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Abstract A scheme for online quality monitoring of re-
sistance spot welding (RSW) process is proposed to
effectively determine the rate of spot weld quality. In
this work, the random forest (RF) classification featur-
ing with dynamic resistance (DR) signals which were
collected and processed in the production environment
was carried out. The obtained results demonstrated that
the constructed RF model based on DR profile features
adequately distinguished high-quality welds from the
other unacceptable welds such as inadequate sized
welds and expulsions. Variable importance evaluation
of RF was implemented against the input features. It
showed that two DR slopes for nugget nucleation and
growth (v2, v3) and dynamic resistance (Rγ) in the final
half cycle play the most significant roles in achieving
more accurate results of classification, while absolute
gradient ∇max is useful in detecting minor expulsion
from pull-out failure. In addition, shunting effect in con-
secutive welds was tentatively investigated via the DR
curves, accounting for noticeable declines in the stage I
of DR. The results revealed that shunted welds beyond
minimum weld spacing do not significantly undermine
the accuracy of classification. The implementation of RF
based on the combination of welding parameters and
DR features improves the accuracy of classification
(98.8%) with ntree = 1000 and mtry = 4, as weld

current significantly distinguished situations where DR
features solely achieve accuracy (93.6%). The incorpo-
ration of the RF technique into online monitoring sys-
tem attains a satisfying RSW quality classification accu-
racy and reduces the workload on destructive tests.

Keywords Resistance spot welding . Random forest .

Dynamic resistance . Quality control . Variable importance
evaluation

1 Introduction

Resistance spot welding (RSW) is a popular joining technolo-
gy for metal sheet assembly. It has been extensively used in
many industrial fields, such as the automobile, aircraft
manufacturing, owing to its ease of operation and wide appli-
cability in automation. Efficiently monitoring the spot weld
quality is desired. In fact, how to achieve high efficiency is
challenging to researchers and engineers in this area.
Unsatisfactory welds could be delivered in the production line
under improper welding parameters. For instance, inadequate-
ly sizedweld nugget (cold weld) with insufficient deformation-
bearing capacity could lead to catastrophic structural failure.
On the other hand, expulsion, described as the expelled molten
metals either at the faying surface or workpiece/electrode sur-
face, undermines the joint strength due to substantial deficien-
cy of nugget volume and thus reduces lifespan of electrodes
due to ultrahigh temperature along electrode tip surface [1].
Therefore, it is utterly important to sustain weld quality con-
sistent throughout the industrial production.

A number of destructive and non-destructive approaches
have been undertaken for monitoring the welding quality.
Destructive inspections, being performed on one sample basis
off the production line, show appealing reliability in
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distinguishing unsatisfactory welds fromwelds with high qual-
ity. However, the factors including the cost of implementation,
the usage of material, and low productivity prevent them from
being extensively employed in the plant environment. In con-
trast, non-destructive methods have utilized a number of pro-
cess signatures to evaluate weld quality. For this purpose, off-
line signals, ultrasonic, and on-line signals, mechanical and
electrical have been sampled and processed. Since the compo-
nents of these signals vary with respect to the nucleation and
development of nuggets, they can be used to identify cold
welds and expulsions from the acceptable welds.

Ultrasonic waveform, a kind of off-line signal, is employed
for determining the final nugget diameter. It is found that the
nugget diameter and relatively height of echoes and sequence
of echoes are strongly closely related, though little information
of nugget development history is provided [2]. To provide a
good insight on the history of nugget development, mechanical
signals such as electrode displacement are captured. Wang et al.

demonstrated distinct signatures of expulsion or cold welds from
good welds, owing to the thermal expansion associated with
nugget growth [3]. However, he indicated that the constraints
related to the cost of achieving high precision of displacement
sensor make electrode displacement sampling only be favorable
in laboratory environment, rather than plant environment.
Consequently, a more affordable electrical signal, dynamic resis-
tance (DR), is then proposed. Gedeon et al. highlighted that the
ease of installation and process and the low cost in measurement
allow this signature to be widely adopted in the production en-
vironment [4]. With the simultaneous collection of voltage and
current signals during the welding phase, the DR curves can be
derived from these signals at different stages which involve pro-
nounced physical phenomena. The curves can differentiate weld
qualities based on the appearance of the profile. The relative
positions of the DR curves, varied by welding current and
welding force, indicate whether the adequate nugget is formed
[5]. Moreover, Fan et al. demonstrated the application of DR

Table 1 Research comparison on characterizing the process signals of RSW and constructed online monitoring system

Method Data source Base materials Achievements Drawbacks Typical studies

Non-linear regression ED Mild Steel Establishment of nonlinear
relation between ED
features and tensile
shear strength

Expulsion ignored in the study [10]

Random forest UO Mild Steel Weld quality classifier based
on UO signal, variable
importance identified
via RF approach, strong
resistance to overfitting,
and better classification
accuracy over ANN and
regression.

