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A B S T R A C T

In this work, an analytical solution for layered magneto-electro-elastic (MEE) cylindrical shell adhesively bonded
by viscoelastic interlayer is developed to predict its time-dependent mechanical, electric and magnetic beha-
viors. The viscoelastic characteristic of the interlayer is modelled by the standard linear solid model. Each MEE
layer is governed by the equations of magneto-electro-elasticity. The imperfect electric conditions between
adjacent MEE layers are also considered. Using the Pseudo-Stroh formalism, a general solution with unknown
coefficients is derived for each MEE layer. The Laplace transformation is applied to the constitutive equations of
the viscoelastic interlayer. The coefficients are determined by the surface conditions as well as the interface
conditions. The present solution can be used as the benchmark to assess results from numerical approaches. It is
shown that the finite element solution converges to the present one as the mesh density increases; however, the
finite element method is time-consuming in mesh division and calculation. Finally, the effects of time, shell
angle, interlayer thickness and imperfect electric coefficient on the mechanical, electric and magnetic behaviors
are investigated.

1. Introduction

Smart materials with piezoelectric and/or piezomagnetic traits are
successfully employed as sensors and actuators in different branches of
engineering, including applications in structural health monitoring,
vibration control, robotics, etc. Additionally, the smart layered system
composed of piezoelectric and piezomagnetic materials can exhibit new
characteristic known as magnetoelectric coupling effect [1]. The in-
dividual layers in a smart system are either sintered together, or bonded
by adhesive [2]. If the bonding stiffness between layers is extremely
high, a perfect bonding can be achieved. However, due to the manu-
facturing flaw or low stiffness of adhesive, the imperfect bonding be-
tween layers occurs inevitably. It is known that the adhesive usually
possesses viscoelastic property in nature; therefore, the bonding stiff-
ness in the layered system is time-dependent. Such a problem exists
widely in practice and is worth to be investigated thoroughly.

It is noted that analytical solutions are very important in en-
gineering analysis and design because they can be employed to access
the accuracy of numerical solutions [3–5]. A review of the literature
indicates that many analytical models have been developed for the
analysis of smart layered system. Pan [6] presented an exact solution
for the bending analysis of multilayer magneto-electro-elastic (MEE)

plates using the Stroh formalism and propagator matrix method. Based
on the first order shear deformation theory, Qin and Yu [7] solved the
plane problem of a crack terminating at the interface of a bimaterial
piezoelectrics by means of axial conjugate approach. Ke and Wang [8]
investigated the free vibration of MEE nanoplates based on the nonlocal
theory and Kirchhoff plate theory. In their study, the Hamilton’s prin-
ciple was used to obtain the natural frequencies of MEE nanoplates. By
extending the Stroh formalism, Vel et al. [9] analyzed the mechanism
regarding the bending of layered piezoelectric plates. Qin and Ye [10]
presented thermolectroelastic solutions for describing internal bone
remodeling process through dividing inhomogeneous circular cylind-
rical bones into layers. By employing the Mindlin plate theory, Liu et al.
[11] dealt with the vibration of a sandwich plate composed of two
piezoelectric faces and an elastic core with clamped edge. Based on the
Euler nanobeam model and Timoshenko nanobeam model, the disper-
sion behavior of waves in the MEE nanobeams was studied by Ma et al.
[12]. Wu and Lu [13] proposed a modified Pagano method to discuss
the dynamic responses of functionally graded magneto-electro-elastic
plates with free electric/magnetic potential and flux conditions. By the
use of the nonlocal theory as well as the Kirchhoff plate theory, Ke et al.
[14] tackled the free vibration of MEE nanoplates subjected to biaxial
loadings, temperature rise, electric and magnetic potentials. Milazzo
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et al. [15] proposed an analytical solution to predict the transient
performance of a MEE bimorph beam with steady electric and magnetic
fields. By employing the nonlocal Love's shell theory, Ke et al. [16]
analyzed the size-dependent vibration of embedded MEE cylindrical
nanoshells, which incorporated effects of the small scale parameter and
thermo-electro-magnetic loadings.

