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ABSTRACT
A simplified micromechanical model is proposed to estimate the macroscopic mechanical properties of
continuous bidirectional-fiber-reinforced composites (CBFRCs) by ignoring Poisson’s effect. The model is
validated by results from a homogenized finite element approach. Based on the proposed analytical model,
the influences of the ratios of fiber/matrixmodulus and the fiber volume ratio on the effectivemodulus and
the tensile strength are specifically investigated. The suggested theoretical method provides a convenient
tool for estimating the effective mechanical behaviors of CBFRCs, which can be expressed as a function of
fiber volume fraction and material parameters.

1. Introduction

As a type of important composites, fiber-reinforced composite
(FRC) materials have been widely received as a broad range of
applications from household devices to aeronautics industries
because of their outstanding physical, mechanical, and thermal
properties, in particular their high stiffness and strength-to-
weight ratio [1–6]. Usually, when fibers are embedded into a
matrix to form a composite, the physical and mechanical prop-
erties of the FRC depend on the properties of the composite’s
constituents and the corresponding geometry and concen-
tration. Unlike unidirectional fiber-reinforced composites
(UFRCs), bidirectional-fiber-reinforced composites (BFRCs)
can have specified in-plane mechanical properties along two
distinct in-plane directions.

During the past decades much work has been done to study
effects of unidirectional fibers on effective properties of com-
posites. Based on the finite element (FE) and homogenization
method, a representative volume element (RVE) has been used
to estimate the effective macroscopic mechanical properties of
UFRCs [7, 8]. Alternatively, a set of analytical formulae obtained
from some straightforward methods has been utilized to esti-
mate effective mechanical properties of UFRCs. Existing theo-
retical methods for predicting macroscopically effective proper-
ties of composites include the dilute model [9], self-consistent
method [10], a combination of the Mori-Tanaka method and
the iso-strain and iso-stress assumptions [11], a generalized self-
consistent method [12], and Christensen’s approach [13]. An
elementarymechanics ofmaterialsmodel was presented byGib-
son [14] for predicting four independent effective moduli of
orthotropic continuous unidirectional fiber-reinforced lamina.

CONTACT Wu-Gui Jiang jiangwugui@nchu.edu.cn School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang ,
China; Qing H. Qin qinghua.qin@anu.edu.au Research School of Engineering, Australian National University, Canberra, ACT , Australia.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/umcm.

It should be mentioned that study of BFRCs has been less
popular than that of UFRCs. A bidirectional carbon-fiber-
reinforced zirconia matrix composite was fabricated recently by
slurry infiltration and hot pressing techniques and its mechan-
ical properties and microstructure were measured [15]. Dong
and Davies [16] investigated the flexural strength of bidirec-
tional fiber-reinforced epoxy composites using the FE method.
To the authors’ knowledge, however, micromechanics-based
analytical models for predicting effective modulus and tensile
strength of BFRCs have not yet been reported.

The purpose of this study is to develop a micromechanics-
based analytical model for estimating the effective elastic modu-
lus and tensile strengths of continuous BFRCs (CBFRCs) using a
homogenization FE method. Specifically, the influences of Pois-
son’s ratio, the modulus ratio of fiber over matrix, and the fiber
content on the effective mechanical behaviors are investigated.

2. Simplifiedmicromechanics model

2.1. Geometrical description

Figure 1a shows a schematic diagram of a cross-ply compos-
ite reinforced by fibers along two perpendicular directions. On
the basis of the assumption of a homogenization method, this
CBFRC is simplified as a structure with periodically and uni-
formly distributed unit cells, as shown in Figure 1b. An enlarged
unit cell (also called RVE) is shown in Figure 1c. Since Wu
et al. [17] already discussed the interfacial effect on the effec-
tive properties of the CBFRCs via the finite element method,
perfect bonding at the interface is assumed here for the sake of
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Figure . (a) Schematic diagram of cross-ply composite reinforced by fibers along two directions, (b) sketch of fiber-reinforced composites, and (c) homogenized D unit
cell.

simplicity. This assumption has been widely used in estimating
the effective properties via the analytical method [14, 18–20]
and the finite element method [21–23].