Off-line signal, UO, does not
provide much development
history of nugget as DR
does

[9]

Artificial neural network DR and weld parameters Titanium Alloy Satisfying prediction of weld
quality based on principal
components from DR
signals and weld
parameters

User fails to interpret ANN
mechanism, and principal
components derived from
DR does not have much
physical meaning

[11]

Chernoff face analysis ED Mild Steel Effectively distinguish
normal welds from
expulsion and welds under
abnormal conditions based
on facial impression

Further processing on the
facial impression to weld
quality classifier relies on
human operator judgment.

[12]

Random forest DR and weld parameters Mild Steel On-line parameter DR and
weld parameters are
incorporated into RF to
investigate individual
and continuous welds.
Shunting effect with
minimum welding
distance is considered.

The shunting effect on DR
with small welding spacing
is not studied.

Present Work

ED electrode displacement, UO ultrasonic oscillogram, DR dynamic resistance

Table 2 Chemical composition
of CA2S-E (wt%) Material C Si S P Mn Al

CA2S-E 0.04–0.07 0.005–0.01 0.008–0.02 0.005–0.02 0.18–0.25 0.03–0.05
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curves in expulsion detection under various circumstances [6].
The sudden decline in DR curves, associated with ejection of
molten metal, could indicate the presence of expulsion.

To improve the accuracy of weld quality monitoring, re-
searchers have utilized various methods to characterize the pro-
cess signals of RSWand construct monitoring system, as sum-
marized in Breiman who proposed a pattern recognition tech-
nique, random forest (RF), as a mathematical model for classi-
fication [7]. The advantages of applying RF over current quality
monitoring methods lie in the better interpretability of the algo-
rithm and its capability of sorting out thousands of features and
dealing with missing values. Variable importance evaluation
provided by RF allows users to identify the importance of var-
iables and possibly reduce the dimension of data. Also, current
methods, such as artificial neural network (ANN) and non-
linear regression, are prone to overfitting when the training set
is improperly evaluated, while the RF exhibits the appealing
overfitting resistance with increased number of trees [7]. So
far, efficiently applying RF on monitoring RSW weld quality
has rarely been demonstrated. We only found two ultrasonic
signal orientated studies in laboratory environment. Martín
et al. incorporated ultrasonic oscillograms into an RF classifier,
in which four levels of the weld, such as good weld, no weld,
undersized weld, and stick weld, were considered as the classes
for RF classification [8]. Moreover, Pereda et al. compared a
series of ultrasonic waveform-based classification methods in-
cluding RF for the quality assessment of RSW. The classifica-
tion results and receiver operating characteristic (ROC) curve
showed that RF technique outperformed a number of popular
classification methods such as ANN and logistic regression [9].

Table 1. Some challenges and issues remain in these
methods. For instance, shunting effect is inevitable in the pro-
duction line. Shunting current in RSW could deliver an appar-
ent decrease in nugget diameter in consecutive welds on the

same sheet, due to declined welding current [13]. The phe-
nomenon can be expressed by the decline of DR values due to
the parallel circuit of welding path and shunting path.
However, existing studies on quality classifier did not cover
this phenomenon in their constructed system. The inclusion of
multiple welds on the same sheet is necessary for construct
online monitoring systems in plant environment.

Breiman proposed a pattern recognition technique, RF, as a
mathematical model for classification [7]. The advantages of
applying RF over current quality monitoring methods lie in
the better interpretability of the algorithm and its capability of
sorting out thousands of features and dealing with missing
values. Variable importance evaluation provided by RF allows
users to identify the importance of variables and possibly reduce
the dimension of data. Also, current methods, such as ANN and
non-linear regression, are prone to overfitting when the training
set is improperly evaluated, while the RF exhibits the appealing
overfitting resistance with increased number of trees [7]. So far,
efficiently applying RF on monitoring RSW weld quality has
rarely been demonstrated. We only found two ultrasonic signal
orientated studies in laboratory environment. Martín et al. incor-
porated ultrasonic oscillograms into an RF classifier, in which
four levels of the weld, such as good weld, no weld, undersized
weld, and stick weld, were considered as the classes for RF
classification [8]. Moreover, Pereda et al. compared a series of
ultrasonic waveform based classification methods including RF
for the quality assessment of RSW. The classification results and
receiver operating characteristic (ROC) curve showed that RF
technique outperformed a number of popular classification
methods such as ANN and logistic regression [9].

