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practical applications [1–3]. Due to their complexity, topol-
ogy optimization problems with large numbers of design 
variables are still the most challenge task in the structural 
optimization field. Several optimization schemes have been 
reported, including the homogenization-based method [4], 
the SIMP method (solid isotropic material with penaliza-
tion) [5, 6], the ESO (evolutionary structural optimization) 
method [7, 8], and the level set method [9, 10]. Topology 
optimization has been used widely in the design of engi-
neering structures such as MEMS [11], acoustics [12], 
crashworthiness [13], fluidics [14], bone structures [15], 
and heat conduction [16].

In practical engineering, a structure is often under mul-
tiple loads (MLs). To apply topology optimization on such 
structures, Díaz and Bendsøe [17] developed an optimiza-
tion model with a single objective function using a linear 
weighting scheme for MLs. Similarly, Bendsøe et al. [18] 
addressed the design of material properties and material 
distribution in structures under MLC. Luo et al. [19] pre-
sented a hybrid fuzzy-goal multi-objective programming 
scheme for topology optimization that considered both 
static and dynamic loadings. Sui et al. [20] suggested an 
independent continuous mapping method for solving the 
topology optimization problems of a continuum under 
MLs. Balamurugan et al. [21] used a genetic algorithm for 
the topology design of structures under MLs.

Most of the work above focused on a continuum with 
single material only. Topological design with multi-phase 
materials is more complex than traditional 0–1 design of 
structures with only one solid phase. For solving topol-
ogy optimization problems with multi-phase materials, the 
level set method was developed [22–25]. Other methods 
including the SIMP method [26–28], the ESO method [29], 
phase-field method [30], and pseudo-sensitivities scheme 
[31] have also been proposed.

Abstract An optimization model is presented for obtain-
ing optimal layout of multiple bi-modulus materials sys-
tems under multiple load cases (MLC). In the optimiza-
tion model, the objective function is the linearly weighted 
structural compliance under MLC. The bi-modulus materi-
als in a finite element are replaced by isotropic materials 
according to the stress state of that element. The equivalent 
mechanical properties of an element are expressed as the 
power–law function of the volume fractions (design vari-
ables) and moduli of the solid phases. Numerical experi-
ments are presented to verify the validity and efficiency 
of the present algorithm. The effects of factors including 
the bi-modulus behavior of materials, the load directions 
and the weighting schemes of MLC are also investigated 
numerically.

Keywords Topology optimization · Bi-modulus 
materials · Multi-material structures · Multiple load cases · 
SIMP

1 Introduction

During recent decades, topological optimization has gained 
considerable attention in both theoretical research and 
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Few of the works mentioned above have considered 
optimization of the layout of bi-modulus materials. Never-
theless, bi-modulus materials that have different tensile and 
compressive moduli along the same direction are very com-
mon in engineering. For example, materials such as rub-
ber, concrete, cast iron, graphite, foam materials, masonry, 
bone, alloys, and ropes/membranes exhibit bi-modulus 
behavior. Due to the stress dependency of bi-modulus 
materials, deformation analysis of bi-modulus structures is 
more complex than that of structures with isotropic materi-
als [32]. Achtziger [33] considered the bi-modulus effect on 
the final topology of a truss and found that the final struc-
ture under tension was obviously different from that under 
compression. Chang et al. [34] approximated the original 
piecewise linear stress–strain curve of a bi-modulus mate-
rial with a derivable nonlinear curve for the topological 
design of a tension-only or compression-only material. Cai 
[35] solved the tension-only or compression-only design 
using a modified SIMP method, in which the tension-only 
or compression-only material is replaced with an isotropic 
material. Querin et al. [36] used orthotropic materials to 
replace the original bi-modulus material according to the 
local stress state in topology optimization of truss-like 
structures. Cai et al. [37] suggested a sampler scheme for 
finding the optimal topology of a continuum structure with 
one bi-modulus material.

