55].

The multipole expansion of the fundamental solution G (x, y) is written as

G(x, y) =
ik
4π

∞∑
n=0

(2n + 1)
n∑

m=−n

I
m
n (k, y − yc)Om

n (k, x − yc), |y − yc| < |x − yc| , (14)

where yc is the expansion center, the inner function I m
n is defined by

I m
n (k, y − yc) = jn(k |y − yc|)Y m

n (
y − yc

|y − yc|
), (15)

I
m
n is the complex conjugate of I m

n , and the outer function is

Om
n (k, x − yc) = h(1)

n (k |x − yc|)Y m
n (

x − yc

|x − yc|
), (16)

where jn is the nth order spherical Bessel function of the first kind, h(1)
n the nth order spherical Hankel function of the

first kind, and Y m
n the spherical harmonics,

Y m
n (x) =

√
(n − m)!
(n + m)!

Pm
n (cos θ )eimϕ, for n = 1, 2, 3 . . ., m = −n, . . ., n, (17)
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where (ρ, θ , ϕ) is the coordinates of x. Pm
n denotes the associated Legendre function,

Pm
n (x) = (1 − x2)m/2 dm

dxm
Pn(x), (18)

where Pn(x) represents the Legendre polynomials of degree n.
Similarly, the fundamental solution F (x, y) is expanded as

F(x, y) =
ik
4π

∞∑
n=0

(2n + 1)
n∑

m=−n

Om
n (k, x − yc)

∂ I
m
n (k, y − yc)

∂n(y)
, |y − yc| < |x − yc| . (19)

Based on above multipole expansion formulations, the following formulations are given∫
Sc

G(x, y)q(y)d S(y) =
ik
4π

∞∑
n=0

(2n + 1)
n∑

m=−n

Mn,m(k, yc)Om
n (k, x − yc), |y − yc| < |x − yc| , (20)∫

Sc

F(x, y)φ(y)d S(y) =
ik
4π

∞∑
n=0

(2n + 1)
n∑

m=−n

M̃n,m(k, yc)Om
n (k, x − yc), |y − yc| < |x − yc| , (21)

where Mn,m and M̃n,m are called as the multipole moments with center yc,

Mn,m(k, yc) =

∫
Sc

I
m
n (k, y − yc)q(y)d S(y), (22)

M̃n,m(k, yc) =

∫
Sc

∂ I
m
n (k, y − yc)

∂n(y)
φ(y)d S(y). (23)

Then, the following M2M translation is introduced to move the multipole moment center from yc to yc′

Mm
n (k, yc′ ) =

∞∑
n′=0

n′∑
m′=−n′

n+n′∑
l=|n−n′|

n+n′−l:even

(2n′
+ 1)(−1)m′

Wn,n′,m,m′,l × I −m−m′

l (k, yc − yc′ )Mn′,−m′ (k, yc), (24)

where |y − yc′ | < |x − yc′ | and

Wn,n′,m,m′,l = (2l + 1)in′
−n+l

(
n n′ l
0 0 0

)
×

(
n n′ l
m m ′

−m − m ′

)
, (25)

where
(

∗ ∗ ∗

∗ ∗ ∗

)
is the Wigner 3j symbol [56].

The local expansion of G (x, y) in CBIE is written as∫
Sc

G(x, y)q(y)d S(y) =
ik
4π

∞∑
n=0

(2n + 1)
n∑

m=−n

Ln,m(k, xL )I
m
n (k, x − xL ). (26)

The local expansion coefficients of Eq. (26) can be evaluated by using the M2L translation

Ln,m(k, xL ) =

∞∑
n′=0

(2n′
+ 1)

n′∑
m′=−n′

n+n′∑
l=|n−n′|

n+n′−l:even

Wn′,n,m′,m,l Õ−m−m′

l (k, xL − yc) × Mn′,m′ (k, yc), (27)

where |x − xL | < |yc − xL |, xL is the center of the local expansion, and Õm
n is given by

Õm
n (k, x) = h(1)

n (k |x |)Y
m
n (

x
|x |

). (28)

Similarly, the local expansion of F (x, y) in CBIE is written as∫
Sc

F(x, y)φ(y)d S(y) =
ik
4π

∞∑
n=0

(2n + 1)
n∑

m=−n

Ln,m(k, xL )I
m
n (k, x − xL ), (29)
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and the local expansion coefficients of Eq. (29) is

Ln,m(k, xL ) =

∞∑
n′=0

(2n′
+ 1)

n′∑
m′=−n′

n+n′∑
l=|n−n′|

n+n′−l:even

Wn′,n,m′,m,l Õ−m−m′

l (k, xL − yc) × M̃n′,m′ (k, yc). (30)

For the HBIE, the local expansion of K (x, y) is defined as∫
Sc

K (x, y)q(y)d S(y) =
ik
4π

∞∑
n=0

(2n + 1)
n∑

m=−n

Ln,m(k, xL )
∂ I

m
n (k, x − xL )

∂n(x)
, (31)

and the local expansion coefficients of Eq. (31) is

Ln,m(k, xL ) =

∞∑
n′=0

(2n′
+ 1)

n′∑
m′=−n′

n+n′∑
l=|n−n′|

n+n′−l:even

Wn′,n,m′,m,l Õ−m−m′

l (k, xL − yc) × Mn′,m′ (k, yc). (32)

The local expansion of H (x, y) is defined as∫
Sc

H (x, y)φ(y)d S(y) =
ik
4π

∞∑
n=0

(2n + 1)
n∑

m=−n

Ln,m(k, xL )
∂ I

m
n (k, x − xL )

