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A new acoustic metamaterial plate is presented for the purpose of suppressing flexural wave propagation.
The metamaterial unit cell is made of a plate with a lateral local resonance (LLR) substructure which con-
sists of a four-link mechanism, two lateral resonators and a vertical spring. The substructure presents
negative Young’s modulus property in certain frequency range. We show theoretically and numerically
that two large low-frequency band gaps are obtained with different formation mechanisms. The first
band gap is due to the elastic connection with the foundation while the second is induced by the lateral
resonances. Besides, four-link mechanisms can transform the flexural wave into the longitudinal vibra-
tion which stimulates the lateral resonators to vibrate and to generate inertial forces for absorbing the
energy and thus preventing the wave propagation. Frequency response function shows that damping
from the vertical spring has little influence on the band gaps, although the damping can smooth the vari-
ation of frequency response (see the dotted line in Figs. 10 and 11). Increasing the damping of the lateral
resonators may broaden the second band gap but deactivate its effect. This study provides guidance for
flexibly tailoring the band characteristics of the metamaterial plate in noise and vibration controls.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Continuum structures like beams, plates and shells are the most
widely preferred elements in engineering applications such as the
construction of the buildings, experimental tables and some large
ships and submarines. Controlling the propagation of flexural
waves in continuum structures is one of the most important issues
in the safety and stability of such engineering structures [1]. An
example is a submarine in service, which may radiate energy to
the surroundings, thereby exposing its position and jeopardising
safety. Since flexural wave is the main wave type for radiation, sup-
pressing flexural waves is a vital safety issue. Moreover, in many
experiments, vibration of the experimental table can influence
the accuracy of results. In this situation, propagation of the flexural
wave should be stopped. With the unique wave-blocking proper-
ties of metamaterial, studies have been devoting themselves to
apply these novel properties for the control of wave propagation.
Early studies [2] of wave propagation in metamaterial were mainly
focused on dispersion analyses of longitudinal wave and band gaps
of simple lattices. Huang et al. proposed different types of metama-
terial lattices for blocking longitudinal wave propagation [3–6].
Zhang et al. disentangled longitudinal and shear elastic waves by
neo-Hookean soft devices [7]. These studies are focusing on in-
plane waves and still remote from engineering applications but
provide guidance for metamaterial design.

In recent years, extensive investigations have been conducted
on preventing flexural wave propagation within continuum struc-
tures in different structural configurations. It has been theoreti-
cally and numerically predicted that attaching absorbers to a
beam or plate to construct a metamaterial could constrain flexural
wave propagation [8–14], which is classified as ‘Site-City Effect’ in
geophysics [15,16], and inserting absorbers into a sandwiched
beam or plate [17–21] may also prevent such propagation. Further,
beams and plates with perforated holes filled with a membrane
and a mass in the centre exhibit novel properties for controlling
flexural wave, but at the expense of decreasing strength [22–25],
as with this method, the stiffness of the metamaterial has been
dramatically decreased. The resonators mentioned above are all
directly attached to continuum structures and vibrate in the per-
pendicular direction to the continuum structure. Only few
researchers have investigated mechanisms for transforming the
flexural wave into another direction and blocking the wave propa-
gation in the new direction, e.g. Chesnais et al. [26,27] for reticu-
lated structures.

The LLR substructure proposed by Huang and Sun [5,28] is com-
posed of a four-link mechanism, two lateral resonators and a ver-
tical spring. It exhibits an unusual frequency-dependent effective
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Young’s modulus and transforms the vibration to another direc-
tion. Huang and Sun [20] showed that the periodic arrangement
of the LLR substructure could attenuate the longitudinal wave
propagation through the wave transformation mechanism.
Recently, their group extended the lumped structure to a contin-
uum structure based on beam elements [29]. However, investiga-
tion is still limited to longitudinal wave attenuation. Yet, as
mentioned, the flexural wave is the main energy storage type. Con-
trolling the flexural wave using the LLR substructure has great
potential for engineering applications. To our knowledge, combina-
tion of the classical continuum structure with the lumped LLR sub-
structure to form an acoustic metamaterial has not been discussed.