In the present work, topology optimization of multi-
phase bi-modulus materials under MLs is studied. Numeri-
cal examples are presented showing the applicability and 
efficiency of the proposed algorithm.

2  Methodology

2.1  Statement of linear elasticity problem

For a linear elastic structure, the basic equations read

and the corresponding boundary conditions are:

where Γ1 and Γ2 are Dirichlet condition and Neumann con-
dition , respectively, and Γ1 ∪ Γ2 = ∂Ω Ω ⊂ R2 or R3 is 
the design domain. ε and σ are the strain and stress tensors  , 
respectively. f  is the body force vector, u is the displace-
ment field, u0 is the prescribed displacement on Γ1 and T  is 
boundary force on Γ2. D is the elasticity tensor.

(1)

−∇ · σ(u) = f in Ω ,

ε(u) =
1

2
[∇u+ (∇u)T],

σ(u) = D : ε(u),

(2)
u = u0 on Γ1,

σ(u) · n = T on Γ2.

2.2  SIMP approach for optimization of layout 
of multiple materials

Topology optimization based on the density-like method 
of the SIMP approach [5] is adopted. In the density-like 
method, the equivalent modulus of a composite material 
is calculated using the material interpolation scheme of 
the moduli and volume fractions of the components in the 
composite. For manufacturing, the final design should have 
only one component material in one element, and inter-
faces between component materials should be on common 
boundaries between elements.

For a [0, 1] design of only one component material using 
the SIMP method, the interpolation for material modulus in 
an element is defined as:

where E(1) means the equivalent modulus of a composite 
material with one solid material and void. ρ1,j ∈ [0, 1] are 
the volume fraction, a design variable of the jth element 
j = 1, 2, . . . , n and n is the total number of elements in 
design variable, E1 is the elastic modulus of the solid phase, 
and p is the penalization parameter, typically p = 3

when the composite has m types of solid with the moduli 
of E1,E2, . . . ,Em (E1 > E2, . . . ,> Em). Em can be given 
based on the interpolation scheme:

In this equation, ρi,j is the summation of the volume 
fractions of the first i types of solid in the jth composite ele-
ment, and ρm,j = 1.0. This interpolation scheme is used in 
the present study.

2.3  Optimization model

For the stiffness design of a continuum with multiple bi-
modulus materials under MLC, the optimization model 
reads

(3)E1(ρ
p
1,j) = ρ

p
1,j · E1 + (1− ρ

p
1,j) · Evoid = ρ

p
1,j · E1

(4)
E(m) ρ1,j , ρ2,j , . . . ρm−1,j = ρ

p
m−1,j ,E

(m−1) + 1− ρ
p
m−1,j .Em.

(5)

Find {ρi,j
∣

∣i ∈ {1, 2, . . . m}, j ∈ {1, 2, . . . n}}

min c =
NLC
∑

l=1

wl · cl,

s.t.
n
∑

j=1

ρr,j · vj = V0 ·
r
∑

i=1

fi,

NLC
∑

l=1

wl = 1.0,

Kl · Ul = Fl, (l = 1, 2, . . . NLC),

0 < ρmin ≤ ρ1,j ≤ ρ2,j ≤ · · · ≤ ρm,j = 1,

0 < wl, (l = 1, 2, . . .NLC).
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where the design variable ρi,j is the volume frac-
tion of the ith component material in the jth element. 
The objective function, c, is the linear weighted mean 
compliance of structure under the multiple load cases 
(c1, l = 1, 2, . . . ,NLc NLC is the number of loading cases. 
Fl and Ul denote the global nodal force and displacement 
vector in the lth load case , respectively. Kl is the final 
global stiffness matrix of a structure with many bi-modu-
lus materials, and can be calculated using the well-estab-
lished finite element formulation [38, 39], “n” and “m” are, 
respectively, the total number of finite elements and the 
number of solid materials in the design domain. vj is the jth 
element volume, fi is the ith material volume fraction, and 
V0 denotes the volume of the design domain. ρmin is the 
minimum value of relative densities. To avoid singularity of 
the stiffness matrix Kl, here we set ρmin = 0.001.