In the above studies, the adjacent members in the layered system
are assumed to be perfectly bonded. For the imperfect bonding, the
linear spring model is the most popular for the analysis of smart layered
structures in literature. Jiang et al. [17] developed a new reverberation-
ray matrix method for the wave propagation of layered MEE cylinder
with imperfect interfaces. The bending and free vibration behaviors of
layered piezoelectric beams with interfacial slip were investigated by
Zhou et al. [18] through using the state-space method. By virtue of the
complex variable method, Fang et al. [19] presented the theoretical
model for the imperfect interaction between a piezoelectric screw dis-
location and an interphase layer in piezoelectric solids. An exact solu-
tion for a laminated cylindrical shell with imperfect bonding with at-
tached piezoelectric actuator under transverse loading was developed
by Wang and Zhong [20] dependent on the pseudo-Stroh formalism.
With the application of the dislocation method, Bayat et al. [21] de-
rived an analytical solution to analyze the effect of multiple defects on
the orthotropic strip with piezoelectric coating. By means of the
asymptotic homogenization method, the static problem for hetero-
geneous piezoelectric composite with mechanical and electrical im-
perfect contact was dissected by López-Realpozo et al. [22]. The pro-
pagation of shear horizontal waves in layered MEE system with
imperfect contact was studied by Otero et al. [23]. Moreover, Ro-
driguez-Ramos et al. [24] proposed an analytical model for piezo-
electric composite reinforced by unidirectional fibers with interfacial
imperfection.

Although the linear spring model is simple and easy to use, it can
predict static interfacial bonding behavior only. It is noted from the
literature that the viscoelastic property of adhesive can be properly
simulated by the standard linear solid (SLS) model [25–29], which
consists of a linear spring and a Maxwell unit in parallel, as shown in
Fig. 1. To the best of our knowledge, no analytical solution for smart
layered structures with SLS-model imperfect bonding has been reported
yet. In this paper, an analytical model is presented for layered MEE
cylindrical shell adhesively bonded by viscoelastic interlayer and sub-
jected to radial load. The mechanical behavior of the interlayer is
modeled by the SLS model, and the governing equations for each MEE
layer are built upon the magneto-electro-elasticity theory. The im-
perfect electric conditions between adjacent MEE layers are also con-
sidered. Furthermore, the effects of the time, shell angle, interlayer
thickness and imperfect electric coefficient on the mechanical, electric
and magnetic behaviors are examined.

2. Analytical model

As shown in Fig. 2, a layered cylindrical shell is designed, whose
internal radius is R1, external radius R2, thickness H, angle θ0 and the
length is infinite, consisting of p MEE layers with thickness hi of layer i,
adhesively bonded by thin viscoelastic interlayers with the same

thickness hΔ . A cylindrical coordinate system O-θrz is established to
identify the location in the shell. Let d i

0 and d i
1 represent the distances

from the internal and external surfaces of i-th MEE layer to the circle
center O, respectively. The shell is simply supported and acted by a
radial load F θ( ) at the external surface. We deem the cylindrical shell in
the state of generalized plane strain, which means the variables asso-
ciated with stress, displacement, electric and magnetic fields are con-
stant along z direction.

Further, the present study complies with four assumptions:

(1) The shell deformation is small and within the range of linearity.
(2) The adhesive interlayer is far thinner than the MEE layers, i.e.

Δh≪ hi.
(3) Based on the previous assumption, the interlayer displacement is

assumed to be linearly distributed along the radial direction, which
means the interlayer strain is constant through radial direction.

(4) The interlayer, made of adhesive, is relatively soft in comparison
with the MEE layer; thus, its circumferential normal stress is neg-
ligible.

2.1. Stroh-type general solution for a MEE layer

The coupled constitutive equations for i-th MEE layer can be given
in the tensor form [6,30]
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where σj
i, γk

i , Dj
i, Ek

i , Bj
i, Hk

i are the stress, strain, electric displacement,
electric field, magnetic induction and magnetic field, respectively; cjk

i ,
ekj

i , qkj
i , εjk

i , djk
i , μjk

i are elastic, piezoelectric, piezo-magnetic, dielectric,
magnetic-permeability and magneto-electric constants, respectively,
whose details are given in Eq. (A1) of Appendix A. The general strain-
displacement relations in generalized plane stain state are governed by
[31]
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where uθ
i , uz

i , ur
i are elastic displacement, and ϕi and ψi are electric and

magnetic potentials, respectively. The equilibrium equations, in the
absence of body forces, electric charge and current density, are given by
[31]

spring

dashpot

spring

Fig. 1. Standard linear solid model.