In this paper, we propose an acoustic metamaterial plate with
LLR substructures for flexural wave suppression. To investigate
the mechanism of the transformation of the waves, the dynamic
characteristics of an LLR substructure are analysed in Section 2.
The combination of the LLR and continuum plate is theoretically
modelled in Section 3, including the analysis of dispersion surfaces
and effective mass density. Finite element analysis is conducted in
Section 4 to investigate the flexural wave propagation and damp-
ing effects. The outcome is expected to provide helpful guidance
for generating multiple low frequency band gaps in flexural wave
suppression and noise absorption.

2. Configuration of the negative Young’s modulus substructure

The LLR substructure analysed here is different from that
detailed by Huang and Sun [5]. As shown in Fig. 1, the LLR sub-
structure consists of four-link mechanism, two lateral resonators
and a vertical spring. The four-link mechanism is joined to the
ground and a harmonic force F ¼ ~Fe�jxt is applied to the other
end, which plays the role of transforming the vertical vibration into
horizontal vibration. The lateral resonators with spring and mass
constants of k2 and m2 vibrate only in the horizontal direction.
The vertical spring k1 moves vertically. The governing equation
for this lumped system is

F ¼ k1wþ L
D
k2ðu� vÞ ð1Þ

m2
@2u
@t2

¼ k2ðv � uÞ ð2Þ

where w, u and v represent the displacement of the vertical point of
the truss, the lateral mass and the horizontal point of the truss,
respectively. L and D are the vertical and horizontal length of the
four-link mechanism. Assuming the vibration is small, relationship
of displacements v and w can be written as

v ¼ � L
2D

w ð3Þ
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2k2k
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Fig. 1. Configuration of the negative Young’s modulus inclusions and its effective
continuum model.
In our analysis, the displacement fields are assumed in the har-
monic form
w ¼ ~we�ixt;u ¼ ~ue�ixt ð4Þ
Substitution of Eqs. (3) and (4) into Eqs. (1) and (2) yields the force-
displacement relation as
~F ¼ k1 þ 1
2

L
D

� �2 k2x2

x2 �x2
0

 !
~w ð5Þ
where x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
. Using a continuum elastic solid to represent

the lumped system with the cross section area A, the stress-strain
relation is defined as
r ¼ Eeff e ð6Þ
with r ¼ F=A and e ¼ w=L respectively. Eeff is the effective Young’s
modulus of the continuum system. Denoting that E0 ¼ k1L=A, the
normalized effective Young’s modulus is calculated by
Eeff

E0
¼ 1þ k2

2k1
x2

x2 �x2
0

L
D

� �2

ð7Þ
in which k1 ¼ 1� 104 N=m, m2 ¼ 0:003 kg, k2 ¼ 0:5� 104 N=m,
L ¼ 0:02 m, and D ¼ 0:01 m.

Fig. 2 shows the effective Young’s modulus of LLR substructure
as a function of frequency. It is obvious that from 145 Hz to 205 Hz,
the effective Young’s modulus is negative whereas in other ranges
it remains positive. At the frequency of 205 Hz, the effective
Young’s modulus is unbounded because of the resonance of the lat-
eral local resonators. Around the resonance frequency, waves can
be effectively attenuated, according to the results of Huang and
Sun [5].

With the above analysis of the LLR substructure, we can see that
the vibration direction of the stimulus F and that of the LLR sub-
structure u are different. The four-link mechanism can transform
the vertical vibration into longitudinal vibration, thus controlling
the wave in a unique way. This transformation can be used to
design different absorbers and isolators for wave suppression. Con-
sidering that flexural waves in beams and plates are the main
energy type, the LLR substructure is suitable for the design of
acoustic metamaterials for wave attenuation.
Fig. 2. The effective Young’s modulus versus frequency.



Fig. 3. The unit cell of the metamaterial plate: (a) front view, (b) perspective view.
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3. Wave suppression within a continuous metamaterial plate

3.1. Theoretical derivation

Fig. 3 shows a unit cell of a metamaterial plate which consists of
a rectangular homogeneous plate and a LLR substructure with one
end connected to the plate, the other end to the ground. Such con-
figuration of the metamaterial seems like a homogeneous plate
resting on an elastic foundation [30]. The plate’s edge lengths along
the x and y directions are ax and ay, respectively. k1 represents the
vertical spring stiffness, and k2 and m2 are the lateral spring and
mass constants. For the four-link mechanism, the vertical distance
and horizontal distance are L and D, respectively. The unit cell of
the metamaterial plate is a 2-DOF system with the plate vibrating
vertically and the local resonators oscillating horizontally.