2.2. Effectivemodulus

If we assume that the fiber spacing, s, and the fiber diameter, d,
do not change along the fiber length, then the area fraction is
equal to the volume fraction, as shown in Figure 2a. Following
the approach of Hopkins and Chamis [24], the RVE in Figure 2b
can be changed into that shown in Figure 2c.

The equivalent square fiber shown in Figure 2c has the fol-
lowing dimensions:

lf =
√

π

4
d (1)

where d and lf are the diameter of the original circular fiber and
the side length of the refined square fiber, respectively.

The constituent volume fraction in the RVE is assumed to be
the same as those in the actual composite. For CBFRCs, there-
fore, the original RVE shown in Figure 1c can be redrawn as that
shown in Figure 3, and then its region can be divided into sub-
regionsA, B, and C. In subregionA the fiber is parallel to 2˗axis
and in subregion C the fiber is parallel to 1˗axis. In subregion
B there is no fiber in the matrix. Following the assumptions of
fiber and matrix, the RVE of CBFRCs is macroscopically homo-
geneous, linearly elastic, and orthotropic, respectively.Wedefine
directions 1 and 2 as in-plane directions and direction 3 as an
out-of-plane direction, as shown in Figure 3.

Figure 4 shows the finite element contour plots of stress com-
ponents in the case of fibers subject to a tension along 1˗axis,
where the fiber volume fraction is 25%, Ef = 300 GPa, Em =

Figure . (a) Idealized fiber-packing composite, (b) representative area element, and (c) division of representative area element into subregions based on a square fiber
having a fiber volume fraction equivalent to that of a round fiber.
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1294 W.-G. JIANG ET AL.

Figure . Subregion sketch of the unit cell in the proposed analytical model under
simple stress states.

100 GPa, and the tensile strain is 0.34%. It can be seen that the
shear stresses are far less than the normal stress along the tensile
direction in the two fibers when the composites are subject to a
tension. Thus, we ignore the shear stress effect in our simplified
micromechanics model.

When the RVE in Figure 3 is subjected to an in-plane normal
stress, σc1 or σc2, as shown in Figure 3, its response is governed
by the effective in-plane modulus, Ec1 and Ec2.

For subregion A, if the structure is subjected to a transverse
normal stress, σc1, as shown in Figure 3, the effective modulus
is governed by the effective transverse modulus, EA

1 . Geometric
compatibility requires that the total transverse composite dis-
placement, δAc1, must equal the sum of the corresponding trans-
verse displacements in the fiber, δAf1, and the matrix, δAm1:

δAc1 = δAf1 + δAm1, (2)

δAc1 = εc1l, δAf1 = εf1lAf1, δ
A
m1 = εm1lAm1, (3)

where lAf1, l
A
m1, and l are the side length of the fiber, the matrix in

the subregion A, and the RVE along direction 1. ε represents
normal strain. The subscripts c, f, and m refer to composite,
fiber, andmatrix, respectively; the subscript 1 refers to the direc-
tion 1; and the superscript A refers to subregion A. Therefore,
Eq. (2) now becomes:

εc1l = εf1lAf1 + εm1lAm1. (4)

Since the dimensions of the subregionA do not change along
the 2 direction, the length fractions must equal to the volume
fraction and Eq. (4) can be rearranged to get the rule of mixtures
for transverse strains:

εc1 = εf1LAf + εm1LAm, (5)

where LAf , L
A
m represent fiber volume fraction andmatrix volume

fraction in subregion A, respectively.
The one-dimensional (1D) Hooke’s laws for this case are:

σA
c1 = EA

1 εc1, σ
A
f1 = Efεf1, σA

m1 = Emεm1, (6)

where Ef and Em represent the elastic moduli of fiber and
matrix phases, respectively. Herein, the Poisson strains have
been neglected. Combining Eqs. (5) and (6), we get:

σA
c1

EA
1

=
σA
f 1

Ef
LAf + σA

m1

Em
LAm. (7)