Fig. 2. Layered magneto-electro-elastic cylindrical shell with viscoelastic in-
terlayers.
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The simply supported boundary condition can be expressed as
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With the boundary condition described in Eq. (4), the extended
displacements, extended out-of-plane and extended in-plane stresses
can be expanded into Fourier series, as follows
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where =α mπ θ/m 0. In view of the differential in Eqs. (2) and (3), the
extended displacements and extended out-of-plane stresses are taken as
the following form
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By substituting Eqs. (5) and (6) into Eqs. (1)–(3), two relations with
respect to ta ( )m

i and tb ( )m
i are obtained
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The second equation in Eq. (7) can be recast into a standard ei-
genvalue equation, as follows [20,30]
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Further, the general solution for the extended displacements and
extended out-of-plane stresses is obtained
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where rW ( )im
1 and rW ( )im

2 are both 5× 10 sub-matrixes. By reusing Eqs.
(1)–(3), the general solution for the extended in-plane stresses can be
expressed by
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2.2. Equations of an adhesive interlayer

By employing the SLS model, the shear modulus in the interlayer is
given by

= +∗ ∗ − ∗∗G t G e G( ) ,t θ
1

/
2G (12)

where the variables with superscript ∗ belong to the interlayer, ∗θG de-
notes the relaxation time, ∗G1 the relaxation moduli and ∗G2 the long-
term moduli. These parameters can be measured through the creep test
[32]. For simplicity, the Poisson’s ratio of the interlayer ∗μ is assumed
to be time-independent. Therefore, the Young’s modulus of the inter-
layer can be expressed by

= +∗ ∗ ∗E t μ G t( ) 2(1 ) ( ). (13)

According to the linear viscoelasticity theory [33], the constitutive
equations for the interlayer are given by

∫

∫

∫

= + −

= + −

= + −

= … = …

∗ ∗ ∗ ∗ ∂
∂

∗ ∗ ∗ ∗ ∂

∂
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σ t E t ε E t ξ dξ

τ t G t γ G t ξ dξ

τ t G t γ G t ξ dξ
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( ) ( ) (0) ( ) ,

( ) ( ) (0) ( ) ,

1, 2 , 1, 2, 3

r m
i

r m
i t i ε ξ

ξ

rθ m
i

rθ m
i t i γ ξ

ξ

rθ m
i

rθ m
i t i γ θ ξ

ξ

, , 0
( )

, , 0
( )

, , 0
( , )

r m
i

rθ m
i

rθ m
i

,

,

,

(14)

This equation indicates the memory effect of viscoelasticity, i.e., the
stress at a time depends on not only the current strain but also the strain
history. For briefness, Eq. (14) is then rewritten into the Stieltjes con-
volution form [34], as follows

= + ⊗

= ⊗

= ⊗ = … = …

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

σ t μ ε t dG t

τ t γ t dG t

τ t γ t dG t i p m

( ) 2(1 ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ), 1, 2 , 1, 2, 3 ,

r m
i

r m
i

rθ m
i

rθ m
i

rz m
i

rz m
i

, ,

, ,

, , (15)

where the symbol ⊗ means the convolution operation. The stresses in
the interlayer are in balance with those in the adjacent MEE layer, i.e.,

= =

= =

= =
= … = …

∗ + +

∗ ∗ ∗ + +

∗ ∗ ∗ + +

σ t σ d t σ d t

τ t τ d t τ d t

τ t τ d t τ d t
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(16)

Recalling the third assumption, the strains in the interlayer can be
expressed as

=

= +

−

=
= … − = …

∗ −
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+ +

+ +
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ε t
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(17)

The imperfect electric conditions between adjacent layers are also
considered, which can be given by [35,36]

− = − ⎛
⎝

⎞
⎠

− = −
= … − = …

+ +

+ +

D d t D d t χ ϕ d t

ϕ d t ϕ d t χ D d t
i p m

( , ) ( , ) ( , ),
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1, 2 1, 1, 2, 3 .

r m
i i

r m
i i α

d m
i i

m
i i

m
i i

r m
i i

,
1

0
1

, 1 1

2

1

1
0

1
1 2 , 1

m
i
1

(18)

This equation means following three conditions: (i) weakly dielec-
trically conducting condition, i.e., =χ 01 , >χ 02 ; (ii) highly dielec-
trically conducting condition, i.e., >χ 01 , =χ 02 ; (iii) the unelectroded
condition, i.e., = =χ χ 01 2 .

