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ABSTRACT
A double-layered model is proposed for numerically simulating osteoblast adhesion on surface-
engineered biomaterials. The proposed model consists of molecular and cellular motions based on 
theoretical and experimental evidence and creates predictive simulations from sparse experimental 
data. The comparison of numerical solutions and experimental data reveals that the proposed 
model can explain the nonlinear behaviour of osteoblast adhesion on material surfaces in respect 
to nanophase grain size (0–100 nm). The model further provides insight into the optimisation of 
nanophase grain size on the surface of the biomaterial.

1. Introduction

Consequent to the demographic changes in society with an 
ageing population and the corresponding increase in the 
incidence of the musculoskeletal diseases of ageing such as 
arthritis and osteoporosis, there is a pressing clinical need 
to develop new biomaterials for orthopaedic implants. In 
an ideal situation, these materials would be biocompat-
ible, mechanically robust and actively direct osteogenic 
progenitor cells, such as osteoblasts (bone forming cells).

The interaction between a material substrate and the 
biological system is complex (Li et al. 2014). The inter-
play between the substrate and the extracellular matrix 
(ECM) determines the cell response. In vitro and in vivo 
experimentation about materials and osteoblast cellular 
responses to the substrate are expensive and time-con-
suming. Thus far because of the inherent complexity 
of the biological milieu, there is no alternative to these 
experiments and strategies in attempting to predict the 
response to a biomaterial at the cellular level. Therefore, 
creating mathematical models of osteoblast responses to 
implantable biomaterials is becoming increasingly pop-
ular as a strategy in biomaterial and drug development. 
As an alternative to experimental approaches, a robust 
mathematical model will facilitate more efficient optimi-
sation of the molecular interface between material surface 
and osteoblasts.

The development of a bone-implant biomaterial 
depends on the interactions of osteoblasts and material 
surfaces. The quality of cell and material interactions 
influences cellular proliferation and differentiation (Arifin  
et al. 2014). In surface engineering of biomaterials, the 
main strategy for enhancing the interactions between the 
cell and the material surface is to modulate the proper-
ties of the material surface, such as surface charge and 
roughness, to a state in which ECM adhesion proteins 
can appropriately function (Ma et al. 2007). Experiments 
highlight the importance of optimising the roughness 
of the material surface in vitro and in vivo. (Deligianni  
et al. 2000) investigated the effect of surface roughness of 
hydroxyapatite (HA) on human bone marrow cells and 
found that cell adhesion, proliferation and detachment 
strength were sensitive to the surface roughness of HA. 
Intriguingly, osteoblast adhesion and proliferation appear 
to vary nonlinearly with the roughness of the material 
surface. Webster et al. (2000) reported that osteoblast 
proliferation was significantly greater on nanophase alu-
mina and titanium. Their experiment (Webster et al. 1999) 
also showed that the ability of osteoblasts to adhere to 
these materials was not proportional to the reduction in 
grain size. Also, Huang et al. (2013) observed that sig-
nificant enhancements of osteoblast adhesion, prolifera-
tion, maturation and mineralisation were exhibited on the 
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constructed a multiscale model by PTH and TGF-β. A 
family of bone remodelling formulations were developed 
by concerning mechanical (Qin & Ye 2004; Qin et al. 2005) 
and electromagnetic loads (Qu et al. 2006). Komarova 
(2005) proposed a group of ordinary differential equations 
for predicting the proliferation of osteoblasts under the 
net effect of autocrine and paracrine signalling.

In this article, we develop a predictive mathematical 
model to investigate cell adhesion of osteoblasts on mate-
rial surfaces of nano-grain size in Section 2 and 3. Using 
this model, we identify the osteoblast adhesion on two 
different material surfaces in Section 4. Furthermore, we 
investigate the functional importance of specific grain 
sizes at the nanophase in Section 5.