∂n(x)
, (33)

and the local expansion coefficients of Eq. (33) is

Ln,m(k, xL ) =

∞∑
n′=0

(2n′
+ 1)

n′∑
m′=−n′

n+n′∑
l=|n−n′|

n+n′−l:even

Wn′,n,m′,m,l Õ−m−m′

l (k, xL − yc) × M̃n′,m′ (k, yc). (34)

The following L2L translation is given to move the local expansion center from L to L ′,

Ln,m(k, xL ′ ) =

∞∑
n′=0

n′∑
m′=−n′

n+n′∑
l=|n−n′|

n+n′−l:even

(2n′
+ 1)(−1)m Wn′,n,m′,−m,l × I m−m′

l (k, xL ′ − xL )Ln′,m′ (k, xL ). (35)

Finally, the far-field contributions for the Dirichlet boundary conditions are evaluated by using the following local
expansion

fi jφ j =
ik
4π

∞∑
n=0

(2n + 1)
n∑

m=−n

Ln,m(k, xL ) ×

[
I

m
n (k, xi − xL ) + α

∂ I
m
n (k, xi − xL )

∂n(xi )

]
. (36)

The far-field contributions for the Neumann boundary conditions are evaluated by

gi j q j =
ik
4π

∞∑
n=0

(2n + 1)
n∑

m=−n

Ln,m(k, xL ) ×

[
I

m
n (k, xi − xL ) + α

∂ I
m
n (k, xi − xL )

∂n(xi )

]
. (37)

2.3. The modified dual-level fast multipole boundary element method based on the Burton–Miller formulation

In this section, the modified dual-level algorithm and its conjunction with the FMBEM based on the Burton–Miller
formulation are presented. The core idea of the DL-FMBEM is to transform the fully-populated matrix on fine mesh
to a locally supported sparse matrix by neglecting the residuals of the far-field contributions [43]. In the DL-FMBEM,
although the interpolation matrix on coarse mesh is still fully-populated, it is smaller in scale and its evaluation can
be expedited by the FMM. By the help of the dual-level structure, on one hand, the far-field interactions are assessed
only by coarse mesh. On the other hand, the resulting locally supported sparse matrix on fine mesh can be effectively
solved by using the iterative solver due to its sparsity.

In subsequent section, we present the logical process of the DL-FMBEM based on the Burton–Miller formulation
to solve the linear system of equations given in Eq. (13). The following nomenclatures are listed in Table 1 for clear
and concise deduction process.
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Table 1
Nomenclature in the DL-FMBEM based on the Burton–Miller formulation.

λ0
Ω1

Initial approximate solution on coarse mesh A Interpolation matrix

λ0
Ω2

Initial approximate solution on fine mesh b The known right-hand side terms

α0
Ω2

Initial residual potential solution on fine mesh CΩ2 Sparse matrix on fine mesh

γ 0
Ω2

Initial accurate solution on fine mesh Ω1 Coarse mesh subscript

V 0
Ω2

Initial approximate residual potential on fine mesh Ω2 Fine mesh subscript

αk
Ω1

The kth residual potential solution on coarse mesh I + Positive projection operator

χ k
Ω2

The kth accurate residual potential on fine mesh I − Negative projection operator

χ k
Ω1

The kth accurate residual potential on coarse mesh NΩ2 Number of fine-mesh elements

αk+1
Ω2

The (k + 1)th residual potential solution on fine mesh NΩ1 Number of coarse-mesh elements

λk+1
Ω2

The (k + 1)th approximate solution on fine mesh Tol Preset convergence criterion

Rerr0
Ω2

Initial average relative error on fine mesh x i The ith source point

Rerr k+1
Ω2

The (k + 1)th average relative error on fine mesh yi The ith field point

γ k+1
Ω2

The (k + 1)th accurate solution on fine mesh

V k+1
Ω2

The (k + 1)th approximate residual potential on fine mesh
r0 Characteristic radius of range of influence of near field region

In this article, the average value of the coarse-mesh element is used as the values of its corresponding fine-mesh
elements, i.e., V alue2 = V alue1/Sep, where we suppose that every coarse-mesh element is divided into Sep fine-
mesh elements. That is I +

: Ω1 → Ω2, which represents the positive projection operator. The sum of values of the
fine-mesh elements is used as value of their corresponding coarse-mesh element, i.e., V alue1 =

∑Sep
i=1V aluei

2. That
is I −

= Ω2 → Ω1, which is the negative projection operator.

Step 1 Evaluating the λ0
Ω2

(Coarse mesh).
Substep 1.1 Solving the linear system of equations on coarse mesh

AΩ1λ
0
Ω1

= bΩ1 , (38)

Substep 1.2 Mapping the λ0
Ω1

onto the fine mesh

λ0
Ω2

= I +λ0
Ω1

, (39)

Step 2 Evaluating the γ 0
Ω2

(Fine mesh).
Substep 2.1 Evaluating the V 0

Ω2
,

V 0
Ω2

= bΩ2 − AΩ2λ
0
Ω2

. (40)

Substep 2.2 Evaluating the α0
Ω2

,

CΩ2α
0
Ω2

= V 0
Ω2

, (41)

where CΩ2 satisfies the following condition:

if
⏐⏐⏐x i

Ω2
− y j

Ω2

⏐⏐⏐ > r0

C i j
Ω2

= 0;

else if
⏐⏐⏐x i

Ω2
− y j

Ω2

⏐⏐⏐ ≤ r0

C i j
Ω2

= Ai j
Ω2

;
end

Substep 2.3 Evaluating the γ 0
Ω2

,

γ 0
Ω2

= α0
Ω2

+ λ0
Ω2

. (42)
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Step 3 Assessing the Rerr0
Ω2

(Fine mesh),

Rerr0
Ω2

=

√NΩ2∑
i=1

⏐⏐⏐⏐⏐⏐bi
Ω2

−

NΩ2∑
j=1

Ai j
Ω2

(
γ 0
Ω2

)
j

⏐⏐⏐⏐⏐⏐
2/ NΩ2∑

i=1

⏐⏐⏐bi
Ω2

⏐⏐⏐2
. (43)

The condition of the recursive computation satisfies:

if Rerr0
Ω2

> T ol
enter Step 4;

else if Rerr0
Ω2

≤ T ol
program ends;

end

... Assuming the γ k
Ω2

is obtained after k times loops.