To advance the technique of monitoring weld quality of RSW
from the laboratory to the plant environment, we propose the
DR, a more reliable and affordable dynamic signature, over ul-
trasonic signal for monitoringweld quality of RSW. In this work,
an experimental study of a RF-based classifier using DR signals
of mild steel is presented. The welds made for RF construction
were divided into test samples and consecutive welds, similar to
the weld sequence in the production environment. We identified
here howDRprofile shuntedwelds varies from the normalwelds
when weld spacing is acceptable. Profile quantities with physical
meanings were used for RF construction, whose importance to
classification accuracy is further evaluated and ranked.
Moreover, in this study, additional DR gradient and weld param-
eters were included to improve the accuracy of classification.

2 Experimental procedure and methodology

2.1 Material and equipment

The material used in the experiments was 1 mm cold rolled
mild steel (CA2S-E), whose chemical composition and me-
chanical properties are manifested in Tables 2 and 3,

Table 3 Mechanical properties of CA2S-E

Ultimate strength
(MPa)

Yield strength
(MPa)

Elongation (%)

CA2S-E 160–250 270–340 34–46

Table 4 Welding schedule used in this study

Weld current Weld time Electrode force Hold time

8.0 kA 0.16 s 1700 N 0.2 s

8.8 kA 0.20 s 2000 N

9.6 kA 0.24 s 2300 N

10 kA 2700 N

10.4 kA

10.8 kA

11.2 kA
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respectively. The base materials were spot welded with a
single-phase alternating current (AC) pedestal welder
(50 Hz), along with water cooled truncated cone CuCrZr elec-
trodes with 6-mm tip face diameter.

2.2 RSW process parameters and experimental set-up

There are four key parameters in a weld schedule, namely
weld current (WC), weld time (WT), electrode force (EF),
and hold time (HT). The first three parameters make contribu-
tions to the heat input in RSW, while the parameter of hold
time accounts for the cooling rate of the weld nugget. This
study utilizes DR curve onmonitoring weld quality. Hold time
does not differentiate DR. Thus, control variables in this study
were selected as weld current, weld time, and electrode force
only. Detailed welding parameters are shown in Table 4. To
resemble the destructive test frequency in plant environment,
two types of welds were made, namely destructive weld and
continuous weld. In total, seven welds were made. Three de-
structive samples were selected and stretched until failure at
every welding schedule. The other four continuous welds
were made consecutively on the steel-steel workpieces with
a weld spacing of 20 mm, in which shunting effect does not
substantially affect the nugget size of bare mild steel [13]. The
weld schedule began with weak parameters (small weld cur-
rent and short weld time), while the electrode force was ini-
tially fixed at 1700 N. When expulsion was identified, the
upcoming experiment under current welding schedule was
terminated. The electrode force then increased to next level

and weld current and weld time applied weak parameters
again. Hence, not all combinations in Table 4 were carried
out. In total, 368 welds were made, which were later used to
construct RF models.

The layout of the experiment is shown in Fig. 1. The
weld current was measured by the Rogowski coil placed
at the lower arm of the welder, and the electrical volt-
age was derived from the voltage difference between
two electrodes. To minimize the inductive noise caused
by the AC waveform, the leads connecting two elec-
trodes were twisted. The sampling rate was fixed at
10 kHz. An array of digitized data of voltage and cur-
rent was acquired and processed to yield associated DR.
In this work, we represent DR as the root-mean-square
resistance per half cycle calculated via the following:

RRMS ¼ URMS

IRMS
ð1Þ

This approach substantially preserves the key signatures of
DR.

2.3 Tensile shear test

The tensile shear test is a measurement of the quality of
resistance welded joint. A joint is subjected to a pair of
parallel forces until destruction. The tested specimens
were prepared to a size of 100 mm × 25 mm, and the
overlapped area was 25 mm × 25 mm as shown in Fig.

Fig. 1 Experimental set-up

Fig. 2 Specimen dimension for
tensile shear test
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2 [14]. A tensile shear test was carried out under a
crosshead velocity of 5 mm/min at room temperature.
The peak value before the failure in the extension-
force curve is recorded as the tensile shear load. The
RSW quality is strongly function-related to failure mode
and peak strength. Interfacial failure (IF) and pull-out
failure (PF) are the two predominant failure modes in
tensile shear test in RSW. Long et al. revealed that weld
failure mode is determined by the competition between
a tensile resistance force and a shear resistance force of
the nugget [15]. When the maximum shear resistance
force supplied via the interface of the weld nugget

outweighs the maximum tensile resistance force sup-
plied via the tensile cylindrical regions, the failure mode
would be button pull-out; otherwise, it fails as an inter-
facial shear mode.