2. Governing equations for osteoblast adhesion 
on material surface

We propose a double-layered model for investigating 
osteoblast adhesion on a material surface (Figure 1). 
This model concerns the biological process of osteoblast 
adhesion on the corresponding material surface with two 
relatively independent steps. The first step describes the 
movement of molecules on the material surface due to a 
diffusion-controlled transportation of proteins. This pro-
cess includes the biological recognition (Elbert & Hubbell 
1996). During the transportation, the molecules have ran-
dom motions in a potential field formed by the interac-
tions between the material surface and the cells attached 
to the surface. The motions of molecules form a ‘molecular 
layer’ in the proposed model, which consists of cell signal-
ling, ligand binding and adsorbed proteins on the mate-
rial surface (Anselme 2000). The second step describes a 
‘cellular layer’ including cell adhesion and migration at 
the cellular level. Since osteoblasts are anchorage-depend-
ent cells and the process of cell migration is inextricably 
linked with the process of cell adhesion (Dee et al. 1999), 
we speculate that the process of osteoblast migration is 

nano-grained surface (below 100 nm), but little improve-
ment was found on the ultrafine-grained (100–1000 nm) 
surface compared to the conventional coarse-grained 
surface.

The nonlinearity between material surface roughness 
and osteoblast adhesion might be caused by multiple fac-
tors, such as cell population motility, proliferation and 
synthesis of ECM proteins of anchorage-dependent cells 
(Vandrovcová & Bacakova 2011). Biological recognition 
mediates the interaction between cells and implantable 
materials by binding specific receptors on the cell surface 
to ligands on the material surface. Such ligands could 
be proteins spontaneously absorbed upon the material 
surface when materials contact with body fluid in vivo 
or cell culture medium in vitro (Elbert & Hubbell 1996). 
Uncertainties exist as to not only which aspects of cell 
behaviours are the most important in the interaction 
between materials with a surface roughness but also what 
constitutes the best surface. For instance, osteoblasts can 
adhere and maintain active when attached to some sur-
faces (e.g. the cell culture plate or surface modified alloys), 
but almost inactive when attached to others (e.g. many 
artificial surfaces).

Establishing a mathematical model of the process 
between material surface and osteoblast may allow 
researchers to deduce the coupling effects of surface 
roughness and osteoblast adhesion from physical prin-
ciples. To date, no such model specifically simulates the 
relationship between nano-grained material surface and 
osteoblast adhesion. Related mathematical models include 
studies on cell motion and models of bone remodelling. 
Armstrong et al. (2006) introduced an approach for mod-
elling cell aggregation via cell-to-cell adhesion. Painter 
and Hillen (2002) simulated cell motion by the diffusion 
equation with chemotactic sensitivity in response to extra-
cellular chemical gradients. Pivonka et al. (2010) built a 
framework for bone remodelling with RANK/RANKL/
OPG signalling pathway and Scheiner et al. (2013) further 

Figure 1.  sketch of the double-layered model for studying osteoblast adhesion. the graph represents two osteoblast cells (oBs) on 
an undefined material surface. it is noted that osteoblast cells are in monolayer in vitro after settlement. small circles (pink) represent 
molecules involved in cell signalling and ligand binding.
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highly dependent on the process of osteoblast adhesion 
at the ‘cellular layer’. We also assume that the osteoblast 
adhesion is related to the ‘molecular layer’ because the 
extracellular matrix (ECM) and specific transmembrane 
receptor (e.g. integrins) contribute critically to the cell 
adhesion (Anselme et al. 2010).

We introduce a local coordinate to describe behaviours 
of the model on a material surface. In the horizontal direc-
tion (x-axis) of the molecular layer, the model describes 
the molecular motion by its probability distribution. 
Similarly, the model describes the process of cell migration 
by a cellular probability distribution. Then we separate the 
cell adhesion into two variables in the vertical direction 
(y-axis). One variable represents the interaction between 
the material surface and the molecular layer. Another 
variable represents the interaction between the molecu-
lar layer and the cellular layer. Finally, the model links 
the variables in the vertical direction with the probability 
distribution of cells and molecules in the horizontal direc-
tion. The double-layered model consequently studies the 
osteoblast adhesion on a material surface by identifying 
the probability distribution of molecules and cells. Based 
on the assumptions above, we apply continuum mathe-
matical descriptions to finding the probability distribu-
tion of molecules and cells. The descriptions assume the 
motions of molecules and cells in stochastic processes, 
which lead to the Fokker–Planck equations of stochastic 
processes for the probability density of molecules pm and 
cells pc.