Step 4 Evaluating the χ k
Ω1

(Fine mesh).
Substep 4.1 Evaluating the χ k

Ω2
,

χ k
Ω2

= bΩ2 − AΩ2γ
k
Ω2

. (44)

Substep 4.2 Evaluating the χ k
Ω1

,

χ k
Ω1

= I −χ k
Ω2

. (45)

Step 5 Evaluating the αk
Ω1

(Coarse mesh),

AΩ1α
k
Ω1

= χ k
Ω1

. (46)

Step 6 Evaluating the γ k+1
Ω2

(Fine mesh),
Substep 6.1 Evaluating the λk+1

Ω2
,

λk+1
Ω2

= γ k
Ω2

+ I +αk
Ω1

. (47)

Substep 6.2 Evaluating the V k+1
Ω2

,

V k+1
Ω2

= bΩ2 − AΩ2λ
k+1
Ω2

. (48)

Substep 6.3 Evaluating the αk+1
Ω2

,

CΩ2α
k+1
Ω2

= V k+1
Ω2

, (49)

Substep 6.4 Evaluating the γ k+1
Ω2

,

γ k+1
Ω2

= αk+1
Ω2

+ λk+1
Ω2

. (50)

Step 7 Assessing the Rerr k+1
Ω2

(Fine mesh),

Rerr k+1
Ω2

=

√NΩ2∑
i=1

⏐⏐⏐⏐⏐⏐bi
Ω2

−

NΩ2∑
j=1

Ai j
Ω2

(
γ k+1
Ω2

)
j

⏐⏐⏐⏐⏐⏐
2/ NΩ2∑

i=1

⏐⏐⏐bi
Ω2

⏐⏐⏐2
. (51)
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Fig. 1. Block diagram of the DL-FMBEM based on the Burton–Miller formulation.

The condition of ending of the program satisfies:

if Rerr k+1
Ω2

≤ T ol
program ends;

else if Rerr k+1
Ω2

> T ol
enter Step 4;

end

It is noted that the calculation of Eqs. (38), (40), (43), (44), (46), (48) and (51) are expedited via the FMM. The
block diagram is plotted in Fig. 1.

3. Numerical results and discussions

In this study, we use two indexes to assess the numerical characteristics of the DL-FMBEM. They are the average
relative errors (Error) and the average relative error on boundary (Rerr). The index Error is to investigate the overall
convergence of numerical methods, and the index Rerr is to assess solution quality of the linear system of equations.

Error =

√ N T∑
i=1

|u(i) − u(i)|2
/ N T∑

i=1

|u (i)|2, (52)

Rerr =

√ N∑
i=1

⏐⏐⏐⏐⏐⏐bi −

N∑
j=1

Ai jλ j

⏐⏐⏐⏐⏐⏐
2/ N∑

i=1

|bi |
2, (53)

where u (i) and u (i) are the analytical and numerical solution at point xi , respectively. NT is the number of test points
and N represents the number of DOFs.

The convergence rate C is assessed by

C = −2
ln (Error (N1)) − ln (Error (N2))

ln (N1) − ln (N2)
, (54)

where Error (N1) and Error (N2) are the errors of numerical solutions with DOFs of N1 and N2.
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Fig. 2. The pulsating sphere model.

All subsequent results are computed on a single laptop with an Intel Core i7-4710MQ 2.50 GHz Processor and
16 GB RAM. The Matlab 2016b and COMSOL Multiphysics 5.3a are used to obtain the following results. In the
FMM, the precision flag ε is defined as p = − log2(ε) [32], where p is the truncation term number. If there is no
particular emphasis, the precision flag of the FMM, the DL-FMBEM and the GMRES solver are set as 5e−4, 1e−4
and 1e−4, respectively. And we take r0 = 3R0

Ω1
in the study, where R0

Ω1
represents the average characteristic radius

of coarse-mesh element.

Example 1a (Dirichlet Boundary Conditions). The pulsating sphere model is a benchmark example to test numerical
methods. In the model, every point on the sphere vibrates with the same amplitude, phase and velocity as shown in
Fig. 2. This model is governed by the 3-D Helmholtz equation. The resulting sound field is called the pulsating sphere
radiated sound field. The analytical solution is [57],

φ (r) = v0
ikcρa2

(1 − ika)
eik(r−a)

r

where a = 1 m is radius of the pulsating sphere, c = 343 m/s the sound velocity, ρ = 1.2 kg/m3 the air density,
v0 = 3 m/s the velocity of vibration, and k represents the wavenumber. The test points are placed on a sphere surface
with radius 3 m.

Case 1 Numerical convergence of the DL-FMBEM is investigated in this case. The number of coarse-mesh elements
is taken as 1600, wavenumber k is set as 10. We plot Fig. 3 to show convergence of the DL-FMBEM against number
of DOFs.