2.4 Random forest

In this study, an RF classifier was implemented, using the
“random forest”R package [16]. RFmethod adopts an ensem-
ble of independent decision trees hi{X} (i = 1,2…k). The clas-
sification result of the RF is an unweighted majority based on
the voting of each independent tree, which is considered as a
weak learner. Each tree is planted under independent random
vector Θ of the identical distribution. Bootstrapping method
creates ntree sample sets constituting of about 23 of the original
data set, in which ntree indicates the total number of trees. By
performing bootstrapping method, there are approximately
one-thirds of original data being unselected for each tree, re-
ferring to out-of-bag (OOB) data.

For every node in a kth tree hi{X} (i = 1,2…k),mtry features
are selected out of the total M feature of the input data. The
value of mtry should be much less than M; otherwise, the
correlation among trees strengthens. A large value of mtry
adversely influences the accuracy and reliability of the RF
classifier. The mtry features are employed to determine the
optimum split variables and the best split point. This recursive
step continues until a maximal tree is created, suggestive of
the optimum split parameter for the current node is identical to
that of the parent node. No pruning is carried out for every
tree. These actions allow a low bias among the ensemble of
decision trees. Likewise, randomization needs to be assured
for an RF model. It is accomplished by a series of operations,
including bootstrapping, a random mtry selection from each
node, and optimization of the value of mtry. The low bias and
low correlation guarantee reliability of the RF model. The

Fig. 4 Three types of RSW joints at failure. aCold weld. bGoodweld. c
Expulsion

Fig. 3 Extension-load curves of different weld qualities Fig. 5 Schematic diagram of extracted features of representative
dynamic resistance curve
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decisions of the parameters ntree and mtry tend to substantial-
ly impact on the accuracy of the classifier. A discussion on
sensitivity to ntree and mtry was performed. Original data
were divided into a training set (75%) and test set (25%).
The RF models were constructed based on the training set,
making the test set independent from the RF models. Ten-
fold cross validation was conducted on training data to exam-
ine the overfitting.

3 Results

3.1 Class selection for RSW weld quality classification

Figure 3 demonstrates averaged load-extension curves of the
tested specimens using different welding currents. It is
straightforward to distinguish the interfacial failure and expul-
sion from the pull-out failure. The IF specimen does not ex-
hibit an appealing tensile shear load bearing capacity prior to
the failure, while the specimen with expulsion presents a
downward trend in tensile-shear load and failure energy,
though a greater heat input is applied. Specimens with PF

mode attain a good combination of strength and ductility;
thus, they were viewed as good welds. Furthermore, Fig. 4
displays three types of RSW weld failures after the tensile-
shear test. Figure 4a shows the couplers rupture in the interfa-
cial shear mode, suggestion of a cold weld formed during
welding. In Fig. 4b, the specimen fails in PF mode. The weld
nugget is preserved after the test. The failure takes place from
the heated affected zone (HAZ) region, indicating that the
HAZ is prone to deformation for a good weld. In Fig. 4c, we
can observe the expelled molten metals on the faying surface.
Deficiency of weld nugget occurs as the result of expulsion,
and the mechanical performance is deteriorated as well. Based
on the extension-load curve, the failure mode, and observation
on expulsion, three levels of weld qualities were thus utilized
as the classification response in the RF model, with regard to
cold weld, good weld, and expulsion.

3.2 Characteristics of dynamic resistance signature
on RSW

A group of current and voltage signatures were collect-
ed and processed for determining the DR signature. As

Fig. 6 a Representative dynamic resistance curves for three levels of joints at 12 weld cycles. b Representative dynamic resistance curves of early
expulsion and late expulsion at 10 weld cycles

Table 5 Inter-variable correlation matrix

Variables Rα Rβ Rγ v1 v2 v3 R σ ∇max

Rα 1.00 0.95 0.48 0.18 0.23 − 0.33 0.89 0.23 − 0.26

Rβ 0.95 1.00 0.58 0.11 0.40 − 0.28 0.94 0.16 − 0.19

Rγ 0.48 0.58 1.00 0.31 − 0.06 0.55 0.77 − 0.51 0.59

v1 0.18 0.11 0.31 1.00 − 0.42 0.33 0.16 − 0.24 0.22

v2 0.23 0.40 − 0.06 − 0.42 1.00 − 0.48 0.26 0.24 − 0.33

v3 − 0.33 − 0.28 0.55 0.33 − 0.48 1.00 − 0.04 − 0.68 0.89

R 0.89 0.94 0.77 0.16 0.26 − 0.04 1.00 − 0.12 0.08

σ 0.23 0.16 − 0.51 − 0.24 0.24 − 0.68 − 0.12 1.00 − 0.83

∇max − 0.26 − 0.19 0.59 0.22 − 0.33 0.89 0.08 − 0.83 1.00
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mentioned, root-mean-square DR was used to represent
the dynamic signature. A higher resolution of DR sig-
nature could be evaluated by deriving the equation with
an estimated value of L:

dI
dt

Lþ IR ¼ U ð2Þ

where L is the inductance of circuit, I is the current, R
is the dynamic resistance, and U is the voltage.
However, the nature of different weld time determines
the different length of DR curves, making directly
importing DR signature into RF classifier less favorable.
Instead, we preferred to distract a number of character-
istics to describe each DR plot. From the typical DR
curve of mild steel in Fig. 5, we can see that the DR
firstly declines until the trough α, and it again climbs to
reach the β peak. After this extreme point, DR experi-
ences a descending trend to the terminal point of the
DR curve. There are three stages each of which corre-
sponds to a specific physical phenomenon in the RSW
process. Stage I indicates the intimate contact of work-
pieces and breakdown of asperities. With increased con-
tact area, the DR unambiguously drops. Stage II is

indicative of local melting and formation of the nugget.
The bulk resistivity rises with ascending temperature.
The elevated bulk resistivity outperforms the influence
of contact area reduction in nugget nucleation, account-
ing for the rise of DR in stage II. After β peak, the DR
curve gradually decreases with enlarged nugget diameter
until reaching the end point in stage III.

In total, nine features (M = 9) were selected to de-
scribe the DR signature for the training dataset. These
extracted features, shown in Fig. 5, include critical DR
values of trough Rα, peak Rβ, end point of DR curve
Rγ, and their relative velocities for film breakdown v1
(stage I), local melting and initiation of nugget forma-
tion v2 (stage II), and nugget growth v3 (stage III). The
maximum absolute gradient in stage III ∇max was also
recorded to ensure the accuracy to distinguish minor
expulsion from good welds. When minor expulsion
takes place, the declines in DR sometimes may not dif-
ferentiate from the good ones by only considering the
overall gradient in stage III; the maximum absolute gra-
dient can better describe the sudden change in DR. In
addition, averaged DR value R and standard deviation σ
of the DR curve were taken into account since the ex-
pulsion gives a rise on the precipitous drop in DR
value.

Representative DR curves for three weld quality
levels are plotted in Fig. 6, with an electrode force of
2.7 kN and a weld time of 12 cycles unchanged. Weld
currents, ranging from 8 to 8.8 kA, resulted in cold
welds, and weld current beyond 10.8 kA caused expul-
sion at the faying surface. Weld currents between 8.8
and 10.8 kA produced good welds. By combining the
physical characteristics of DR curve, remarkable differ-
ences are observed from three quality levels. Cold welds
do not obtain an apparent trough α and peak β, sug-
gesting minor local melting and inadequate nugget
formed. For good welds, their tendencies precisely re-
semble the typical DR curve of mild steel in RSW.
Noticeably, the end point value of the good weld is
substantially smaller than that of the cold weld. This
trend shows that DR significantly drops during stage
III owing to successive expanding nugget diameter.
Two modes of expulsion were observed from the probed
curves: early expulsion and late expulsion. It is evident
that early expulsion is indicated by a remarkable drop
in DR in Fig. 6 because the ejection of molten metals
induces a substantial reduction in contact area. Late ex-
pulsion usually occurs in the last few half cycles of
welding phase. The DR signature is quite different from
that of early expulsion. However, the features extracted
from the DR curves do not vary significantly.

Prior to training, the correlation analysis was adopted
among extracted characteristics to evaluate if sufficient

Fig. 7 Summary of influence of ntree andmtry onOOBmisclassification
error (%)

Table 6 Confusion matrix for one attempt of training data in random
forest classification (ntree = 1000, mtry = 4)

Cold
welds

Expulsion Good
welds

Classification
error (%)

Cold welds 111 0 4 3.4

Expulsion 0 15 0 0

Good welds 9 1 108 8.5

Classification
Rate

94.4%
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parameters are extracted to establish a monitoring system. The
correlation coefficient approaching to 1 or − 1 shows strong
linearity between two variables; otherwise, the correlation co-
efficient approximating to 0 implies a weak relation to two
variables. The correlation of 0.6 and above indicates a strong
correlation. The inter-item correlation analysis among input
variables is shown in Table 5. We identify that the Rα, Rβ,
and R have a strong correlation with each other and show very
weak correlation with three gradients. Rγ and v3, on the other
hand, do have a strong relation with each other. In addition,
three gradients for asperity collapse, nugget nucleation, and
nugget growth do not have a significant correlation with each
other. An increase in stage II does not necessarily infer a well-
formed nugget. For cold welds, the values of v3 are negligible.
The overall gradient in stage III v3 and maximum absolute
gradient ∇max share a strong correlation with each other, asso-
ciated with the sudden decline of expulsion. The standard
deviation σ shows a strong inverse correlation with the Rγ.
This phenomenon can be understood by considering the DR
response to expulsion. When expulsion occurs, a sudden drop
in DR is noticed, which leads to a significant increase in σ.