Here, the magnetic conditions between layers are assumed to be
perfect, i.e.,

− =

− =
= … − = …

+ +

+ +

B d t B d t

ψ d t ψ d t
i p m

( , ) ( , ) 0,

( , ) ( , ) 0,
1, 2 1, 1, 2, 3

r m
i i

r m
i i

m
i i

m
i i

,
1

0
1

, 1
1

0
1

1

(19)

2.3. Solution for the layered system

In view of Eq. (5), the applied load is also expanded into Fourier
series, as follows

Table 1
Material parameters of BaTiO3 and CoFe2O4 [6].

BaTiO3 CoFe2O4

= =c c 166i i
11 22 , =c 77i

12 , = =c c 78i i
13 23 ,

=c 162i
33

= =c c 286i i
11 22 , =c 173i

12 ,

= =c c 170.5i i
13 23

= =c c 43i i
44 55 , =c 44.5i

66 =c 269.5i
33 , = =c c 45.3i i

44 55 , =c 56.5i
66

= = −e e 4.4i i
31 32 , =e 18.6i

33 ,

= =e e 11.6i i
24 15

= =q q 580.3i i
31 32 , =q 699.7i

33 ,

= =q q 550i i
24 15

= =ε ε 11.2i i
11 22 , =ε 12.6i

33

= =μ μ 5i i
11 22 , =μ 10i

33

= =ε ε 0.08i i
11 22 , =ε 0.093i

33

= = −μ μ 590i i
11 22 , =μ 157i

33

Note: the units of material parameters are: cjk
i in 109 N/m2, ekj

i in C/m2, qkj
i in N/

(Am), εjk
i in 10−9 C2/(Nm2) and μjk

i in 10−6 Ns2/C2.

Table 2
Viscoelastic parameters of epoxy [28].

Relaxation moduli Long-term moduli Relaxation time Poisson’s ratio

∗G1 =562.2× 106 N/m2 ∗G2 =31.03× 106 N/m2 ∗θG =68.04 s =∗μ 0.3
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F θ q α θ( ) sin( ),
m

m m
1 (20)

where ∫=q F θ α θ dθ( )sin( )m θ
θ

m
2

00

0 . The conditions at the internal and
external surfaces of the shell are given by

=
=

=

R t
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( , ) [0 0 0 0 0] ,
( , ) [0 0 0 0] ,

1, 2, 3. ...
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(21)

Meanwhile, the adjacent conditions of Eqs. (16)–(19) can be rear-
ranged into the matrix form:

⎡

⎣
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⎦
⎥ + ⎡

⎣
⎢
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⎥ =
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i
m
i i im
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1 1

1
0

1

0
1 1

0
1

(22)

where the matrix Km
i is defined in Eq. (A2) of Appendix A, i=1, 2 …,

p− 1, m=1, 2, 3 … and

= ∗ ∗ ∗t γ t γ t ε tΔ ( ) [ ( ) ( ) ( ) 0 0 0 0 0 0 0] .m
i

rθ m
i

rz m
i

r m
i T

, , ,

By combining the surface conditions as well as the adjacent condi-
tions, a matrix equation for the unknown coefficients are obtained, as
follows

= = …t mΩ X G( ) , 1, 2, 3 ,m m m (23)

where the detail of Ωm is given in Eq. (A3) of Appendix A, and

=
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⎥
⎥
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⎥
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Δ
Δ

Δ
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· ··
( )

, · ·· ,

0
···
0

0
0
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m

m
p

m

m

m

m
p

m

m m

1

2

1

2

1

in which, 01 is a 10×10 null matrix, and 02 is a 5×10 null matrix. By
virtue of Cramer’s law of linear equations, the unknown coefficients can
be expressed by the interlayer strains as

∑= ⎡
⎣
⎢ +

+ ⎤
⎦
⎥ +

=
= … = … = … = …

=

−
∗ ∗

∗

− +
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(24)

where Xm
β is the β-th element of tX ( )m ; Cim

j is the j-th element of tC ( )m
i ;