2.4  Material replacement scheme for bi‑modulus 
material

Figure 1a shows the stress–strain curve of a bi-modulus 
material with tensile modulus of ET = tan α (Green line) 
and compressive modulus of Ec = tan β (Orange line). 
The stress–strain curve is piecewise linear if α �= β. α = β 
means that the material is degenerated into an isotropic 
material. If β = 0, the material is a tensile-only mate-
rial (Fig. 1b). If α = 0, the material is a compressive-only 
material (Fig. 1c). σT and σc are the allowable stresses of 
the material under tension and compression, respectively. 
σT and σC are usually different.

To represent the difference between tension and com-
pression performance, the ratio between ET and EC is 
defined as:

In the deformation analysis of a structure with bi-modu-
lus materials, many structural reanalysis could be required 
due to the nonlinearity of materials. However, the nonlin-
earity here has some particular features. For example, the 
bi-modulus material appears isotropic when it is under pure 
compression or under pure tension. When the material is in 
a complex stress state, e.g., the first principal stress is posi-
tive but the third is negative, the eigen pairs of the elastic-
ity tensor depend on the direction and value of the second 
principal stress. Hence, in a structure with an optimal load-
transmission path (LTP), most of the structure is under a 
simple stress state. At the junction of adjacent parts, how-
ever, the material may be transverse isotropic because of its 
complex stress state. This condition implies that we can use 
an appropriate isotropic material to replace the bi-modulus 
material during structural deformation analysis. The differ-
ence in structural stiffness caused by such replacement can 

(6)RTCE =
ET

EC
.

be modified step by step. The merit of material replacement 
is that the structural deformation analysis becomes a linear 
analysis after replacement. The modification of the local 
stiffness difference can be performed during the topology 
optimization process. Two aspects must, therefore, be given 
in detail for the material replacement scheme. The first is 
selection of the isotropic material that will replace the bi-
modulus material in structural deformation analysis. The 
second is modification of the local stiffness due to material 
replacement.

2.4.1  Selection of isotropic material for local replacement

For a given element in a design domain, σs and 
εs (s = 1, 2, 3) denote the principal stresses and principal 
strains.

1. If 0 ≥ σ1 ≥ σ2 ≥ σ3, the compressive modulus of the 
bi-modulus material should be the same as that of the 
isotropic material;

2. If σ1 ≥ σ 2 ≥ σ3 ≥ 0, the tensile modulus of the bi-
modulus material should be the same as that of the iso-
tropic material;

3. If the element is under a complex stress state, i.e., 
σ1 · σ3 < 0, the elastic modulus depends on the com-
parison between the values of the tension strain energy 
density (SED) and compression SED, which considers 
the influence of the second principal stress.

Mathematically, the modulus of the isotropic material to 
replace the ith bi-modulus material can be obtained from 
the equation:

where the tension SED (SEDT) and compression SED 
(SEDC) are determined by the equations:

where NG is the number of Gaussian integral points in the 
element. From Eq. (8), one can find that a negative princi-
pal stress (i.e., σs <0) contributes zero to the value of SEDT. 
Only positive principal stress can result in positive value of 
SEDT. On the contrary, Eq. (9) indicates that only negative 
principal stress can produce positive value of SEDC. Hence, 

(7)Ei,j =











ET
i, j, if SEDT > SEDC,

EC
i, j, if SEDT < SEDC,

max(ET
i, j,E

C
i, j), others.