If we assume that the stresses in the composite, matrix, and
the fiber are all equal, Eq. (7) reduces to the “inverse rule of mix-
tures” for the transverse modulus:

1
EA
1

= 1
Ef
LAf + 1

Em
LAm, (8)

where LAf and LAm satisfy:

LAf + LAm = 1. (9)

The effective transverse modulus for this subregion is found
to be:

EA
1 = Em

1 − LAf (1 − Em/Ef )
. (10)

When the structure is subjected to σc1 in subregion C, static
equilibrium requires that the total resultant force on the element
equals the sumof the forces acting on the fiber andmatrix. Thus,
we obtain the relation between the stress in composite, fiber, and
matrix as:

σC
c1A

C
1 = σC

f1A
C
f + σC

m1A
C
m , (11)

where A refers to the loading area, and the superscript C refers
to subregion C. As area fractions are equal to the correspond-
ing volume fraction L, Eq. (6) can be rearranged for longitudinal
stress as:

σC
1 = EC

1 εc1; σC
f1 = Efεf1; σC

m1 = Emεm1. (12)

Allmaterials follow a one-dimensional (1D)Hooke’s law (i.e.,
Poisson’s strain is neglected).

Then Eq. (11) becomes:

EC
1 εc1 = Efεf1LCf + Emεm1LCm, (13)

where EC
1 , LCf , and L

C
m represent the effective longitudinal elastic

modulus, fiber volume fraction, and matrix volume fraction in
subregion C, respectively.

Assuming that the strains in the composite, fiber, and matrix
along direction 1 are equal, we obtain the mixture rule for the
longitudinal modulus from Eq. (13):

EC
1 = EfLCf + EmLCm, (14)

where LCf and LCm satisfy:

LCf + LCm = 1. (15)

According to themixture rule, themacro equivalentmodulus
in direction 1 is expressed as:

Ec1 = EA
1

VA

VA+B+C
+ Em

VB

VA+B+C
+ EC

1
VC

VA+B+C
, (16)

whereVA,VB,VC, andVA+B+C are the volumes of subregions A,
B, C, and the whole RVE, respectively.
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MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 1295

Figure . Finite element contour plots of stress components of fibers subject to a tension along ˗axis, where the fiber volume fraction is %, Ef =  GPa, Em =  GPa,
and the tensile strain is .%.

Similarly, we can obtain the macro effective elastic modulus
Ec2 in direction 2 in the same way.

If the RVE is subjected to an out-of-plane normal stress, σc3,
as mentioned previously, we can obtain the effective out-of-
plane elastic modulus along direction 3, i.e.:

Ec3 = Em

⎡
⎣(

1 − √
Lf

) +
√
Lf

1 − √
Lf

(
1 − Em/Ef

)
⎤
⎦ , (17)

where the total fiber volume Lf in the whole RVE is expressed
as:

Lf =
(
lf
l

)2

=
(
lAf

)2 + (
lCf

)2
l2

. (18)

2.3. Effective tensile strengths

As shown in Figure 5, the linear stress-strain relationship for the
composites is simplified by the use of the concept of “effective
modulus.” Similarly, the “effective strength” of the composites
may be defined as ultimate values of volume-averaged stresses
that cause failure of the composites under the same simple states
of stress.

The model first proposed by Hull and Clyne [1] is described
briefly here for the convenience of the subsequent discussion. In
the analysis, we assume that (1) strength is equal for all fibers,
(2) fiber and matrix behavior are all linear elastic until their
stress reaches the tensile strength, and (3) equal strains exist in
composite, fiber, and matrix. Figure 5 shows the case where the
fiber failure strain is greater than the matrix failure strain. Com-
posite failure will occur at the strain level corresponding to the
matrix tensile strain, e(+)

m . Thus, when the matrix stress reaches
thematrix tensile strength, s(+)

m , the fiber stress reaches the value
s(+)

fm = Efe(+)
m , and the composite stress reaches the composite

strength, s(+).