 

where α and � refer to the environmental sensitivities of 
molecules and cells, which determine their motions under 
external perturbations. β and κ refer to the corresponding 
diffusion coefficients indicating the random walk. We then 
consider the influence of the cell adhesion and adsorbed 
proteins on the horizontal motions of molecules and cells,

 

where path modulator ω expresses modification from the 
vertical components (ω1 in the molecular layer and ω2 in 
the cellular layer). The vertical components work on the 
horizontal motions through friction and prevent the dis-
persion of horizontal motions. Consequently, the vertical 
components are considered to modify the environmental 
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sensitivities of molecules and cells in a negative way about 
the diffusion. The microscopic functions of environmental 
sensitivities α and � are unknown at this stage correspond-
ing to the path modulators ω1 and ω2. One character of 
path modulators ω1 and ω2 is that they continuously affect 
the interplay of the material surface, molecular layer and 
cellular layer. If we set a material surface property such 
as roughness by a parameter R, the probability density 
of molecules pm and cells pc are bounded by conditions 
such that

 

Together with Equations (2) and (3), mathematical 
descriptions of Figure 1 are established as followings. 
The material surface property can affect the molecular 
motions at the molecular layer and further affect cellular 
motions at the cellular layer. Osteoblast adhesion works 
as the transmission during this progress, deciding how 
strongly the double-layered system are disturbed.

3. Numerical solution methods for the  
double-layered model

Using the Ornstein–Uhlenbeck process as a reference for 
defining the motion of the molecular layer, we attempt 
to obtain a numerical solution of the model in Section 2. 
The Ornstein–Uhlenbeck process describes the velocity of 
diffusing particles under the influence of friction, in which 
there is a random walk tendency to move towards a cen-
tral location. Here we assume that the molecular motions 
follow a standard process, thereby creating a probability 
distribution of molecules. The probability density of mol-
ecules pm of the Ornstein–Uhlenbeck process satisfies

 

where α is environmental sensitivity and β is the diffusion 
coefficient of the molecular layer. Taking x0 = 0 for sim-
plicity, the initial condition of Equation (4) is

Alternatively, the environmental sensitivity of molecules 
can be expressed as

 

We substitute Equation (6) into Equation (5) and solve 
the stationery solution,
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Substituting Equation (11) into Equation (10) gives
 

Equations (13) are unconditionally stable for 0 ≤ pi(t) ≤ 1. 
For matching the experiment data, the probability den-
sity of cells is converted to the cell density per unit area. 
We estimate the probability density of cells at the discrete 
position i and integrate the probability density by a circu-
lar domain on the assumption that the cellular probability 
density pc is equal at each position with the same radius 
r (Figure 3).

 

where P0 is the initial cell density at i = 0, t = 0. x and 
t denote the spatial and temporal variables respectively. 
The number of points i is determined by the scale of the 
studied cell. The cell density Pk is the integration of cellular 
probability density pc.

4. Numerical solution on nano-grained surface 
based on experimental data

In this section, we used our model to simulate osteoblast 
adhesion on two different material surfaces of nanophase 
grain size by inputting the published experimental results 
(Webster et al. 1999). Webster et al. provided evidence 
that osteoblast adhesion enhanced on nanophase alumina 
(Al2O3) and titania (TiO2) in vitro. The method of eval-
uating cell adhesion was to lift osteoblasts enzymatically 
using trypsin and to count the number of adherent cells in 
five random fields per substrate. The authors observed that 
the number of adherent osteoblasts increased with time, 
and the cell density of adherent osteoblasts varied on the 
surfaces of alumina and titania with different grain sizes. 
From their observation, they concluded that an increase in 
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If the alternative environmental sensitivity of the molec-
ular layer is dependent on the material surface property 
R, we obtain

 

Based on Equations (7) and (8), the surface property 
may hinder molecular motions and alter the molecular 
probability density. For the continuity, the initial cellular 
distribution should inherit the characteristics of the final 
molecular distribution. Thus, we assume the initial prob-
ability density of osteoblasts to be approximately equal to 
the stationary probability density of molecules.