It is observed from Fig. 3 that the DL-FMBEM based on the Burton–Miller formulation converges remarkably with
order of 2.8, which is similar with the convergence rate of the DL-FMBEM without the Burton–Miller formulation.
It indicates that the Burton–Miller formulation does not affect accuracy of the DL-FMBEM. Because the number of
operations in the DL-FMBEM based on the Burton–Miller formulation is about twice of those of the DL-FMBEM
without the Burton–Miller formulation, when the number of DOFs is the same, the computation speed of the
DL-FMBEM based on the Burton–Miller formulation is, however, slightly slower than that of the DL-FMBEM
without the Burton–Miller formulation.

When number of fine-mesh elements is taken as 101 875, numerical results show that the DL-FMBEM based on the
Burton–Miller formulation consumes 434.48 s to obtain the results with Error = 2.69e−5. The DL-FMBEM without
the Burton–Miller formulation consumes 221.69 s to obtain the similar results. In stark contrast, the FMBEM based
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Fig. 3. Convergence of the DL-FMBEM against number of fine-mesh elements.

Fig. 4. CPU time of the DL-FMBEM and the FMBEM against number of DOFs.

on the Burton–Miller formulation consumes 1.03e+3 s to obtain the similar results with Error = 2.52e−05 when the
same number of DOFs is taken.

Case 2 Operation efficiency of the proposed method is investigated in this case. The number of coarse-mesh elements
is taken as 1600, wavenumber k is 5. We plot Fig. 4 to show the different CPU time of the DL-FMBEM and the
FMBEM against number of DOFs.

It is observed from Fig. 4 that the CPU time of the DL-FMBEM and the FMBEM both increase almost linearly
along with an increase in the number of DOFs. In addition, it is noted that the slope of CPU time curve of the
FMBEM based on the Burton–Miller formulation is about twice of that of the DL-FMBEM based on the Burton–
Miller formulation.

Case 3 Storage requirements of the proposed method are investigated in this case. The wavenumber k is taken 1
for simplicity. Results of the DL-FMBEM based on the Burton–Miller formulation are listed in Table 2. We plot
Fig. 5 to show the different storage requirements between the sparse matrix on fine mesh of the DL-FMBEM and the
fully-populated matrix of the BEM.

It is noted from Fig. 5 that storage requirements of the DL-FMBEM based on the Burton–Miller formulation
increases linearly with the number of DOFs increasing. In addition, it is also found from Figs. 4 and 5 that the FMM
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Table 2
Results of the DL-FMBEM based on the Burton–Miller formulation.

Coarse-mesh element 1646 6316 13 820 19 000 25 529

Fine-mesh element 6136 25 529 51 480 74 982 101 875
Rerr (Tol = 1e−4) 8.71e−6 8.63e−5 7.73e−5 6.30e−5 4.54e−5
Error 2.25e−5 8.88e−5 7.68e−5 6.17e−5 4.42e−5
Ratio of the nonzero elements in CΩ2 5.72e−3 1.47e−3 6.97e−4 4.95e−4 3.65e−4

Fig. 5. Storage space of the interpolation matrix of the DL-FMBEM and the BEM.

and the modified dual-level algorithm improve the operation efficiency and reduce the storage requirements of the
BEM both to O (N).

Example 1b (Neumann Boundary Condition). We take the same pulsating sphere model as in Example 1a. The
test points are placed on a sphere surface at radius 3 m. The Neumann boundary conditions are considered, and we
evaluate the acoustic pressure around the pulsating sphere. The governing equation is given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∇
2φ(x, y, z) + k2φ = 0, (x, y, z) ∈ Ω e

q(x, y, z) =
∂φ(x, y, z)

∂n
, (x, y, z) ∈ S

lim
r→∞

r (
∂φ

∂r
− ikφ) = 0, r =

√
x2 + y2 + z2,

where

φ (r) = v0
ikcρa2

(1 − ika)
eik(r−a)

r
.

Case 1 Convergence of the DL-FMBEM with Neumann boundary conditions is investigated here. The number of
coarse-mesh elements is taken as 15 284, wavenumber k is taken to be 1, 5 and 10, respectively. We plot Fig. 6 to
show the convergence rate of the DL-FMBEM against number of fine-mesh elements.

It is observed from Fig. 6 that convergence of the DL-FMBEM is not affected by the Burton–Miller formulation,
different wavenumbers or the Neumann boundary conditions. All convergence curves in Fig. 6 converge remarkably
with the increasing number of DOFs.

Case 2 The minimal required sampling frequency on coarse mesh is investigated. The number of fine-mesh elements
is taken as 15 284, the wavenumber is taken as 10. Tables 3 and 4 show respectively the numerical results of the
DL-FMBEM and the FMBEM against sampling frequencies.
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Fig. 6. Average relative error of the DL-FMBEM against fine-mesh elements.

Table 3
Numerical results of the DL-FMBEM against sampling frequencies.

Coarse-mesh element 206 296 402 512 830 1226 2594

Coarse-mesh element /Wavelength (N/λ) 2.54 3.05 3.55 4.01 5.11 6.21 9.03
Rerr (Tol = 1e−4) 9.08e−5 5.79e−5 5.68e−5 7.43e−5 2.82e−5 4.30e−5 5.22e−5
Error 1.67e−2 1.67e−2 1.66e−2 1.67e−2 1.66e−2 1.66e−2 1.67e−2
CPU time (s) 60.15 17.66 11.06 7.62 7.60 8.65 13.27
Iteration number of Step 4–7 34 11 7 5 4 3 2
Ratio of the nonzero elements in CΩ2 4.30e−2 3.00e−2 2.23e−2 1.74e−2 1.08e−2 7.28e−3 3.41e−3

Table 4
Numerical results of the FMBEM against sampling frequencies.