With the assumption of small displacement, we have

vðtÞ ¼ � L
2D

w0ðtÞ ð8Þ

where v(t) is the lateral displacement of the four-link mechanism.
w0ðtÞ is the central flexural displacement of the plate. The governing
equation for flexural wave propagation through the upper thin plate
[31,32] is

qh
@2wðx; y; tÞ

@t2
¼ �~Dr2r2wðx; y; tÞ þ qðx; y; tÞ ð9Þ

wherer2 ¼ ð@2=@x2 þ @2=@y2Þ, ~D ¼ Eh3
=12ð1� m2Þdenote theplate’s

flexural rigidity,withE, m representing theYoung’smodulusandPois-
son’s ratio of the plate, respectively.q and h are the plate’s mass den-
sity and thickness, respectively. qðx; y; tÞ is the force applied to the
unit cell. For the system, the force equilibrium equations are

qð0;0; tÞ ¼ �nk1w0ðtÞ � 2k2n
L
2D

ðuðtÞ � vðtÞÞ ð10Þ

m2
@2uðtÞ
@t2

¼ k2ðvðtÞ � uðtÞÞ ð11Þ

where n ¼ 1=axay, and uðtÞ is the horizontal displacement of the lat-
eral mass m2. From Eqs. (9)–(11), it can be seen that wðx; y; tÞ is a
global variable, while vðtÞ, w0ðtÞ and uðtÞ are all local variables.
And vðtÞ can be represented by w0ðtÞ, as Eq. (8).

By analogy of Eqs. (1), (2) and Eqs. (10), (11), we have

qð0;0; tÞ ¼ �nEeffw0ðtÞ ¼ �Kw0ðtÞ ð12Þ
with K ¼ Eeff =axay, the bulk modulus of the metamaterial plate trea-
ted as a homogeneous layer, and the performance is the same as
that described in Section 2. And Eq. (9) can be written as

qh
@2wðx; y; tÞ

@t2
¼ �~Dr2r2wðx; y; tÞ � Kw0ðtÞ ð13Þ

Based on the plane wave propagation and the periodicity of the
unit cell within the infinite metamaterial plate, the displacement
of the plate wðx; y; tÞ can be expressed in the form
wðx; y; tÞ ¼ Weiðj1xþj2y�xtÞ ¼ w0ðtÞeiðj1xþj2yÞ ð14Þ
where j1 and j2 are the wavenumbers along the x and y directions
with j1 ¼ 2p=k1, j2 ¼ 2p=k2. k1 and k2 are the corresponding wave-
lengths. x is the wave frequency. Setting

j ¼ ðj1;j2Þ;j2 ¼ jjj2 ¼ jj2
1 þ j2

2j ð15Þ
Substitution of Eqs. (14), (15) into (13) yields

ð~Dj4 þ K � qhx2Þw0 ¼ 0 ð16Þ
And the dispersion relation can be obtained by setting the coeffi-
cient of Eq. (16) to 0.

j2 ¼ � xffiffiffiffi
~D

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h q� K

x2h

� �s
ð17Þ

When the metamaterial plate is treated as a homogeneous plate,
the effective mass density is identified as

qeff ¼ q 1� K
qx2h

� �
ð18Þ

Assuming that pairs of wave vector are given, through Eq. (17),
the angular frequency can be yielded the relationship amongx, j1

and j2. Since the unit cell is symmetry referred to the central ori-
gin, the range of the wave vectors should be j1 2 ½0;p=ax�,
j2 2 ½0;p=ay�.

Fig. 4 shows the band gaps of the unit cell, with parameters
used in the calculation as: the unit size ax ¼ 0:02 m, ay ¼ 0:02 m,
the plate’s thickness h ¼ 0:005 m, the Young’s modulus
E ¼ 2:1� 1011 Pa, the Poisson’s ratio m ¼ 0:3, the mass density
q ¼ 7800 kg=m3, the vertical spring stiffness k1 ¼ 1� 104 N=m,
the lateral spring and mass constants k2 ¼ 0:5� 104 N=m and
m2 ¼ 0:003 kg, the vertical and lateral distances of four-link mech-
anism L ¼ 0:02 m, D ¼ 0:01 m.