3.3 Construction of RF classifier

RF method requires users to provide number of trees
ntree and number of features to be used at each node
mtry prior to the implementation. The choice of ntree
and mtry substantially affects the accuracy of the model.
Here, we firstly examined the parameter sensitivity of
RF results. In this work, nine features (M = 9) were
extracted from the DR signals, and the optimal value

of mtry should approximate to
ffiffiffiffiffi
M

p
in classification

[7]. We herein compare the OOB accuracy of RF
models utilizing mtry that ranged from 1 to 6 and ntree
from 10 to 10,000. By using the bootstrapping process,
each tree was planted based on a different sample set
from the training set. Test data, independent from the
training set, were later utilized for prediction based on
the constructed models.

The summary of the influence of ntree and mtry on
OOB accuracy is presented in Fig. 7. It is clearly seen
that the selections of ntree and mtry have a pronounced
effect on OOB error. The accuracy of classification was

Fig. 8 Enlarged ROC curves based on influence of ntree. a IF. b PF. c Splash

Fig. 9 Comparison of test error and CVerror based on a DR signals, b DR, and weld parameters
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strongly dependent on the amount of trees in the ensem-
ble, and smallest OOB error was achieved by an ensem-
ble of 10,000 trees. In contrast, ensembles of 10–100
trees tended to gain much higher OOB error rates. For
the number of features considered at each node, mtry of
4 gave appealing performance over other selected
values. By considering all circumstances, an RF with
ntree = 1000 and mtry = 4 was constructed for the
collected DR signals. A typical confusion table of the
employed RF is presented in Table 6. The individual
misclassification rates for cold welds, expulsion, and
good welds were 3.4, 0, and 8.5%, respectively.
Misclassification of good welds into cold welds ac-
counts for the most of the errors made by the classifier.
Based on the tensile-shear test, some joints have a fail-
ure load close to peak load of pull-out mode with low
electrode force applied; however, it still fails in IF
mode. Such samples cannot be well distinguished.

Columns stand for predicted class and rows stands for orig-
inal judgments

Figure 8 shows average ROC curves of classifiers
with varied ntree from 10 to 10,000, using the test
dataset. Since ROC is specified for binary classification
problem instead of multiclass classifier, we adopted
“One-vs-All” approach to generate ROC curves [17].
Area under curve (AUC) of the multiclass classifier is
calculated as

AUC ¼ AUCIF þ AUCPF þ AUCSplash

3
ð3Þ

Higher value of ntree allows greater AUC in all three clas-
ses, where a greater AUC suggests a good classifier. AUCs for
ntree of 10, 100, 1000, and 10,000 are 0.9890, 0.9926, 0.9931,

and 0.9932, respectively. The increment in AUC from 10 to
100 trees outperforms the increments from 100 to 10,000
trees. Moreover, the AUCs of the PF classification are the
lowest among the three classifiers, suggesting remained mis-
classification of PF into other classes.

The 10-fold cross-validation (CV) misclassification and
test prediction error are compared in Fig. 9a. The averaged
prediction error and the error induced from cross-validation
were 6.4 and 7.6%, respectively. RF model based on DR pro-
file quantity does not overfit. To further reduce the misclassi-
fication error between good welds and cold welds, three
welding parameters (WC, WT, and EF) were added into the
RF classifier. Ten independent sets of training and tests were
carried out with RF parameter unchanged, as schemed in Fig.
9b. It is clear that both CV error and test error were signifi-
cantly declined from the results relying on DR signals.
Significant improvements in cross-validation error and predic-
tion error are found. Averaged cross-validation error (1.4%) is
slightly greater than test error (1.2%), indicative of no
overfitting for the constructed models. The inclusion of weld
parameters is proven to effectively optimize the classification
rate.

4 Discussion

4.1 Variable importance evaluation

The variable importance of extracted DR features was inves-
tigated via permutation accuracy importance (PAI). The esti-
mations of variable importance give a good implication on
ranking the relative importance of input features in construct-
ing the ensemble of decision trees. For kth tree hi{X} (i = 1,2…
k) built in the forest, it corresponds to a unique bootstrapping
data and out-of-bag data. The classification is employed based
on the OOB data, and the count of the accurate classification
ROOB
b is estimated accordingly. For a ntree model, the out-of-

bag error rate is determined. Then, feature mi (i = 1,2…M)
used in the data set is randomly permutated once per time and
the procedure in building RF and estimating OOB error is
repeated based on newly permutated variables. The impor-
tance measure Dj for variable mi and z-score are given by
the following:

Dj ¼ 1

M
ROOB
b −ROOB

bj

� �
ð4Þ

z j ¼ Dj

s j
ffiffiffiffiffi
M

p ð5Þ

sj is the standard derivation of the decrease in classification
on undistorted data. Then, zj is transformed into a significance
value based on the assumption of Gaussian distribution.