Ωm β k
θ

, ,
( ) , Ωm β k

z
, ,

( ) , Ωm β k
r

, ,
( ) , and Ωm β

q
,

( ) are obtained by replacing the β-th
column of Ωm with the vector Bk

θ( ), Bk
z( ), Bk

r( ) and B q( ), respectively, in
which,
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.
By conducting Laplace transformation to Eqs. (12) and (15), one

obtains




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̂
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,
1
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(25)

where the variable with an over hat accent represents that it is in La-
place transformation shape. By substituting Eq. (24) into Eq. (9) and
then substituting the results into Eq. (25), the equations for the inter-
layer strains are obtained

⎜ ⎟
⎛
⎝

+
+

⎞
⎠

=

= …

∗
s

s θ
P s

s

m

A I H
1/

( ) 1 ,

1, 2, 3 ,

m
G

m m

(26)

where I is the unit matrix, the details of Am and Hm are given in Eq.
(A2) of Appendix A, and



̂ ̂
̂ ̂

̂ ̂
= …

… …

∗ ∗ −

∗ ∗ − ∗ ∗ −

P s γ s γ s

γ s γ s ε s ε s

( ) [ ( ) ( )

( ) ( ) ( ) ( )] .

m rθ m rθ m
p

rz rz
p

r m r m
p T

,
1

,
( 1)

1 ( 1)
,
1

,
( 1)

By reusing the Cramer’s law of linear equations, the solution of
interlayer strains in Laplace transformation shape is obtained

Table 3
The present solution at θ= π/16, r=1.1m when t=1000 s with different series items N=1, 3, 5…13.

N σθ
1 σz

1 σr
1 τrθ

1 Dθ
1 Bθ

1 ur
1 ϕ1 ψ1

1 0.2674 1.057 0.4460 −7.974 −4.422 −1.251 −2.815 −3.280 6.878
3 −1.435 −5.302 −2.069 −8.109 −6.288 −1.350 −2.834 −3.376 6.696
5 −1.225 −4.103 −2.391 −8.215 −5.509 −1.373 −2.834 −3.417 6.721
7 −1.216 −4.152 −2.505 −8.204 −5.413 −1.361 −2.834 −3.415 6.730
9 −1.215 −4.126 −2.490 −8.204 −5.382 −1.369 −2.834 −3.415 6.735
11 −1.211 −4.104 −2.503 −8.201 −5.399 −1.374 −2.834 −3.416 6.733
13 −1.210 −4.101 −2.508 −8.202 −5.397 −1.370 −2.834 −3.416 6.731

Note: the units of the above variables are: σθ
1 and τrθ

1 in 10−1 N/m2, σz
1 and σr

1 in 10−2 N/m2, Dθ
1 in 10−11 C/(m2), Bθ

1 in 10−10 Wb/(m2), ur
1 in 10−12 m, ϕ1 in 10−3 V,

and ψ1 in 10−6 C/s.

Table 4
Comparison of σ0, τ0, u0 and ϕ0 when t=1000 s between the present solution
and the FE solution.

FE solution with different ζ Present
solution

ζ 2 5 10 15 20

σ0
[N/m2]

9.429 9.796 9.859 9.871 9.882 9.899

Error (%) 4.76 1.05 0.412 0.294 0.183 /
τ0

[10−1 N/m2]
−1.888 −1.897 −1.903 −1.906 −1.907 −1.914

Error (%) 1.37 0.892 0.581 0.406 0.353 /
u0

[10−11 m]
−4.988 −5.062 −5.101 −5.120 −5.127 −5.141

Error (%) 2.97 1.54 0.782 0.416 0.267 /
ϕ0 [10−3 V] −4.122 −4.004 −3.948 −3.912 −3.896 −3.887
Error (%) 6.05 3.01 1.56 0.632 0.242 /

Note: the error is calculated by |(FE-present)/present|.
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where P s( )m
j

is the j-th element of P s( )m , and
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in which, = −Ca
b a

b a b
!

! ( ) ! ; according to the permutation and combination
theory, if arbitrary n columns in the determinant A| |m are replaced by

the same columns of I, there will be −C p
n
3 3 kinds of results, and Jm n, is the

sum of all results. An example for Jm n, is given in Appendix B. Let us
define that A| |m

j is the result that the j-th column of A| |m is replaced by
the column vector Hm. If arbitrary n columns of A| |m

j , except for j-th
column, are replaced by the same columns of I, there will be −C p