Boundary element 206 512 830 1226 2594 15 284

Boundary element/Wavelength (N/λ) 2.54 4.01 5.11 6.21 9.03 21.91
Error 2.47e−1 1.14e−1 8.33e−2 6.32e−2 4.23e−2 1.68e−2
CPU time (s) 0.18 0.18 0.50 1.15 2.02 9.77

It is noted that even we take N/λ = 2.54 on coarse mesh, the DL-FMBEM still can obtain the acceptable solution.
It should be mentioned that placing 2.5 DOFs in each wavelength per direction is the minimal requirement allowed
by the sampling theorem to obtain a correct solution. In stark contrast, it is noted that one must place almost 22 DOFs
in each wavelength per direction in the FMBEM to obtain the acceptable solution.

One can also obtain the following conclusions from Table 3:
(1) The number of coarse-mesh elements does not affect the final accuracy of the DL-FMBEM.
(2) The larger of the sampling frequency on coarse mesh is, the less iteration number of Step 4–7 in the DL-FMBEM

will be required.
(3) When the number of fine-mesh element is fixed, the consuming CPU time of the DL-FMBEM decreases first

and then increases with number of coarse-mesh elements increasing.

Case 3 The non-uniqueness problem of the 3-D exterior acoustic problems is investigated. The boundary condition is
given by

q(x, y, z) =
∂φ(x, y, z)

∂n
· (1 + δ), (x, y, z) ∈ S,

where δ represents the random noise on boundary. We consider the case with changing frequencies, i.e., frequency
sweep, for wavenumber varying from 0.1 to 10. The number of coarse-mesh elements is taken as 943, the number
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Fig. 7. Frequency-sweep plot of the acoustic pressure |P| (Pa).

Fig. 8. Scattering of a plane acoustic wave by a unit sphere.

of fine-mesh elements is taken as 3686, and the test point is placed at (2a, 0, 0), The frequency sweep of acoustic
pressure is plotted in Fig. 7.

It is observed that the DL-FMBEM based on the Burton–Miller formulation overcomes the non-uniqueness
problem near the characteristic frequency. But solution of the DL-FMBEM without the Burton–Miller formulation
is in dramatic error at the characteristic frequency. It should be mentioned that computationally troublesome of the
singular and hypersingular integrations of the fundamental solutions are both avoided by using the subtraction and
adding-back technique. In addition, this technique can be easily expedited via the FMM.

Example 2. Consider the scattering of a plane acoustic wave passing by a sphere obstacle with radius a = 1 m as
shown in Fig. 8. The sound speed c is 343 m/s, and the test point is placed at (2a, 0, 0). We take 943 coarse-mesh
elements and 3686 fine-mesh elements.

The governing equation of this model is also the 3-D Helmholtz equation. An incident plane wave with amplitude
φ0 = 1 traveling in +Z direction is given by

φI = φ0eikz .
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Fig. 9. Frequency-sweep plot of the scattered acoustic pressure |P| (Pa) for soft sphere.

The scattered sound wave is expressed as

φS =

N∑
l=0

χlhl(kr )Pl(cos(θ )),

where hl is the spherical Hankel function of the first kind of order l, Pl the Legendre function of order l, and χl the
coefficient determined for different boundary conditions.

For soft boundary conditions, the total acoustic pressure on the boundary is zero. That is,

φI + φS = 0, at (x, y, z) ∈ S.

The coefficient χl for soft boundary conditions is

χl = −u0(2l + 1)i l jl(ka)
hl(ka)

, a = 1,

where jl is the spherical Bessel function. The scattered sound pressure with the soft boundary conditions against
wavenumber is plotted in Fig. 9.

For rigid boundary conditions, the total normal velocity on the boundary is zero, that is,
∂φs

∂n
+

∂φI

∂n
= 0, at r = a.

The coefficient χl for rigid boundary conditions is

χl = −φ0(2l + 1)i l l jl−1(ka) − (l + 1) jl+1(ka)
lhl−1(ka) − (l + 1)hl+1(ka)

.

The scattered sound pressure with the rigid boundary conditions against wavenumber is plotted in Fig. 10.
It is observed that solution of the DL-FMBEM based on the Burton–Miller formulation is in good agreement with

the analytical solution. It is demonstrated that the method can simulate effectively the acoustic scattering problems.

Example 3. Consider the scattering of a plane acoustic wave by a torus-shape obstacle as shown in Fig. 11. The
surface of the torus-shape model is defined by

{(x, y, z) |x = (R + r cos ϕ) cos θ, y = (R + r cos ϕ) sin θ, z = r sin ϕ, 0 ≤ θ, ϕ < 2π } ,

where R = 10 m and r = 2 m. The sound speed in water is assumed to be c = 1480 m/s. An incident plane wave with
amplitude φ0 = 1 traveling in +X direction is given

φI = φ0eikx .

Case 1 In this case, the soft boundary conditions are considered. The number of coarse-mesh elements of the
DL-FMBEM is set as 2700. Because there is no analytical solution for this example, the solution of the DL-FMBEM
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Fig. 10. Frequency-sweep plot of the scattered acoustic pressure |P| (Pa) for the rigid sphere.

Fig. 11. The torus-shape obstacle.

based on the Burton–Miller formulation with 132 300 fine-mesh elements is used as a reference solution. The test
points are placed on a sphere surface with radius 20 m. The convergent results of the DL-FMBEM based on the
Burton–Miller formulation with 100 Hz, 200 Hz and 400 Hz are plotted respectively in Fig. 12.

It is observed from Fig. 12 that solutions of the DL-FMBEM based on the Burton–Miller formulation converge
remarkably rapid with order of 3.5 for different test frequencies, where k = 2π f/c.