(8)SEDT =

NLC
∑

l=1

wl ·

(

NG
∑

G=1

3
∑

s=1

(

1

4NG

(|σs| + σs) · εs

)

G

)

,

(9)SEDC =

t
∑

u=1

wu ·

(

NG
∑

G=1

3
∑

s=1

(

−1

4NG

(|σs| − σs) · εs

)

G

)

.
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the third formulation in Eq. (7) indicates that the stronger 
stress will determine the modulus of the new isotropic 
material which is to be used to replace the original bi-mod-
ulus material. For example, if SEDC > SEDT, the compres-
sive principal (negative) stress is stronger than the tensile 
principal (positive) stress, and EC should be used.

2.4.2  Modification of local stiffness

Accurate deformation of a structure depends on an accu-
rate global stiffness matrix, which is formed using the local 
(element) stiffness matrix. When a difference appears after 
material replacement, the local stiffness matrix of the ele-
ment with the isotropic material is different from that of 
the same element with the original bi-modulus material. 
To eliminate the difference, under the same stress state, the 
same element should have the same strain energy density 
before and after replacement. According to this principle, 
we can calculate the modification factor by comparing the 
SEDs before and after replacement.

Under a complex stress state at the kth iteration, the SED 
of the element with the new isotropic material is

which is the summation of SEDT and SEDC of the jth ele-
ment at the kth iteration. And the effective SED of the ele-
ment with the original bi-modulus materials is

where γi = ρi − ρi−1 is the volume fraction of the ith mate-
rial in the element.

The value of the signi(·) can be calculated using either 
Eq. (11) or Eq. (12).

(a) If the element has compressive moduli at the (k-1)th 
iteration and tensile moduli should be used at the cur-
rent (kth) iteration, the value of the signi(·) is

 

where R(i)
TCE is the moduli ratio of the ith bi-modulus 

material.
(b) If the element has tensile moduli at the (k-1)th iteration 

and compressive moduli should be used at the current 
kth iteration, the value of the signi(·) is 

(10)SEDj,k =

NLC
∑

l=1

(

wl ·

NG
∑

G=1

3
∑

s=1

(
1

2NG

σs · εs)

G

)

,

(11)

SEDeffective
j,k

=

m
∑

i=1

{

γi ·

NLC
∑

l=1

(

wl ·

NG
∑

G=1

3
∑

s=1

(

1

2NG

signi(σs) · σs · εs

)

G

)}

j,k

(12)signi(σs) =

{

1

R
(i)
TCE

if

if

σs ≥ 0,

σs < 0.

By comparing Eqs. (10) and (11), we find that the two 
SEDs are identical when the element is under pure tension 
or pure compression. If the element is under a complex 
stress state, the two SEDs are usually different. The differ-
ence in the local effective stiffness of the jth element at the 
kth iteration is defined as:

Only when the jth element is under pure compression 
or pure tension state at both of (k-1)th and kth iteration, 
M f = 1.0, i.e., there is unnecessary to modify the local 
stiffness.

The stiffness matrix of the jth element with the “new” 
isotropic materials can be given as [40, 41]:

where Bj is the displacement–strain matrix, and Dj is the 
elasticity matrix of the jth element.

The modified stiffness matrix of the element is defined 
as:

For the lth loading case, the mean compliance of the 
structure with bi-modulus materials (in Eq. (5)) can be 
obtained, i.e.,

2.5  Optimization procedure

In the present study, the method of moving asymptotes 
(MMA) [42] is adopted to solve the optimization problem 
defined in Eq. (5). The partial differential equations for 
structural deformation expressed in Eq. (1) with boundaries 
in Eq. (2) are solved by the commercial software ANSYS 
12.0 [43]. In the following numerical examples, the initial 
elastic moduli of the materials in the elements are the same 
as the tensile modulus of the first solid material (Material 
1). All the initial design variables are considered to be equal.

The MMA procedure contains the following steps:

Step 1 Build a finite element model of the structure, initi-
ate parameters in optimization, and let i = 1.

(13)
signi(σs) =

{

1

(R
(i)
TCE)

−1

if

if

σs ≤ 0,

σs > 0.