 

where pc(t0) is the initial solution for cellular probability 
density. Considering the evolution of the cell probability 
density pc in Equations (2) and (3), we find that the com-
plexity of osteoblast adhesion leads to inhomogeneous 
cell distribution in the cellular layer. Using the approach 
of Stevens and Othmer (1997), we aim to generalise an 
inhomogeneous distribution for a continuous-time dis-
crete-space random walk along the horizontal direction. 
This method restricts the time evolution to one-step 
time jumps and postulates the discrete quantity pi(t) as 
an approximation to cellular probability density pc at 
the position xi = ih, i ∈ � as well as time t beginning at 
i = 0, t = 0. Thus, pi(t) evolves in a manner such that

 

Here Γ−
i  denotes the transitional probability that cells enter 

from i − 1 to i, and Γ+
i  denotes the transitional probability 

that cells leave from i to i + 1 (Figure 2). The Equation (10) 
is highly dependent on the form of transitional probabil-
ities Γ±

i
 that reflect physical parameters of the cell type 

under investigation. In the context of the movement of 
osteoblasts, the transitional probabilities Γ±

i
 are deter-

mined by the ambient cellular probability density pi±1, 
the cellular environmental sensitivity � and the diffusion 
coefficient κ. The cellular environmental sensitivity � and 
diffusion coefficient κ work in a complex to prevent cells 
moving from the present position. Then, a simple form 
of Γ±

i
 may be constructed as

 

where �∗ represent the complex of the cellular environ-
mental sensitivity � and diffusion coefficient κ which is 
like the alternative environmental sensitivity of molecules 
�∗. The alternative environmental sensitivity of cells �∗ 
inherits the correlation with surface property R from � as

 

(8)�∗ = fm(R)

(9)pc(x, t0) = pm(x)

(10)

dpi(t)∕dt =
[
Γ+
i−1pi−1(t) − Γ−

i pi(t)
]
− [Γ+

i pi(t) − Γ−
i+1pi+1(t)]

(11)Γ±
i
= (1 − pi±1)(1 − �∗pi∓1)∕h

2

(12)�∗ = fc(R)

Figure 2. Change of cellular probability density pi(t) during Δt. it 
indicates the difference between cells that stay at the transitional 
site from i − 1 to i and cells that stay at the transitional site from 
i to i + 1.
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modified functions of molecular and cellular sensitivities 
by curve fitting. For alumina, the functions were cellular 
sensitivity �∗

Al = 0.24 + 0.11 exp(−0.018R) (Figure 5(a)) 
and molecular sensitivity �∗

Al = 2.27 − 0.90 exp(−0.027R)  
(Figure 5(b)). The functions for titania were found for 
cellular sensitivity �∗

Ti = 0.17 + 0.11 exp(−0.027R) and 
molecular sensitivity �∗

Ti = 1.37 − 1.29 exp(−0.02R) . 
For both alumina and titania, the molecular sensitivity 
increased with grain size whereas the cellular sensitivity 
decreased with grain size. We checked the correlation of 
exponential fitting for both materials (Table 1) and found 
that the sensitivity functions for titania had better con-
sistency with the experimental data. The experimental 
data varied around the sensitivity functions of alumina, 
in particular for the cellular layer. These results may imply 
that the cell adhesion on titania might be stable whereas 

osteoblast adhesion could be accompanied by a decrease 
in alumina and titania grain size.

Since the osteoblast size was around 20 μm (Wheeless’ 
Textbook of Orthopaedics 1996), 250 osteoblasts could be 
arrayed along a radius of 0.5 cm. In 1 cm2, the size was 
set at 500 points. The model was initialized with molec-
ular sensitivity �∗ and cellular sensitivity �∗ by fitting the 
experimental data of adherent osteoblasts on alumina 
and titania. As an example, the model fitted the exper-
imental results with �∗ = 2.2 and �∗ = 0.26 on alumina 
of grain size 77 nm (Figure 4(a)), and with �∗ = 0.6 and 
�∗ = 0.22 on titania of grain size 32  nm (Figure 4(b)). 
We then fitted the data for each grain size of alumina and 
titania in the experiment. All �∗ and �∗ were plotted along 
grain sizes to determine the functions of molecular and 
cellular sensitivities. Trendlines were added to find the 

Figure 3. discrete distribution of cellular probability density on the interval [0, r]. this interval is separated into n subintervals of length 
h = r∕n, with endpoints xi = ih, i = 0, 1, …, n. the probability density at a point xi is denoted by pxi (t), and the sketch of an algorithm is 
shown aside for solving Pk.

Figure 4. two examples of experiment data fitting. (a) Fitting experimental data for 77 nm grain size alumina. (b) Fitting experimental 
data for 32 nm grain size titania. the time scale used 400 time-step to match 4 h experiment time.
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predicted results inspired us to think about the existence 
of critical grain size on alumina and titania in the follow-
ing section.