Several interesting phenomena are found from Fig. 4, as follows.
(1) There are two dispersion surfaces, and two band gaps exist in
the metamaterial plate, 0–103 Hz and 205 Hz–253 Hz, respec-
tively. Both these band gaps are significantly useful in engineering
applications in which flexural waves must not propagate through
the composite. (2) The formation mechanisms of the two band
gaps differ. There exists a pivotal frequency for the Winkler-type
foundation system [33], and because of the restraints of elastic
foundation, which affects the integrality of the system and
decrease the flexural stiffness, the first band gap is formed. Owing
to the elastic support of the vertical spring, which forms aWinkler-
type system, vibration is blocked within the first band gap. For the
lateral resonators, the resonance occurs at 205 Hz and the second
band gap begins at 205 Hz. This shows that the four-link mecha-
nism can transform the flexural wave to a longitudinal wave which
stimulates the lateral resonators to vibrate and then generate
inertial forces to counterbalance the shear forces and thus absorb
the wave energy. (3) The transformation is related to the ratio
L=D, which means that the ratio L=D significantly affects the



Fig. 4. Dispersion surfaces of the metamaterial plate: (a) perspective view, (b) front view.
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transformation from flexural to longitudinal vibration. The effect of
the ratio L=D on the band gaps is discussed in Section 3.2. (4) The
metamaterial plate with LLR substructures provides a flexible
structure configuration that can generate multiple band gaps for
flexural vibration suppression and wave absorption.

3.2. Effect of the ratio L=D on the band gaps

As indicated above, the transformation from flexural wave to
longitudinal wave is significantly affected by the geometry param-
eter of the four-link mechanism. In this section we examine the
effect of the ratio L=D on the transformation process. It should be
mentioned that in the analysis in Section 3.1, the ratio of L/D is
set as 2. To study its effects on the interval of the band gaps, the
ratio L/D is assumed to be between 0.5 and 2.5 with the incremen-
tal step being 0.2, where, the other parameters are kept constant.
Results for the edges of the two band gaps are shown in Fig. 5.

It can be seen from Fig. 5 that the upper edge of the first band
gap moves towards a lower frequency range, which means that
the first band gap becomes narrower as the ratio L/D increases.
For the second band gap, the lower edge remains the same because
the lateral resonators remain unchanged, while the upper edge
climbs to a higher frequency range, which means that the second
band gap is broadened along with an increase in the ratio of L/D.
Fig. 5. Effect of L/D on band gaps.
Comparison of the slopes of upper edges between the first and sec-
ond band gaps shows that the rate of increase of the second band
gap is faster than the rate of decrease of the first band gap. The two
band gaps can be flexibly tuned by varying the ratio L/D of the four-
link mechanism with the other parameters unchanged.
3.3. Effective mass density

The effective mass density from Eq. (18) can be obtained as

qeff ¼ q 1� K
qx2h

� �

¼ q� nk1
hx2 �

1
2

nk2
hx2

L
D

� �2

� nk22
hx2ðm2x2 � k2Þ

1
2

L
D

� �2

ð19Þ

In the calculation, parameters are set the same as those in Sec-
tion 3.1, and effective mass density of the metamaterial plate is
shown in Fig. 6.

It is obvious from Fig. 6 that the effective mass density of the
metamaterial plate becomes negative within the band gaps, and
approaches to negative infinity at about 35 Hz and 205 Hz. The first
infinity represents the counterbalance of the shear forces induced
by plate vibration and the inertial forces of the vertical springs,
Fig. 6. Effective mass density of the metamaterial plate.
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while the second infinity is attributable to the resonance of the lat-
eral resonators.

The negative effective mass density in the band gaps also pro-
vides a good explanation of the flexural wave attenuation. Flexural

vibration of the plate can be expressed aswðx; y; tÞ ¼ Weiðj1xþj2y�xtÞ,

and the flexural wave velocity is cf ¼ �ixWeiðj1xþj2y�xtÞ. Setting
Cf ¼ �ixW , the flexural wave velocity can be written as
cf ¼ Cf eiðj1xþj2y�xtÞ. From Eq. (17), the complete set of solution of
j ¼ ðj1;j2Þ should be given as

j ¼ ðj1;j2Þ 2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
~D
qeffx2

svuut
;�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
~D
qeffx2

svuut
8><
>:

9>=
>; ð20Þ

Within ranges of the negative effective density, the wave vector
takes the form

j ¼ ðj1;j2Þ 2 �f1; ig1þ iffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
~D
jqeff jx2

svuut ð21Þ

Eq. (21) indicates that flexural waves are only attenuated when the
density is negative (since j only has imaginary part). That is, for a
specific wave frequency, negative mass density results in
complex wave numbers, i.e. j1 ¼ m1 þ im2;j2 ¼ n1 þ in2, with
m1;m2;n1;n2 > 0 and real. Therefore, wðx; y; tÞ ¼
We�m2x�n2ye�iðm1xþn1yþxtÞ and cf ¼ Cf e�m2x�n2ye�iðm1xþn1yþxtÞ, both of
which indicate that the flexural wave attenuates in an exponential
form within the band gaps.

4. Finite element modelling and frequency response analysis of
the metamaterial plate

4.1. Finite element modelling of the metamaterial plate

To simulate the performance of flexural wave suppression, the
finite element method (FEM) [34,35] is used. The mechanical
model of the metamaterial plate used for finite element analysis
(FEA) as shown in Fig. 7 is employed to investigate the perfor-
mance of flexural wave suppression of the four-link mechanism.
In the analysis, some parameters of the metamaterial plate are:
Lx ¼ 0:5 m, Ly ¼ 0:2 m (length along x, y directions), h ¼ 0:005 m,
E ¼ 210 GPa, m ¼ 0:3, q ¼ 7800 kg=m3 for the homogeneous plate;
k1 ¼ 1� 104 N=m, k2 ¼ 0:5� 104 N=m, m2 ¼ 0:003 kg, L ¼ 0:02 m,
D ¼ 0:01 m,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
=2p ¼ 205 Hz for the LLR substructure.

Since the lateral masses vibrate in the x direction only, the iner-
tial force due to acceleration for the homogenous plate can be
neglected. A harmonic excitation force F ¼ F0eixt ; F0 ¼ 100 N is
applied at the centre point of the left boundary of the plate. The
upper plate is under free boundary condition, while the lower plate
is nearly fastened to the ground by fixing its four edges to the
ground. In this situation, the relationship of the displacements of
lateral points and vertical points of the four-link mechanism is
the same as that of the single substructure, and easier to analyse.
The plate is built by using a four-node plate element SHELL 63 with
four degrees of freedom at each node and meshed with mapped
F

Fig. 7. Acoustic metamaterial plate with the bottom plate simply supported over
the four edges.
techniques. BEAM 188 with huge Young’s modulus and tiny
density is adopted to mimic the rigid massless link. MASS 21 and
COMBIN 14 are the mass and spring elements with corresponding
properties in the construction of the finite element model. The
steady state response is examined through harmonic response
analysis. In the construction of the finite element model, the FRF
matrix can be derived as follows.

½M�f€qg þ ½C�f _qg þ ½K�fqg ¼ fFg; ð22Þ

fFg ¼ 0; � � � ;0; F0eixt;0; � � � ;0� �T
fqg ¼ wx;wy;wz; . . .u1; . . .

� � ð23Þ

½H� ¼ ð�x2½M� þ ix½C� þ ½K�Þ�1 ð24Þ

fqg ¼ ½H�fFg ð25Þ
where ½M�, ½C� and ½K� are the mass matrix, linear viscous damping
matrix and the stiffness matrix of the finite element model. To
obtain the Hr;cp of node at specific points (the central point of the
right boundary) with a harmonic excitation at the central point of
the left boundary, the flexural displacement has been extracted,
and by using Eq. (25),

Hr;cp ¼ 20log10ðjqjr;cp;wz
F�1
0 Þ ð26Þ

The frequency response function (FRF) is plotted in Fig. 8 to
show the band gap effect on propagation of flexural wave, damping
is not included.

Fig. 8 demonstrates the FRF of the metamaterial plate under a
harmonic excitation. The dashed line represents the response from
the proposed metamaterial plate, while the solid line represents
the response of plate without lateral resonators. It can be seen that
when the LLR substructure is added to the metamaterial plates, a
new broad band gap of the frequency range from 205 Hz to
253 Hz is generated, with almost no change in the first band gap
because the flexural vibration has been transformed to longitudi-
nal vibration by the four-link mechanism, which stimulates the
resonance of the lateral mass, resulting in blocking the wave prop-
agation. The numerical results show good consistency with the
theoretical results.