n
3 4 kinds

of results, and Lm n
j
, is the sum of all results. An example for Lm n

j
, is given

in Appendix B. The inversed Laplace transformation of Eq. (27) is

∑= = ⌢

= =
= … = … − = … −

=

−
− ∗

∗ − + ∗ − +

P t r e γ t P t

γ t P t ε t P t
m j p i p

( ) , ( ) ( ),

( ) ( ), ( ) ( ),
1, 2, 3 , 1, 2 3( 1), 1, 2 1,

m
j

l

p

l m
j s t

rθ m
i

m
i

rz m
i

m
p i

r m
i

m
p i

1

3 2

, ,

,
1

,
2 2

l m,

(28)

where sl m, (l=1,2…3p− 2) is the root of the function of s:
∑ ==

− +η s 0k
p

k m
k

0
3 3

,
1 , and

Fig. 3. Distributions of the present solution along the radial direction at different time (PB means the perfectly bonded condition).
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By substituting Eq. (28) into Eq. (24), the coefficients tC ( )m
i are

determined. Finally, the solution for each MEE layer is obtained by
substituting tC ( )m

i into Eq. (9).
It should be mentioned that the present method can also be applied

to other boundary conditions. For example, the clamped boundary
condition can be equivalent to a simply supported one acted by a dis-
tributed load at the edge which can be further determined by the zero
displacement condition at the clamped edge [37].

3. Numerical examples

In the following example, the material parameters of piezoelectric

BaTiO3, magnetostrictive CoFe2O4 and viscoelastic epoxy are listed in
Tables 1 and 2. Let us beforehand define six variables: =σ σθ0

1 at
θ=0.5θ, r= R1; =τ τrθ0

1 at θ=0, =r d1
1; =u ur0

1 at θ=0.5θ, r= R1;
=ϕ ϕ0

1 at θ=0.5θ, r= R1; =D Dθ0
1 at θ=0, = =r d B B; θ1

1
0

1 at θ=0,
=r d1

1.

3.1. Verification of the solution

Since the present solution is expressed in series form, its con-
vergence property is to be examined first. The infinite series in the
solution are truncated up to finite ones, i.e., m=1,2…N. Consider a
simply supported three-layer cylindrical shell acted by a uniform load
with F θ( ) =1N/m2. The face and core layers in the shell are made of
BaTiO3 and CoFe2O4, respectively, which are bonded together by
epoxy. The dimensions of the shell are R1= 1 m, θ0= 0.25π,
h1= h3= 0.1m, h2= 0.2m, Δh=2×10−4 m. The electric condition
between adjacent layers is unelectroded, i.e., = =χ χ 01 2 . The present

Fig. 4. Radial distributions of electric and magnetic variables for different θ0.
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Fig. 4. (continued)

Fig. 5. Variations of σ0, τ0, D0 and B0 with respect to time for different hΔ .
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solution with different series items when t=1000 s are given in
Table 3. It is found that the present solution is rapidly convergent to the
desired value along with an increase in N, and the extended displace-
ments converge faster than the extended stresses. Besides, the present
solution has higher convergence precision with at least three significant
digits when N=13.

The present solution is then compared with the solution obtained by
the finite element (FE) software ANSYS. Since ANSYS cannot directly
model the MEE material, we here consider a simply supported two-layer
shell composed of two piezoelectric BaTiO3 layers bonded by epoxy
under uniform load F θ( ) =1N/m2. The electric condition between
adjacent MEE layers is insulating, i.e., =χ 01 , → +∞χ2 [36]. Other
parameters are fixed at R1= 1 m, θ0= 0.25π, h1= 0.1m, h2= 0.2 m,
Δh=2×10−4 m. In the FE modeling, the BaTiO3 layers and epoxy
interlayer are respectively simulated by PLANE-13 and PLANE-182
elements with two-dimensional mesh. The thicknesses of the interlayer,
internal and external layers are divided into 1, ζ and 2ζ elements, re-
spectively, while the arc length of each layer is divided into 5ζ ele-
ments. The FE solution of σ0, τ0, u0 and ϕ0 when t=1000 s for different
ζ are compared with the present solution, as given in Table 4. It can be
found that the FE solution tends to approach to the present one along
with the increase of ζ. The FE solution agrees well with the present
solution when ζ=20. However, the FE method is computationally
expensive in mesh division and calculation when ζ is large.