5. Comparison with experimental data and 
prediction

In this section, we compare the numerical results from 
the proposed model with the original experimental results 
(Webster et al. 1999). The numerical results reflect the his-
torical profile of adherent cell density with time and grain 
size (Figure 6). Here we focus on discussing the influence 
of grain size on the adherent cell density. The numerical 
result of adherent cell density on alumina matches the 
Webster’s experimental data (Figure 7(a)). The adherent 
cell density is significantly greater on alumina with grain 
sizes in the range 0–40 nm than on alumina with grain 
sizes in the range 60–100 nm. Moreover, there is an expo-
nential decay on alumina with grain sizes 40–60 nm. The 
numerical result on titania also agrees with the exper-
imental data (Figure 7(b)). The adherent cell density is 
significantly greater on titania with grain sizes in the 
range 0–20 nm and followed by a linear decay from 20 to 
100 nm. Webster et al. observed in their experiments that 
variation existed in the adherent cell density of adherent 
osteoblasts per grain size and concluded that there might 

the cellular motions of osteoblasts on alumina are likely 
to be affected by the external perturbation.

Based on the modified functions (Figure 5), we recal-
culated the model to show the cell adhesion in the profile 
of adherent cell density with both time and grain size. 
We further draw the profile with different colours indi-
cating the various cell density. As can been seen, although 
both the cell density of adherent osteoblasts on alumina  
(Figure 6(a)) and titania (Figure 6(b)) increased with time, 
their paths were predicted to be in different ways. The 
predicted adherent cell density on alumina was observed 
that the adherent cell density keeps at the same number 
in the beginning, but the duration varied from 1 to 2 h in 
the range of grain size from 0 to 100 nm (Figure 6(a)). The 
duration approximately reached the average 1.5 h when 
the grain size was 35 nm. Then the predicted adherent cell 
density increased quickly and reached 3200 cells/cm2 after 
4 h. This process was fast when the grain size of alumina 
under 40 nm. In contrast to the alumina, the predicted 
adherent cell density on titania increased in a lag phase 
but varied on the grain size (Figure 6(b)). When the grain 
size of titania was beyond 40 nm, the predicted adherent 
cell density increased in a linear approximation of time. 
Between 10 and 40 nm, the predicted path showed a simi-
lar trend with that of alumina. Under 10 nm, the predicted 
adherent cell density appeared no longer to increase. The 

Figure 5.  Function determination for molecular and cellular sensitivity in grain size. (a) cellular sensitivity to alumina and titania;  
(b) molecular sensitivity to alumina and titania.

Table 1. Correlation of exponential fitting for sensitivities to alumina and titania in the model.

Exponential fitting Standard error

R-squarey = y0 + a * exp (b * x) y0 a b
alumina, molecular layer  0.0609  0.254  0.0109  0.914
alumina, cellular layer  0.0152  0.0342  0.0127  0.821
titania, molecular layer  0.123  0.0759  0.0063  0.987
titania, cellular layer  0.0124  0.0167  0.0128  0.951
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experimental data implied a range of the critical grain 
size for titania from 32 to 56 nm, whereas the model pre-
dicts a continuous decline of adherent cell density from 30 
to 100 nm. Further experiments, particularly examining 
grain sizes in the range of 40–70 nm, may well clarify this 
issue further.

The model surprisingly indicates that adherent cell 
density on titania drops significantly with the grain size 
smaller than 10 nm. There is limited published experi-
mental data regarding culturing osteoblasts on a substrate 
surface made of titania with grain size under 10 nm. Park 
et al. (2009) demonstrated that the one-dimensional 
surface nano-topography of 15  nm titania nanotubes 
promoted osteoblast formation. They evaluated the 

be a critical grain size of alumina and titania in mediat-
ing osteoblast adhesion. A critical grain size here can be 
defined as a point on the axis of grain size in which the 
slope of adherent cell density and grain size dependence 
significantly changes. On alumina, our model identifies 
two critical grain sizes at 36 and 60 nm, an observation 
which agrees on the with the conclusion of Webster et 
al. that there may be a critical grain size between 49 and 
67 nm. Moreover, our model predicts a critical grain size 
at 36 nm with cell density 3042 cells/cm2. This potential 
interaction between grain size and adherent cell density 
has not previously been identified. In contrast to the find-
ings for alumina, our model predicts a different interac-
tion between the osteoblast and titania. The Webster’s 