Table 7 Variable importance of extracted features from DR curves

DR Mean decrease in
accuracy

DR and weld
parameters

Mean
decrease
in accuracy

Rα 23.26 Rα 14.58

Rβ 16.17 Rβ 11.81

Rγ 50.18 Rγ 29.58

v1 29.43 v1 18.16

v2 53.47 v2 34.00

v3 50.03 v3 33.48

R 20.57 R 14.79

σ 21.41 σ 18.21

∇max 58.42 ∇max 42.35

~ ~ WC 77.26

~ ~ WT 15.65

~ ~ EF 9.23
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We here conducted variable importance evaluation on
two optimum RF systems in the previous section. Mean
decrease in accuracy stands for significance of the var-
iables after permutation of the values. In Table 7, it is
clearly spotted that four features Rγ, v2, v3, and ∇max

extracted from DR have the most significant impact on
decision-making for the DR-based RF classifier. Other
five parameters are less important based on the mean
decrease in accuracy value. Recall from the inter-item
correlation analysis, v3 and ∇max have a strong inter-

correlation. Hence, both of them are found to play cru-
cial roles in classifying weld quality. It is intriguing that
independent slopes v2 and v3 are influential for RF clas-
sifier accuracy. When sufficiently large current flows
through the workpieces, asperity collapse occurs which
increases the contact area. Large gradient of v2 infers
that the heat input results in substantial film breakdown
and enlarged contact region and local melting at the
faying surface. Moreover, a descending trend (signifi-
cant v3 and ∇max and small Rγ) in DR during nugget

Fig. 10 Partial dependence plots of significant features. a Rγ. b v2. c v3. d ∇max
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growth indicates an inverse relationship with the final
nugget diameter. Expulsion accounts for the precipitous
decline in DR and contributes to a much smaller Rγ

compared to those of good welds. Factors like Rα, Rβ,
and v1 are more closely related to the initial surface
condition and contact status of the faying surface than
the nugget growth in stages II and III are.

In Luo’s work, it is straightforward to adopt the rel-
ative averaging value of DR to distinguish weld quality
[5]. Unlike the existing approach in differentiating the
weld quality, good welds and poor welds have little
difference in the average values R and standard deriva-
tion σ in DR curves. It might result from different ap-
proaches to calculate the DR values. Similarly, Wan
adopted principal component analysis (PCA) on discrete
points on the DR curves [11]. Five principal compo-
nents were selected over PCA, accounted for over
99.6% proportion, and the first component (PC1)
attained accountability proportion of 78.3%. However,
we fail to interpret the actual physical meaning of the
principal components extracted from the curve. When
inadequate sized welds occur in the production line,
indication from the derived principal components is lim-
ited. On the other hand, Rγ, v2, v3, and ∇max, the most

significant variables of RF, allow user to examine the
actual history of nugget development and take actions to
avoid succeeding undersized welds. Moreover, to adopt
PCA with varied welding time, users need to ensure the
same dimensionality for the original data. The generated
result may hardly differentiate the significance of
welding time, which needs to be corrected by inputting
actual weld time into the model.

For DR and weld parameter-based RF classifier, the
choice of WC becomes the most important value in
determining the classification accuracy, over four fea-
tures Rγ, v2, v3, and ∇max. WT and EF are considered
as less important features for the classification, owing to
the relatively narrow range compared to weld current
and minor contribution based on the Joule’s equation.

We further investigated the partial dependence of sig-
nificant features on the classification probability. We
used R language “partial plot” function to calculate the
partial dependence [16].

~f xð Þ ¼ 1

n
∑
n

i¼1
f x; xicð Þ ð6Þ

f xð Þ ¼ logpk xð Þ− 1

K
∑
K

j¼1
logp j xð Þ ð7Þ

where x is the variable of interest and xic is the rest of
variables in the data, K is the number of classes, k is
the class to be investigated, and pj presents the fraction
of the vote for j. A positive value in ~f ðx ) increases the
probability of the corresponding class, and vice versa.
Here, we present partial dependence of previously
discussed features on three weld classes in Fig. 10.
For Rγ, v3, and ∇max, they attain nearly identical plots
though corresponding x values are different. To single
out splash from other weld types, the feature values
need to be smaller than a threshold value, which are
5.5e-05 Ω, 1.8e-04 Ω/s, and 0.75e-05 Ω/s, respectively.
Moreover, classification of IF and PF mode is accom-
plished by the intersection point in each sub-plot. When
greater variable effect of PF mode is located between
5.5 e-05 and 7.2 e-05 Ω, Rγ is more likely to predict
the weld quality as PF mode. On the other hand, v2
displays opposite trend in distinguishing IF and PF
mode, while impact of the variable on expulsion keeps
negative. It suggests that v2 has negligible connection
with the phenomenon of expulsion and fails to solely
predict expulsion since it accounts for nugget growth
velocity in stage II.