3.2. Parameter study

Consider a simply supported three-layer shell formed by two pie-
zoelectric BaTiO3 face layers and a magnetostrictive CoFe2O4 core
layer, bonded together by epoxy, and subjected to sinusoidal load
F θ( ) =sin(πθ/θ0) N/m2. Let Sa represent the average arc length of the
shell, i.e., Sa= θ0(R1+ 0.5H). The parameters are taken as Sa=1.2m,
h1= h2= h3= 0.1 m, =χ 02 , while t, θ0, Δh and χ1 are variable. In the
following, the symbol |.| means the absolute value of the variable.

The radial distributions of the present solution at different time with
θ0= π/3, Δh=5×10−4 m, and =χ 01 are shown in Fig. 3, in which
PB means the perfectly bonded condition, i.e., the extended displace-
ments are continuous along the radial direction. It is found from Fig. 3
that: (i) the maximum of σ| |θ

i and u| |θ
i in each layer increases with the

time; (ii) σr
i, τ| |rθ

i and D| |θ
i near the interlayer decrease with the time,

while B| |θ
i near the interlayer increases with the time; (iii) Dθ

i , Dr
i in the

magnetostrictive layer and Bθ
i , Br

i in the piezoelectric layers are almost
invariant with the time; (iv) the peak values of B| |θ

i and B| |r
i increases

with the time, while that of D| |r
i decreases with the time; (v) ϕ| |i in the

magnetostrictive layer and ψ| |i in each layer decrease with the time; (vi)
the results in PB condition has considerable difference from those with
the viscoelastic interlayer.

The radial distributions of electric and magnetic variables for

different shell angle θ0 with Δh=5×10−4 m, =χ 01 , t=1000 s are
shown in Fig. 4. It is found from Fig. 4 that: (i) D| |θ

i near the surfaces of
piezoelectric layers increases as θ0 increases; (ii) the peak value of D| |r

i

in the piezoelectric layers and those of B| |θ
i and B| |r

i in the magnetos-
trictive layer increase as θ0 increases; (iii) ϕ| |i and ψ| |i in each layer
increase as θ0 increases.

Fig. 5 demonstrates the effect of interlayer thickness hΔ on the
variations of σ0, τ0, D0 and B0 with respect to time when =χ 01 , θ0= π/
3. It is noted from Fig. 5 that: (i) σ| |0 increases with the time, while τ| |0 ,
D| |0 and B| |0 decrease with the time; (ii) they all tends to be constant
after t=104 s; (iii) σ| |0 increases as hΔ increases, while τ| |0 , D| |0 and B| |0
decrease as hΔ increases.

The variations of D0 and ϕ0 with respect to χ1 when θ0= π/3,
Δh=5×10−4 m, t=1000 s are given in Fig. 6. It can be found from
Fig. 6 that D| |0 and ϕ0 increase as χ1 increases. They tend to be constant
when χ1 approaches infinity.

4. Conclusions

Analytical solution for layered MEE cylindrical shell with viscoe-
lastic interlayer subjected to a radial load is developed to study the
time-varying behavior in the shell. The results obtained from the above
analysis can be boiled down to following conclusions:

(1) The present solution in the form of Fourier series has rapid con-
vergence speed and high convergence precision.

(2) The FE result with small mesh size is in good agreement with the
present one, but the FE method is time-consuming in mesh division
and computation.

(3) The mechanical, electric and magnetic variables in the shell vary
with the time; however, they tend to be constant after a certain
time.

(4) The shell angle has effect on the electric and magnetic variables.
The absolute values of electric and magnetic potentials in the shell
increase as the shell angle increases.

(5) The circumferential normal stress increases as the interlayer
thickness increases, while the shear stress, electric displacement,
magnetic induction near the interlayer decrease as the interlayer
thickness increases.

(6) The electric potential and the absolute value of electric displace-
ment increase and tend to be constant as the imperfect coefficient
increases.
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Appendix A

The tensors in Eq. (1) are defined as follows:
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The matrixes Km
i in Eq. (22) and Ωm in Eq. (23) are defined as following
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P. Wu et al. Composite Structures 200 (2018) 874–885

883



= ⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥R

R
R RM W

0
M

0
W

1 ( ) , 1
( ) .m

m
m
p

pm

1

1

1
2

1

2 2

2
2

2

The details of matrixes Am and Hm in Eq. (26) are given by
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in which i, k=1, 2 … p− 1, =δ 1ik if i= k, and =δ 0ik if ≠i k.

Appendix B

Examples for Jm n, and Lm n
j
, when p=2 are given as follows
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Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.compstruct.2018.05.115.
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