Figure 6. numerical solutions for alumina and titania. (a) profile of adherent cell density on alumina with the scale of time and nanophase 
grain sizes and (b) profile of adherent cell density on titania with the scale of time and nanophase grain sizes. the colour bar represents 
the number of cell density (cells/cm2).
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surfaces (Minagar et al. 2013). On the other hand, theo-
retically, smaller grain sizes provide a more available sur-
face area of higher energy to promote protein (specifically 
vitronectin and fibronectin) interactions for osteoblast 
adhesion (Sato et al. 2008).

The optimal spacing may well represent a combination 
of the coupling of focal contacts and topography between 
osteoblasts and material surfaces. The topography is a 
function not only of the material surface itself but also of 
the adherent protein layer intimate with that surface. The 
focal contacts at the protein layer can create an optimal 

adhesion, spreading and growth of osteoblasts on the 
surface of titania nanotubes from 15 to 100 nm diame-
ters. Cells were found to adhere and proliferate best on 
15 nm tubes, and the adhesion decreased with an increase 
in the nanotube diameter. Although the topography of 
nanophase ceramic is different from the nanotube, it has 
been speculated that an optimal spacing between cell and 
substrate exists for osteoblast adhesion on titania. The 
putative optimal spacing may derive from focal con-
tacts or adhesion plaques, which are junction locations 
of about 10–15 nm between adherent cells and material 

Figure 7. Comparison of numerical results and experimental data. (a) Critical points for alumina at grain sizes 36 and 60 nm and (b) the 
critical points for titania at grain size 10 and 5 nm. the enlarged part shows the decline in adherent cell density on titania below the grain 
size 16 nm.
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optimal length scale of surface topography for cell adhesion 
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investigation of the role of the RANK–RANKL–OPG system 
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Int J Solids Struct. 41:2447–2460.
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surface bone remodeling under axial and transverse loads. 
Biomaterials. 26:6798–6810.
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bone remodeling and modeling under electromagnetic 
loads. Biomaterials. 27:4050–4057.

Sato M, Aslani A, Sambito MA, Kalkhoran NM, Slamovich 
EB, Webster TJ. 2008. Nanocrystalline hydroxyapatite/
titania coatings on titanium improves osteoblast adhesion. 
J Biomed Mater Res Part A. 84A:265–272.
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biology with multiscale mechanics, for computer simulations 
of bone remodeling. Comput Methods Appl Mech Eng. 
Feb;254:181–196.
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spacing where the osteoblast adhesion is the highest, 
and adhesion is reduced if the spacing becomes either 
smaller or larger. The spacing is altered by factors such 
as the thickness or the composition of adsorbed proteins, 
both of which are highly dependent on the grain size of 
the material surface. Smaller grain sizes promote protein 
interactions so that they form a thicker layer. This poten-
tial mechanism may explain the trends seen in the model’s 
predicted curve of alumina with optimal grain sizes in the 
range 36–60 nm (Figure 7(a)) and of titania with grain 
sizes in the range 10–100 nm (Figure 7(b)). It is notable 
that these predicted curves of both alumina and titania 
show stable trends with increasing grain sizes beyond 
the above predicted critical values. This finding agrees 
with the previous experimental observation (Huang et al. 
2013) as well as with the considerable clinical experience 
of the effective usage of both these biomaterials where 
grain size is not homogeneous in the end-use product. 
Other factors apart from nanophase grain size may also 
play a role in cell-substrate adhesion. The surface topog-
raphies of alumina and titania differ, with the arrange-
ment of alumina grains being more linear than that on 
the titania surface. As cell-substrate adhesion includes 
integrins that have nanoscale features, cells will respond 
to surfaces with nanoscale characteristics of the pores, 
ridges and fibres of the basement membranes (Yim & 
Leong 2005).

6. Conclusion

We present a model that, built on experimental data, is 
capable of quantitatively analysing osteoblast adhesion. 
The model demonstrates satisfactory concordance with 
the observations from experimental data. This finding 
may support the use of such modelling as a tool for screen-
ing materials about biocompatibility.
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