To visualize the formation mechanism of the band gaps, the
vibration modes are provided within different band gaps, as shown
in Fig. 9.

Fig. 9(a) shows the vibration mode of the metamaterial plate at
82 Hz within the first band gap. It can be seen that for the first
band gap, the plate vibrates vigorously around the excitation and
part of the vertical springs are extensively stretched and com-
Fig. 8. Comparison of plate with and without the LLR substructure.



(a) mode shape at 82Hz (b) mode shape at 206Hz

Fig. 9. Vibration modes at different frequencies.

Fig. 10. Effect of damping of the vertical spring on band gaps.

Fig. 11. Effect of damping of the lateral springs on band gaps.
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pressed. Flexural wave is partially transformed to the lateral
resonators. Since the stimulus frequency is remote from the reso-
nance of the resonators, the resonators only oscillate longitudinally
and do not evoke wave suppression. Fig. 9(b) shows the vibration
mode at 206 Hz, where the flexural vibration has been totally
transformed to the lateral resonators. In this case, inertial forces
generated by the lateral resonators are transferred through the
four-link mechanism to counteract the shear forces induced by
the plate flexural vibration, preventing the flexural wave from
propagating.

4.2. Effect of linear viscous damping on band gaps

In practical engineering applications, damping is a significant
factor that influences the dynamic behaviour of a structure. It
should be mentioned that damping in an engineering structure
can reduce the peak value and smooth the dynamic response
curve. When a substructure with LLR is added to the plate, band
gaps are formed in the system, resulting in changes to the wave
responses. The influence of damping due to the presence of the
LLR substructure is therefore critical and must be investigated. Vis-
cous damping, though, is widely used in practical engineering,
which can be modelled by a simple mechanical viscous damper
(dashpot). In this article, linear viscous damping is chosen to anal-
yse the effects on the band gaps. Linear viscous damping coeffi-
cients c1 and c2 are used to represent the linear damping of the
vertical spring and lateral springs, respectively, given in units of
newton seconds per meter. The effects of the viscous damping on
the band gaps are calculated and the results are shown in Figs. 10
and 11.

Fig. 10 shows how linear viscous damping of the vertical spring
c1 can affect band gaps with c2 ¼ 0. It can be seen that the FRFs in
the two band gaps change little as c1 increases, whereas response
peaks outside the band gaps are decreased. The greater the linear
viscous damping is, the lower are the response peaks outside the
band gaps. From these results, we can conclude that viscous damp-
ing of the vertical springs has little influence on the interval of
band gaps but can reduce the peaks and smooth the frequency
response curve outside the band gaps.

Fig. 11 shows the effect of the linear viscous damping of the lat-
eral springs c2 on the band gaps with c1 ¼ 0. Firstly, the first band
gap and its lateral responses do not change as c2 increases. Sec-
ondly, the second band gap is broadened, and its frequency
responses are closer to those of the first band gap. The peaks and
slopes of the frequency response curve are weakened significantly
as the viscous damping increases. However, the attenuation within
the second band gap is weakened. In a word, increasing the viscous
damping of the lateral springs may broaden the second band gap
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and reduce the vibration amplitude in specific frequency ranges.
However, excessive viscous damping may deactivate the second
band gap effect. Thus the second band gap can be tailored by the
viscous damping according to the requirements of specific engi-
neering applications.

Linear viscous damping from different parts of the system has
various effects on the band gaps and the responses. Linear viscous
damping of the vertical spring helps to smooth and lower the
responses outside the band gaps but has little influence on either
of the band gaps. On the other hand, linear viscous damping of
the lateral springs can broaden the second band gap and lower
the responses in specific frequency ranges with the loss of the
attenuation within the second band gap. Damping from the LLR
substructure is important in vibration suppression and noise
absorption by virtue of its tailoring function in the band gaps.