Case 2 The rigid boundary conditions are considered in this case. The number of coarse-mesh elements is taken as
4800, and number of fine-mesh elements is 43 200. The test frequency is set as f = 400 Hz. We plot the scattered
sound pressure on the X Z plane as shown in Fig. 13a. Numerical results show that the consuming CPU time of
the DL-FMBEM based on the Burton–Miller formulation is 575.82 s. The iteration number of Step 4–7 in the
DL-FMBEM is 4, and Rerr = 2.59e−5.

For a comparison, we use COMSOL Multiphysics 5.3a to simulate the same problem. The computational domain
is set as a cylinder with radius of 20 m and height of 6 m. We place 10 DOFs in each wavelength per direction, and
the total number of DOFs is set as 4 836 663. The test frequency is also f = 400 Hz. Numerical report shows that the
COMSOL uses 772 s to produce the similar results as given in Fig. 13b.

In Fig. 13a, we randomly take 50 points, and use solution of COMSOL as a reference solution. It is reported that
the average relative error of solution of the DL-FMBEM based on the Burton–Miller formulation is 1.81%.

It should be mentioned that as a novel numerical methodology, the DL-FMBEM still has the space for further
improvement, while as a mature commercial software, the code of the FEM in COMSOL has already been fully
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Fig. 12. Convergence of the DL-FMBEM based on the Burton–Miller formulation.

Fig. 13a. Scattered sound pressure evaluated by the DL-FMBEM based on the Burton–Miller formulation.

optimized. Even so, it is still observed that the CPU time and number of DOFs of the DL-FMBEM based on the
Burton–Miller formulation are only about 75% and 0.89% of those of COMSOL, respectively.

Example 4. The underwater acoustic scattering characteristics of a Kilo-class submarine is investigated. Size of the
submarine is 73.26 m×9.9 m×14.28 m as shown in Fig. 14. The sound speed c is set as 1480 m/s, i.e., the sound
speed in water, and an incident plane wave with amplitude φ0 = 1 traveling in −X direction is given

φI = φ0e−ikx .

The sound pressure level is defined as

S P L = 20 log10 [p(e)/p(re f )] , unit : dB,

where the reference sound pressure p (ref ) is set as 1e−6 Pa.

Case 1 In this case, surface of the submarine is considered as a soft boundary condition. The number of coarse-mesh
elements of the DL-FMBEM is set as 5207, and number of fine-mesh elements is 54 692. The test points are placed
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Fig. 13b. Scattered sound pressure evaluated by COMSOL.

Fig. 14. The Kilo-class submarine model.

Fig. 15. Polar diagram of the acoustic scattering characteristics of the Kilo-class submarine.

on a circle with radius 200 m on the XY plane. We plot the polar diagram of the scattered sound pressure level with

frequency f = 20 Hz as shown in Fig. 15. The +X direction is set along 0◦ direction.
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Fig. 16. Total sound pressure level distribution around the Kilo-class submarine.

If we use solution of the DL-FMBEM without the Burton–Miller formulation as a reference solution, the results
show that errors of the DL-FMBEM based on the Burton–Miller formulation is Error = 3.88e−4 and Rerr = 9.70e−5.
The CPU time is 297.17 s and the iterative number of Step 4–7 in the DL-FMBEM is 2.

To make a quick comparison, we use the FMBEM based on the Burton–Miller formulation with 54 692 DOFs to
compute the same problem. Numerical results show that the FMBEM consumes 672.98 s to obtain the similar results
with Rerr = 9.84e−5.

It should be mentioned that because the computational domain of this example is too large, COMSOL cannot
analyze this problem under the similar computational conditions due to resources restriction of a single laptop.

Case 2 In this case, we consider the underwater acoustic scattering characteristics of the Kilo-class submarine with
the rigid boundary conditions. The number of coarse-mesh elements of the DL-FMBEM is 5207, and number of
fine-mesh elements is 102 396. We plot the total sound pressure level distribution with f = 100 Hz on the X Z plane
as shown in Fig. 16.

Numerical results show that the DL-FMBEM consumes 1.08e+03 s to obtain the results with Rerr = 7.44e−5,
and the iterative number of Step 4–7 in the DL-FMBEM is 7. It should be mentioned that because attenuation of the
high frequency sound wave is very fast in water, the fast and efficient analysis of the large-scale low frequency sound
field is very important for the research of underwater acoustic scattering characteristics of submarines.

Example 5. We analyze acoustic scattering characteristics of an A-320 aircraft having size of 39.03 m × 33.77 m
× 4.33 m as shown in Fig. 17. The sound speed c is 343 m/s, and an incident plane wave with amplitude φ0 = 1
traveling in −Z direction is given

φI = φ0e−ikz .

The reference sound pressure p (ref ) is defined as 2e−5 Pa.

Case 1 In this case, we consider acoustic scattering characteristics of the A-320 aircraft with the rigid boundary
conditions. The number of coarse-mesh elements of the DL-FMBEM is set as 2689, and number of fine-mesh elements
is 30 696. The test points are placed on a circle with radius 25 m on the X Z plane. We plot the polar diagram of
the scattered sound pressure level with frequency f = 20 Hz as shown in Fig. 18. The +X direction is set along
0◦ direction.

Numerical results show that error of the DL-FMBEM based on the Burton–Miller formulation is Rerr = 5.99e−5.
The consuming CPU time is 1.43e+3 s, and the iterative number of Step 4–7 in the DL-FMBEM is 9. If solution
of the DL-FMBEM without the Burton–Miller formulation is defined as a reference solution, it is observed that the
average relative error of the DL-FMBEM based on the Burton–Miller formulation is Error = 2.41e−3.
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Fig. 17. An A-320 aircraft model.