When a certain load is applied in direction 1, subregion A is
subjected to a transverse normal stress. A strain concentration
factor F developed by Kies [25] is introduced for calculating the
corresponding transverse failure strain:

e(+)
T = e(+)

m /F, (20)

where the strain concentration F is valid when Ef/Em ≥ 1.
For subregion A, the strain concentration factor FA can be

expressed as:

FA = 1
lAf
l

(
Em/Ef − 1

)
+ 1

= 1

LAf
(
Em/Ef − 1

)
+ 1

. (21)

Note that F ≥ 1 when Ef/Em ≥ 1, so e(+)
T ≤ e(+)

m . Here, we
only consider the case that the fiber failure strain is greater than

Figure . Representative stress-strain curves for typical fiber,matrix, and composite
materials, where fiber failure strain is greater than matrix failure strain.
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1296 W.-G. JIANG ET AL.

the matrix failure strain. The failure of the RVE structure shown
in Figure 3 can be divided into three stages as follows:

(i) When the loading strain equals to e(+)
T , subregionA fails

first; at that time both subregions B and C do not reach
their maximum carrying capacities. The tensile strength
of the composites, sI(+)

c1 , can be expressed as:

sI(+)
c1 = SA(+)

T1
VA

VA+B+C
+ Eme(+)

T
VB

VA+B+C

+ (
EfLCf + EmLCm

)
e(+)
T

VC

VA+B+C
, (22)

where the corresponding transverse strength sA(+)
T1 of

subregion A under σc1 is:

SA(+)
T1 = EA

1 s(+)
m

EmFA
. (23)

(ii) When the loading strain equals to e(+)
m , subregion B and

the matrix in subregion C fail; at that time subregion A
cannot carry any loads.We assume that theYoung’smod-
ulus E of subregion A is degraded to 1% from its ini-
tial value. The degradation percentage values are selected
based on values similar to those used by Dodds et al.
[26] and by Blackketter et al. [27] via correlating them to
experimental data. The tensile strength of the composites
sII(+)
c1 can be expressed as:

sII(+)
c1 = 0.01sA(+)

T1
VA

VA+B+C
+ s(+)

m
VB

VA+B+C

+ (
EfLCf + EmLCm

)
e(+)
m

VC

VA+B+C
. (24)

(iii) When the loading strain reaches e(+)

f , the fibers in sub-
region C fail finally; at that time the Young’s moduli
of subregions A and B and the matrix in subregion C
are degraded to 1% from their initial values. The tensile
strength of the composites sIII(+)

c1 can be expressed as:

sIII(+)
c1 = 0.01sA(+)

T1
VA

VA+B+C
+ 0.01s(+)

m
VB

VA+B+C

+ (
EfLCf + 0.01EmLCm

)
e(+)

f
VC

VA+B+C
, (25)

where e(+)

f = s(+)

f
Ef
.

The transverse tensile strength of the CBFRCs is deter-
mined by:

s(+)
c1 = Max

(
sI(+)
c1 , sII(+)

c1 , sIII(+)
c1

)
. (26)

Similarly, themacro in-plane tensile strength in direction
2 can be calculated in a similar way to sc1(+).
The out-of-plane tensile strength in direction 3 is:

s(+)
c3 = Ec3s(+)

m

EmF
, (27)

Figure . Influence of Poisson’s ratio on the effective elastic constants and tensile
strengths.

where the strain concentration factorF for thewhole unit
cell in direction 3 is:

F = 1
lf
l

(
Em/Ef − 1

)
+ 1

= 1
√
Lf

(
Em/Ef − 1

)
+ 1

.

(28)

3. Results and discussion

3.1. Effect of Poisson’s ratio

Asmentioned before, we ignored the influence of Poisson’s ratio
on the macro elastic modulus and the tensile strength. Here, FE
simulations are performed to analyze the influence of Poisson’s
ratio on elastic modulus and tensile strength.