4.2 Shunting effect in DR curves

In this work, there are two ways to produce RSW
joints: making consecutive welds on the same sheet

Fig. 11 Shunting effect in DR curves (weld spacing equals 20 mm)

Table 8 Confusion matrix for DR curves without shunted welds in
random forest classification (ntree = 1000, mtry = 4)

Cold
welds

Expulsion Good
welds

Classification
error (%)

Cold welds 83 0 7 7.7

Expulsion 0 21 1 4.5

Good welds 8 1 106 7.8

Classification
Rate

92.6%
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and making new welds on every new sheet. The former
joints resemble the production sequence in the plant
environment. The latter joints, on the other hand, are
prepared into the tensile shear specimen and provide
an indication of weld quality at that welding schedule.
However, consecutive welds on the same sheet give a
rise on shunting effect. Though identical welding pa-
rameters were applied to the group of welds, the differ-
entiation in contact status between the faying surface
and workpiece/electrode surface and shunting current
may result in different DR curves. Shunting current ef-
fect is considered as the predominant influence for the
qualities of consecutive welds and resulted quality con-
trol system, where the resulted DR of continuous welds
(shunted weld) may be smaller than the first weld on
the workpiece (shunt weld), according to the equation:

RDR ¼ Rw � Rs

Rw þ Rs
ð7Þ

where RDR is the resulted DR derived by measured
voltage and current, Rw is the effective resistance of
the weld path, and Rs is the effective resistance of the
shunting path, which is proportional to the weld spac-
ing. Though, in this study, the weld spacing is equal to
the minimum distance for mild steel (20 mm) [13]. DR
curves of the shunt and shunted welds are compared in
Fig. 11. It is clearly seen that the difference in DR
value is significant at stage I between shunt and shunted
welds and the gaps become narrower in stages II and
III. In addition, based on eq. (7), it is inevitable that the
values of R for shunted welds are smaller than those of
shunt welds.

To investigate the influence of shunting, another DR-
based RF classifier was constructed (ntree = 1000,
mtry = 4), with all shunted weld excluded from the
original data source. In total, 228 samples were used.
The resulted confusion matrix schemed in Table 8,

however, does not show any significant improvement
in classification accuracy (about 92.6%). From partial
dependence shown in Fig. 12, the variations in Rα and
v1 and R do not substantially affect the probability of
classification among the varying range. Hence, the im-
provement in accuracy is negligible after excluding all
shunted welds. In this case, the consecutive welds with
weld spacing beyond minimum values (20 mm for mild
steel) do not significantly affect the classification accu-
racy. Wen’s work revealed the inverse relationship of
nugget diameter and endpoint value of DR curves of
stainless steel and the DR curves of weak and severe
shunting [18]. Shunting proportionally decreases end-
point value of DR values with weld spacing, making
it inconsistent with previous relationship found with
nugget diameter. Thus, this finding gives an implication
that RF classifier may have difficulties in distinguishing
undersized welds due to severe shunting in consecutive
welds if no more information is provided.

Columns stand for predicted class and rows stand for orig-
inal judgments

5 Conclusion

RF classifier was adopted on dynamic resistance in
RSW. Three levels of weld quality were considered as
classes in this study, with regards of cold weld, good
weld, and expulsion. The values of ntree and mtry sub-
stantially affect the performance of the classifier, which
is revealed via OOB error and AUC. The preliminary
results showed that RF can give a satisfying classifica-
tion (~ 93.6%) based on the DR profile quantities. The
introduction of weld parameters into classifier substan-
tially improves predicted classification accuracy
(98.8%). Using variable importance evaluation by RF,
four DR profile features and weld current are considered

Fig. 12 Partial dependence plots of significant features. a Rα. b v1. c R.
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as the most important variables for the classifiers, which
is not available from other black-box models. However,
v2 provides little information in classifying expulsion as
rest of features. Issues were also identified for the RF
classifier. The misclassification in good welds into cold
weld was predominant, which still requires human op-
erator interpretation. Shunted welds with sufficient weld
spacing do not significantly undermine the accuracy for
RF classifier. Further works on severe shunting are ex-
pected to be performed. By incorporating RF classifier,
the online quality monitoring system is proposed to
evaluate every weld made on the production line.
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