Fig. 18. Polar diagram of acoustic scattering characteristics of an A-320 aircraft.

Next, we use COMSOL to simulate the same problem. The computational domain is taken as a cylinder with
radius of 25 m and height of 14 m. We place 30 DOFs in each wavelength per direction. The total number of DOFs is
4 562 979 and the test frequency is f = 20 Hz. Numerical results show that COMSOL uses 2554 s to obtain the similar
results. If solution of the DL-FMBEM without the Burton–Miller formulation is employed as a reference solution, it
is observed that the average relative error of the results of COMSOL is 1.37%.

It is noted that the CPU time and number of DOFs of the DL-FMBEM based on the Burton–Miller formulation
are only about 55.82% and 0.67% of those of COMSOL, respectively. In comparison with the experimental data in
Example 3, it is found that the relative CPU time of the DL-FMBEM significantly decreases. This is because that the
dual-level structure has the preconditioning function to reduce the iteration number of GMRES solver. It is indicated
that the DL-FMBEM is very efficient for analysis of the practical engineering problem, especially for such cases with
complicated geometry domain and highly ill-conditioned interpolation matrix.

Case 2 In this case, we consider the scattering of sound wave with a soft boundary condition. The number of coarse-
mesh elements of the DL-FMBEM is 20 340, and number of fine-mesh elements is 309 051. We plot the total sound
pressure level distribution with f = 100 Hz on the X Z plane as shown in Fig. 19.
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Fig. 19. Total sound pressure level distribution around the A-320 aircraft.

Numerical results show that the DL-FMBEM consumes 5.61e+3 s to obtain the solution with Rerr = 8.38e−5.
The iterative number of Step 4–7 in the DL-FMBEM is 6. It should be mentioned that the dimensionless wavenumber
reaches kd = 71.5 in this case, where d is the maximum diameter of the computational domain.

It is interesting to note that a similar problem was also investigated by using the diagonal form fast multipole
singular boundary method (DF-FMSBM) [6,58]. In Ref. [6], the authors test sound scattering from a similar airplane
having size of 33.2 m×25.5 m×7.1 m, where the number of boundary nodes is taken to be 125 822, the precision flag
of the GMRES solver is set as 1e−3, the maximum number of boundary nodes allowed in a childless box is 100, and
the test frequency f is 100 Hz (kd = 60.8). Numerical results show that the DF-FMSBM consumes 2644 s to obtain
the acceptable results.

To make a quick comparison between the DL-FMBEM and the DF-FMSBM under the similar computational
conditions, we set respectively the precision flag of the FMM, the DL-FMBEM and the GMRES solver as 5e−4,
1e−3 and 1e−3. The test frequency is set as 85 Hz (kd = 60.8). The number of coarse-mesh elements is taken as
5101, and number of fine-mesh elements is 127 789. Numerical results show that the DL-FMBEM consumes 515.41 s
to obtain the similar solution with Rerr = 5.36e−4, and the iterative number of Step 4–7 in the DL-FMBEM is 3.

It is found that the CPU time of the DL-FMBEM is only 19.5% of that of the DF-FMSBM to obtain the similar
results when one takes the same dimensionless wavenumber and similar number of DOFs.

4. Conclusions

In this study, a modified dual-level fast multipole boundary element method based on the Burton–Miller
formulation is proposed for large-scale 3-D sound field analysis. Because of the application of the Burton–Miller
formulation, it is observed that the non-uniqueness problem for exterior acoustic problems is solved. In addition, it
is noted that the singular and hypersingular integrations are both avoided by using the subtraction and adding-back
technique to solve the singularity and hypersingularity of the fundamental solutions at origin.

In comparison with the traditional FMBEM, it is observed that the DL-FMBEM is more efficient to solve the
resulting large-scale linear system of equations having high condition number (L2-norm). For sound field analysis, it
is also noted that the DL-FMBEM based on the Burton–Miller formulation achieves higher numerical efficiency and
better performances than the traditional FEM as demonstrated in foregoing experiments.

Through simulating a variety of complicated engineering cases by using the DL-FMBEM based on the Burton–
Miller formulation, the potential of the DL-FMBEM based on the Burton–Miller formulation for practical large-scale
engineering analysis is verified to some extent. Numerical experiments show that the DL-FMBEM based on the
Burton–Miller formulation performs about 56% faster than the traditional FMBEM in the analysis of underwater
acoustic scattering characteristics of the Kilo-class submarine. In the analysis of acoustic scattering characteristics of
an A-320 aircraft, the DL-FMBEM is about 44% faster than COMSOL.
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5. Outlooks

Considering that the DL-FMBEM is much easier to program and use than the MLFMA, the DL-FMBEM appears
computationally efficient and may be considered as a competitive alternative after further numerical and theoretical
study. However, the present DL-FMBEM still has some issues to be further investigated:

1. Strict mathematical proof of the DL-FMBEM;
2. Combination of the DL-FMBEM with the high frequency FMM;
3. Development of a user-friendly software.
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Appendix. Derivation of the subtraction and adding-back technique

The subtraction and adding-back technique comes from the null-fields of boundary integral equation (BIE). The
related code of the technique presented in this article is given in the Singularity Toolbox V2.0 at https://doi.org/10.13
140/RG.2.2.13247.00162.

The null-fields of BIE of the Laplace equation is expressed as [59],

0 =

∫
S

[
G0(x, y)q(y) −

∂G0(x, y)
∂ne(y)

φ(y)
]

d S(y), ∀x ∈ Ω e, (A.1)

where the superscript e is the exterior domain, G0 the fundamental solution of the 3-D Laplace equation,⎧⎪⎪⎨⎪⎪⎩
G0(x, y) =

1
4πr

∂G0(x, y)
∂ne(y)

= −
1

4πr2

⟨
(x, y) · ne(y)

⟩
.