The curves of elastic modulus and tensile strength with
respect to the fiber Poisson’s ratio are shown in Figure 6, where
the Young’s moduli of matrix and fiber are assumed to be 100
and 300 GPa, respectively, and the Poisson’s ratio of the matrix
is assumed to be 0.3. In our simulation, the dimensions of the
RVE are set to be 1× 1× 1. Here, the diameter of the fiber is set
to be 0.2 and 0.4, respectively (i.e., the fiber volume fraction is set
to be 6 and 25%, respectively) in estimation of the elastic mod-
uli and the tensile strengths, respectively. The Poisson’s ratio of
the fiber varies in the range of 0.1–0.5. The tensile and compres-
sive strengths of the fiber are assumed to be the same, 2000MPa,
while the tensile and compressive strengths of thematrix are 200
and 2000MPa, respectively.We define the influence rate of Pois-
son’ ratio as the absolute ratio value of the difference between the
maximumFE value and theminimumFE value to themaximum
FE value for the cases of different Poisson’ ratios. From Figure 6
we find that the influence rate of the in-plane tensile strength
ratio (IPTSR) reaches 7.6%, those of the remaining parameters
including the out-of-plane tensile strength ratio (OPTSR), the
in-plane modulus ratio (IPMR), and the out-of-plane modulus
ratio (OPMR) are less than 1.2%, indicating that the Poisson’s
ratio has little impact on the macro elastic modulus and tensile
strengths, so it is ignored in our analysis.

3.2. Comparison of the analytical and FE approaches

Using the proposed approach, we determined the effective elas-
tic moduli and tensile strengths of CBFRCs, where Lf = 25%,
Ef = 300GPa,Em = 100GPa, and vm = vf = 0.3.
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MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 1297

To examine the accuracy of the results from the theoretical
method above, a FE RVE model with homogeneous boundary
conditions is set up to validate our proposed analytical model.
It is noted that boundary conditions can significantly affect the
effective properties of the RVEs during the homogenization sim-
ulations. Two types of boundary conditions are generally used
in the literature. If an RVE with 3D periodic boundary condi-
tions (PBCs) is used, the simulation results represent a macro
structure consisting of periodically repeated cells. While choos-
ing 3D homogeneous boundary conditions (HBCs), the simu-
lation results would consider the RVE as the macro structure
itself with its micro-constituents. HBCs are used in our simula-
tions. The detailed description on the HBCs is referred to our
previous work [28]. The macroscopically effective mechanical
properties can be determined through the estimation of one unit
cell at fine scale. The analytical estimation on the elastic moduli
and strengths is based on the simplified square cross-sectional
fibers, but original circular cross-sectional fibers are still built in
the RVE used in our FE simulations, as shown in Figure 1c. The
side length of the equivalent square fiber is expressed as a func-
tion of the diameter of the original circular fiber, as given in Eq.
(1). For simplicity, the fiber volumes are assumed to be the same
in directions 1 and 2 during the simulations.We assume that the
fibers along the two directions do not overlap each other, so the
fiber volume fraction, Lf , does not exceed 40%.

The fiber and matrix should be linear elastic when the stress
level is below their tensile strength. If the stress level exceeds the
maximum strength formatrix and/or fiber, the Young’smodulus
E is assumed to be degraded to 1% from its initial value at a par-
ticular integration point and the shear modulus G is assumed
to be reduced to 20% of its initial value under the assumption
that some shear stiffness remains due to the friction still present
on the failure plane. As mentioned above, the degradation per-
centage values are selected based on values similar to those used
by Dodds et al. [26] and by Blackketter et al. [27] via corre-
lating them to experimental data. These assumptions can be
easily realized through use of the user subroutine USDFLD in
ABAQUS.

Table 1 shows that all the effective elastic moduli and tensile
strengths predicted from the present theoretical model have a
good agreement with our FEM results. Therefore, all of the dis-
cussion belowwill be based on the theoretical method presented
in Section 2.

3.3. Effect of fiber content

The overall material elastic modulus and tensile strength are
usually improved via increasing the volume fraction of fibers in
thematrix for UFRCs, but for BFRCs it is still unclear how those
values are affected by the fiber content. In this section we con-
sider the influence of fiber volume fraction on the overall elastic

Table . Comparison of the present analytical model and FEM results.