(14)Mf = max



10−6,
SED

effective
j,k

max(SEDj,k , 10−10)





(15)kj =

∫

vj

BT
j · Dj · Bjdv

(16)k̄j = Mf kj =

∫

vj

BT
j (Mf · Dj)Bjdv.

(17)cl =

n
∑

j=1

uTj (Mf kj)uj =

n
∑

j=1

Mf · u
T
j · kj · uj.
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Step 2 Find the deformation fields of the structure under 
MLC by finite element analysis.

Step 3 Calculate the SED, tension SED, compression 
SED and the local effective SED of each element in the 
design domain.

Step 4 Chose the moduli of the materials in each element 
by comparing tension SED and compression SED; cal-
culate the value of Mf for each element under a com-
plex stress state.

Step 5 Compute the values of the objective and constraint 
functions and their sensitivities.

Step 6 Update the design variables for each element by 
the MMA optimizer.

Step 7 Check the convergence: if the termination crite-
rion is not satisfied, return to Step 2, else go to Step 8.

Step 8 Judge, if i < m − 1, then, i = i + 1, return to Step 2, 
otherwise, go to Step 9.

Step 9 Save and stop.

The termination criterion is either that the iteration num-
ber is greater than 100 or that the change of compliance of 
the structure satisfies the condition:

where η is the algorithm tolerance.

3  Examples and discussion

In this section, numerical examples are considered and 
assessed by the present algorithm. The code is compiled by 
combining software MATLAB and ANSYS. In all exam-
ples, four-node quadrilateral plane stress elements are 
employed in the finite element analysis. In optimization, 
the objective is to minimize the compliance of the struc-
ture. The Poisson’s ratios of materials in all examples are 
set to be 0.2. In the following examples, Material 1 is in 
Red, Material 2 is in Green. Material 3 is void which is in 
White.

3.1  Example 1: validity assessment

The structure shown in Fig. 2a is a cantilever beam with 
dimensions 0.7 m × 0.4 m × 0.02 m, and is meshed with 
120 × 60 elements. The left side of the structure is fixed. 
There are two solids and a void phase in the structure. 
The material tensile moduli of the two solids are 80 and 
40 GPa, respectively. R(1)

TCE = 2 > 1 and R(2)
TCE = 0.5 < 1. 

Volume fractions of the two solids and void phase are 0.12, 
0.12, and 0.76, respectively.

The structure is under two loading cases, i.e., 
P1 = 2000 N in the first case, P2 = 2000 N in the second 

(18)

∣

∣

∣

∣

ck−t − ck

ck

∣

∣

∣

∣

≤ η, t ∈ {1, 2, 3, 4, 5},

case. P1 is applied on the center of the right side of the 
structure. P2 is applied on the center of the design domain 
(Fig. 2a). The weighting scheme is w1 = 0.2 and w2 = 0.8. 
From Fig. 2b, we find that Material 1 (Red) is mainly under 
tension and Material 2 (Green) is under compression. If we 
consider the components in the final structure as LTP, Mate-
rial 1 is mainly on tensile LTPs and Material 2 on compres-
sive LTPs. From the RTCE values of the two materials, we 
know that the two materials have higher stiffness under the 
current loading states with w1 = 0.2 and w2 = 0.8. Briefly, 
the moduli of the two materials are the same, i.e., 80 GPa, 
in the final structural topology, a result that can also be 
obtained using single phase topology optimization with an 
approach such as the SIMP method. With a different weight-
ing scheme, we believe that the amount of material support-
ing the two forces would be different. But the optimal mate-
rials layout must have the property stated above, that the 
majority of the materials in the final structure should have 
higher moduli to decrease structural compliance. It is con-
cluded that the correctness of the algorithm is verified.