(A.2)

The null-fields of HBIE of the Laplace equation is represented by

0 =

∫
S

[
∂G0(x, y)

∂ne(x)
q(y) −

∂2G0(x, y)
∂ne(y)∂ne(x)

φ(y)
]

d S(y), ∀x ∈ Ω e, (A.3)

where⎧⎪⎪⎨⎪⎪⎩
∂G0(x, y)

∂ne(x)
=

1
4πr2

⟨
(x, y) · ne(x)

⟩
∂2G0(x, y)

∂ne(y)∂ne(x)
=

1
4πr3

[⟨
ne(x) · ne(y)

⟩
− 3

⟨
(x, y) · ne(x)

⟩ ⟨
(x, y) · ne(y)

⟩]
.

(A.4)

Substituting the general solution of the 3-D Laplace equation φ(y) = 1 into Eqs. (A.1) and (A.3), Eqs. (A.1) and (A.3)
are reformulated as

0 =

∫
S

∂G0(x, y)
∂ne(y)

d S(y), ∀x ∈ Ω e, (A.5)

0 =

∫
S

∂2G0(x, y)
∂ne(y)∂ne(x)

d S(y), ∀x ∈ Ω e. (A.6)

When a collocation point x approaches the boundary from the exterior domain, Eqs. (A.5) and (A.6) are discretized as
N∑

j=1

∂G0(xi , y j )
∂ne(y j )

A j = 0, ∀xi ∈ S, (A.7)
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N∑
i=1

∂2G0(xi , y j )
∂ne(y j )∂ne(xi )

A j = 0, ∀xi ∈ S, (A.8)

where A j is the area of the jth element. Thus, we obtain the following formulations when xi = y j ,

∂G0(xi , yi )
∂ne(yi )

= −
1
Ai

N∑
j=1̸=i

∂G0(xi , y j )
∂ne(y j )

A j , ∀xi ∈ S, (A.9)

∂2G0(xi , yi )
∂ne(yi )∂ne(xi )

= −
1
Ai

N∑
i=1̸= j

∂2G0(xi , y j )
∂ne(y j )∂ne(xi )

A j , ∀xi ∈ S. (A.10)

For a smooth boundary, assuming that the field point y j approaches gradually the source point xi along a line
segment [60], we have

lim
y j →xi

∂G0(xi , y j )
∂ne(xi )

+
∂G0(xi , y j )

∂ne(y j )
= 0. (A.11)

We hereby get

∂G0(xi , yi )
∂ne(xi )

=
1
Ai

N∑
j=1̸=i

∂G0(xi , y j )
∂ne(y j )

A j , ∀xi ∈ S. (A.12)

To derive the formulation of the G0(xi , y j ) when xi = y j , the following general solution of the 3-D Laplace
equation is introduced [43,61,62],

f (r ) =
1
2

r2, (A.13)

φ(y j ) =
∂ f (y j − xi )

∂ne(xi )
=

⟨
(y j − xi ) · ne(xi )

⟩
, (A.14)

q(y j ) =
∂φ(y j )
∂ne(y j )

=
⟨
ne(xi ) · ne(y j )

⟩
. (A.15)

It is noted that the above general solution satisfies φ(yi ) = 0 and q(yi ) = 1 when xi = y j . Substituting
corresponding φ(y) and q(y) into Eq. (A.1), we obtain Eq. (A.16) when the source point x approaches the boundary
from exterior domain,

N∑
j=1

[
G0(xi , y j )

⟨
ne(xi ) · ne(y j )

⟩
−

∂G0(xi , y j )
∂ne(y j )

⟨
(y j − xi ) · ne(xi )

⟩]
A j = 0, ∀xi ∈ S. (A.16)

Then, we reformulate Eq. (A.16) in the following form,

G0(xi , yi ) = −
1
Ai

N∑
j=1̸=i

⎡⎣G0(xi , y j )
⟨
ne(xi ) · ne(y j )

⟩
−

∂G0(xi , y j )
∂ne(y j )

⟨
(y j − xi ) · ne(xi )

⟩
⎤⎦ A j , ∀xi ∈ S. (A.17)

It is observed that the fundamental solutions of the 3-D Laplace equation and the 3-D Helmholtz equation have the
same order of singularity at origin [63,64]. That is

lim
r→0

eikr

4πr
= lim

r→0

cos(kr )
4πr

+
sin(kr )

4πr
i = lim

r→0

1
4πr

+
k

4π
i. (A.18)

We have

G(xi , yi ) = G0(xi , yi ) +
k

4π
i, r → 0, (A.19)

where G = eikr/4πr is the fundamental solution of the 3-D Helmholtz equation.
Similarity, we obtain [63]

∂G(xi , yi )
∂ne(xi )

=
∂G0(xi , yi )

∂ne(xi )
, r → 0, (A.20)
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∂G(xi , yi )
∂ne(yi )

=
∂G0(xi , yi )

∂ne(yi )
, r → 0, (A.21)

∂2G(xi , yi )
∂ne(yi )∂ne(xi )

=
∂2G0(xi , yi )

∂ne(yi )∂ne(xi )
+

k2

2

[
G0(xi , yi ) +

k
4π

i
]

, r → 0. (A.22)

Making use of Eqs. (A.19)–(A.22), the singularities and hypersingularities in the BIE and HBIE [65,66] are
avoided. It is noted that there are no integrations in these formulations.
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