IPMR (Ec/Em) OPMR(Ec/Em) IPTSR (sc/sm) OPTSR (sc/sm)

FEM result . . . .
Analytical result . . . .
Relative error .% .% .% .%

Figure . Influence of fiber content on effective elastic constant and tensile
strength, where the fiber volume fraction Lf = %.

modulus and tensile strength. Because square fibers are simpli-
fied in our proposed model, we assume that the fibers do not
overlap each other for simplicity. It should be mentioned, how-
ever, that the proposed micromechanical model can be used to
determine the effective properties of the composites in the case
that fibers along two directions overlap each other. The fiber vol-
umes are assumed to be the same in directions 1 and 2, so the
fiber volume fraction Lf does not exceed 40%. The fiber volume
fraction LAf varies from 0 to 44.3% in subregionA, and LCf varies
from 0 to 44.3% in subregionC, i.e., the fiber volume fraction Lf
in the RVE varies from 0 to 39.3%.

The influence of the fiber content on elastic constant and
tensile strength is shown in Figure 7, where Ef/Em = 3. For
comparison, the curve of the IPTSRs obtained from the finite
element simulations is also listed in Figure 7. Figure 7 shows
that both the IPMR and the OPMR of the composites increase
sharply as the fiber volume fraction increases, and it also illus-
trates that the OPTSR of the CBFRCs is insensitive to the
fiber volume fraction, whereas the IPTSR increases sharply as
the fiber volume fraction increases, satisfying the mixture rule.
From Figure 7, we note that there exists a change in slope of the
curves of the IPTSRs obtained from both the analytical model
and the finite element simulations at 19.2% fiber volume frac-
tion. This is because the composite in-plane tensile strength is
determined by Eq. (22) when the fiber volume fraction is less
than 19.2%, while it would be given by Eq. (25) when the fiber
volume fraction exceeds 19.2%.

3.4. Effect of ratio of fiber/matrixmodulus

Figure 8a plots the change trends of analytical macroscopic elas-
tic constants of theCBFRCswith respect tomodulus ratioEf/Em
ranging from 1 to 5, where L f = 6%, L f = 25%, respectively.
With the increase of the ratio Ef/Em, the OPMR and IPMR
increase gradually, but the curve of the fiber content L f = 25%
is sharper than the fiber content L f = 6%. With the increase of
the fiber content and modulus ratio E f /Em, the values of IPMR
and OPMR differ as they grow.

The curves of the in-plane and out-of-plane tensile strength
with respect to the modulus ratio Ef/Em ranging from 1 to 5
are plotted in Figure 8b. It can be seen that the IPTSR is almost
independent of Ef/Em, whereas the OPTSR decreases gradually
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Figure . Influence of the modulus ratio of fiber to matrix on: (a) effective elastic
constants and (b) tensile strengths.

with the increase of Ef/Em. The curve of IPTSR is always above
the OPTSR.

4. Conclusions

A simplified RVE micromechanical model is proposed to
estimate the effective macroscopic mechanical properties of
CBFRCs by ignoring the Poisson’s effect, and is then validated by
a homogenized FE model. Using the proposed model, the influ-
ences of Poisson’s ratio, the ratio of fiber/matrixmodulusE f /Em,
and the fiber volume fraction L f on the effective modulus and
tensile strength are investigated in turn.

The results obtained from the proposed model show good
agreement with the numerical results from the FE method. Our
FE results show that the Poisson’s ratio of fiber and matrix has
little impact on the macro elastic modulus in all directions. We
found that the modulus ratio of fiber and matrix can signifi-
cantly influence the in-plane macro elastic modulus and out-
of-plane tensile strength of the composite but have little impact
on the macro out-of-plane elastic modulus and in-plane tensile
strength. With the increase of fiber content, the macro in-plane
and out-of-plane elasticmoduli and the in-plane tensile strength
increase dramatically, whereas the out-of-plane tensile strength
decreases slightly.

The suggested theoretical method provides a convenient tool
for estimating the effective elastic modulus and tensile strength
of CBFRCs, as a function of fiber volume fraction and material
parameters and, therefore, is valuable for the optimal design of
CBFRCs with enhanced performance.
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