Figure 3 demonstrates that the structural compliance 
approaches 0.19782 N m after 101 iterations for the struc-
ture under MLC with the weighting scheme of w1 = 0.2 
and w2 = 0.8. Because no internal iteration occurs within 
each update of the design variables, only 101 structural 
deformation analyses are needed. Hence, the present algo-
rithm has acceptable efficiency during optimization.

3.2  Example 2: effect of RTCE on final materials layouts

The design domain is shown in Fig. 4 with the dimensions 
1.6 m × 0.5 m × 0.01 m. The structure is modeled with 
160 × 50 elements. Two loading cases are considered. In 
the first case, P1 = 2000 N is applied at the point “K1”. In 
the second case, two concentrated forces P2 = 2000 N are 
applied at two points “K2”. The design domain contains 
two solid materials and one void phase, with the volume 
fractions 0.16, 0.16, and 0.68, respectively. The tensile 
moduli of the two solids (Material 1 and Material 2) are 
100 and 50 GPa, respectively. If the two materials are bi-
modulus materials, the values of RTCE of the two solids are 
2 and 0.5, respectively. For comparison, the optimal layouts 
of the two isotropic solids are also given.

Three weighting schemes are considered: 
w1 = 1,w2 = 0 (only P1 is active), w1 = 0,w2 = 1 (only 
P2 is active), 

 .
When the structure is only under the load P1, the final 

layout of the two solid bi-modulus materials (Fig. 5a) is 
different from the traditional design, that is, the isotropic 
materials layout. In Fig. 5a, Material 1 is under pure tension 

w1 = 0.5,w2 = 0.5
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because its tensile modulus is greater than the compressive 
modulus (R(1)

TCE = 2 > 1). Almost all of Material 2 is under 
compression due to its compressive modulus being greater 
than the tensile modulus (R(2)

TCE = 0.5 < 1). In Fig. 5b, the 
interfaces between the two isotropic solids are more com-
plex than in Fig. 5a

When the structure is subjected only to P2, the bi-mod-
ulus materials layout is also different from that of isotropic 
materials. The interface of the two bi-modulus solids 
(Fig. 5c) is also simpler than that between two isotropic 
solids (Fig. 5d). Hence, when the moduli of the two solids 
are clearly different, the complex bi-modulus behavior of 
the materials does not imply that they have complex inter-
face, which would be difficult for manufacturing.

Under the two loading cases, the final materials layouts 
(Fig. 5e, f) are different from those in the structure under a 
single load. Material 1 (bi-modulus) is still mainly under 
tension, and most of Material 2 is still under compression 
(Fig. 5e).

Table 1  Final iterations and 
values of the objective function 
(Obj) (or mean compliance) of 
the structure with different load 
direction schemes

Weighting Scheme 1 (η = 0.01) Scheme 2 (η = 0.01) Scheme 3 (η = 0.001)

Iterations Obj (N m) Iterations Obj (N m) Iterations Obj (N m)

w1 = 0.2, w2 = 0.8 77 0.51137 75 0.52606 186 0.43058

w1 = 0.5, w2 = 0.5 68 0.51368 68 0.51055 168 0.73453

w1 = 0.8, w2 = 0.2 67 0.50587 79 0.50121 121 0.52510

Fig. 1  Stress–strain curves for 
a common bi-modulus material 
and two special cases

Fig. 2  Structural and optimal 
shape under different MLC 
(Material 1: Red, Material 2: 
Green, void: White)
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Fig. 3  Iteration histories of the mean compliance of structure under 
two loading cases with three different weighting schemes (η = 0.01)

Fig. 4  Final materials distribution in the structure for different cases 
(Material 1: Red, Material 2: Green, void: White)
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3.3  Example 3: effect of load directions

The dimensions of the structure used in this example are 
1.6 m × 0.4 m × 0.01 m. The structure is simply supported 
and the finite element mesh is 160 × 40. There are two sol-
ids (Material 1 and Material 2) and one void phase in the 
structure. The two solids have the tensile moduli of 100 

and 50 GPa, respectively. They are bi-modulus materials, 
and the values of the RTCE of the two solids are 2 and 0.5, 
respectively. The volume fractions of the three phases are 
0.2, 0.2, and 0.6, respectively.

The structure is under two loading cases with two ver-
tical concentrated forces, P1 and P2, applied separately on 
the centers of the upper and lower sides of structure. Both 

Fig. 5  Final materials distribu-
tion in the structure for different 
cases (Material 1: Red, Material 
2: Green, void: White)

Fig. 6  The final materials layouts in the structure under different schemes (Material 1: Red, Material 2: Green, void: White)
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forces have a magnitude of 2000 N. In different schemes, 
the directions of the two forces may be different. Three 
schemes are considered (see the uppermost layer of Fig. 6).

The results for scheme 1 (the left column) demonstrate 
that Material 1 (Red) is mainly under tension for two load-
ing cases, and Material 2 is under compression when the 
directions of the two forces are vertical upward. The reason 
is that the tensile modulus of Material 1 is greater than the 
compressive modulus (R(1)

TCE = 2 > 1), whereas Material 2 
has higher compressive stiffness (R(2)

TCE = 0.5 < 1).
This situation changes when the directions of the two 

forces are vertical downward (scheme 2). In the central col-
umn (scheme 2), Material 1 layouts are near the lower side 
of the beam rather than near the upper side as in scheme 1.

If the directions of the two forces are different, as in 
scheme 3, the layouts of the two bi-modulus materials are 
clearly different from those in schemes 1 and 2. Moreover, 
the locations of Material 1 in the final structure depend 
on the weighting coefficients of the two load cases. For 
example, Material 1 layouts are near the upper side when 
w1 = 0.2, w2 = 0.8 (P2 has higher influence on struc-
tural compliance than P1), in the central area of the struc-
ture when w1 = 0.5, w2 = 0.5, or near the bottom when 
w1 = 0.8, w2 = 0.2.

This phenomenon does not occur in either scheme 1 
or scheme 2. The weighting coefficients of the two 
loading cases have only a slight influence on the posi-
tions of the material interfaces in scheme 1. Only when 
w1 = 0.8, w2 = 0.2 is the topology of the structure different 
from the other topologies in scheme 2.

In Fig. 7 and Table 1, we find that the number of itera-
tions does not exceed 200 in the 9 different cases. With the 
same weighting coefficients, namely w1 = 0.2, w2 = 0.8, 
the optimal value of structural compliance is different 
for different load directions. Simultaneously, the layout 

differences among the three schemes are attributable to the 
bi-modulus behavior of the two materials under loads with 
different directions [44].

4  Conclusions

Using the algorithm presented in this study to achieve 
optimal layout of multiple bi-modulus materials in a con-
tinuum under MLC, three numerical tests are considered. 
From the numerical results, some remarkable conclusions 
are drawn.

1.  The computational cost of the present algorithm 
is very close to that of simple single material 
layout optimization by the SIMP method

2.  In a stiffness design, materials with higher 
modulus should be laid out on the main LTPs. 
When the differences among the moduli of bi-
modulus materials are not great, on the tensile 
LTPs, materials with RTCE > 1 are usually laid 
out. Materials with RTCE < 1 are usually laid out 
on the compressive LTPs.

3.  The final layouts of bi-modulus materials are 
sensitive to the values of RTCE and the load con-
ditions. Under the same loading conditions, the 
interfaces between bi-modulus materials may be 
clearer than those between isotropic materials

 4.  The optimal layout of bi-modulus materials 
depends on the force directions (forward and 
reverse).

Hence, the present algorithm is applicable and effective 
for analyzing the performance of structures with many bi-
modulus materials and under MLC.
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Fig. 7  Iteration histories of the mean compliance of the structure under MLC with different load directions/schemes
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