5. Conclusion

The paper presents a comprehensive study of the flexural wave
suppression of an acoustic metamaterial plate with negative
Young’s modulus substructure. It includes deriving analytical dis-
persion surfaces, effective mass density based on classical thin
plate theory and conducting frequency response analysis by means
of plane wave propagation and finite element method. The meta-
material plate can generate two low-frequency band gaps with rel-
atively large frequency ranges and the effective mass density
becomes negative within the band gaps. The key working mecha-
nism for the metamaterial plate with LLR substructures is that
the four-link mechanism transforms the flexural wave into a longi-
tudinal wave and the resonance stores energy and blocks the wave
within the second band gap. The effect of the geometry parameter
of the lateral substructure is also studied and we conclude that
varying the ratio of the horizontal and vertical distances can flexi-
bly tune the band gaps. Damping from different springs has differ-
ent effects on the band gaps. However, damping could smooth and
lower the responses in the higher frequency range outside the sec-
ond band gap but has little influence on the first band gap. The
damping from the lateral resonators helps to broaden the second
band gap but weakens the band gap effect. Finally, the combination
of the LLR substructure and the metamaterial plate can be used in
vibration suppression and noise absorption.

Acknowledgement

The first author is grateful for sponsorship from the China
Scholarship Council.

References

[1] Peng H, Pai PF. Design of multi-stopband metamaterial plates for absorption of
broadband elastic waves and vibration; 2015. p. 94380X.

[2] Wang T, Sheng MP, Guo HB. Multi-large low-frequency band gaps in a periodic
hybrid structure. Mod Phys Lett B 2016;30:1650116.

[3] Huang HH, Sun CT, Huang GL. On the negative effective mass density in
acoustic metamaterials. Int J Eng Sci 2009;47:610–7.
[4] Huang GL, Sun CT. Band gaps in a multiresonator acoustic metamaterial. J Vib
Acoust 2010;132:031003.

[5] Huang HH, Sun CT. Theoretical investigation of the behavior of an acoustic
metamaterial with extreme Young’s modulus. J Mech Phys Solid
2011;59:2070–81.

[6] Pope SA, Daley S. Viscoelastic locally resonant double negative metamaterials
with controllable effective density and elasticity. Phys Lett 2010;374:4250–5.

[7] Chang Z, Guo H-Y, Li B, Feng X-Q. Disentangling longitudinal and shear elastic
waves by neo-Hookean soft devices. Appl Phys Lett 2015;106:161903.

[8] Yu D, Liu Y, Wang G, Zhao H, Qiu J. Flexural vibration band gaps in Timoshenko
beams with locally resonant structures. J Appl Phys 2006;100:124901.

[9] Liu Y, Yu D, Li L, Zhao H, Wen J, Wen X. Design guidelines for flexural wave
attenuation of slender beams with local resonators. Phys Lett 2007;362:344–7.

[10] Sun H, Du X, Pai PF. Theory of metamaterial beams for broadband vibration
absorption. J Intell Mater Syst Struct 2010.

[11] Pai PF, Peng H, Jiang S. Acoustic metamaterial beams based on multi-frequency
vibration absorbers. Int J Mech Sci 2014;79:195–205.

[12] Gusev VE, Wright OB. Double-negative flexural acoustic metamaterial. New J
Phys 2014;16:123053.

[13] Boutin C, Roussillon P. Wave propagation in presence of oscillators on the free
surface. Int J Eng Sci 2006;44:180–204.

[14] Strasberg M, Feit D. Vibration damping of large structures induced by attached
small resonant structures. J Acoust Soc Am 1996;99:335–44.

[15] Schwan L, Boutin C, Padrón LA, Dietz MS, Bard P-Y, Taylor C. Site-city
interaction: theoretical, numerical and experimental crossed-analysis.
Geophys J Int 2016.

[16] Schwan L, Boutin C, Dietz M, Padron L, Bard P-Y, Ibraim E, et al. Multi-building
interactions and site-city effect: an idealized experimental model. In:
Experimental research in earthquake engineering. Springer; 2015. p. 459–76.

[17] Peng H, Pai P Frank. Acoustic metamaterial plates for elastic wave absorption
and structural vibration suppression. Int J Mech Sci 2014;89:350–61.

[18] Chronopoulos D, Antoniadis I, Collet M, Ichchou M. Enhancement of wave
damping within metamaterials having embedded negative stiffness
inclusions. Wave Motion 2015;58:165–79.

[19] Sun C, Chen J. Dynamic behavior of sandwich beam with internal resonators.
In: J Sandw Struct Mater. p. 391–408.

[20] Chen J, Sharma B, Sun C. Dynamic behaviour of sandwich structure containing
spring-mass resonators. Compos Struct 2011;93:2120–5.

[21] Sharma B, Sun C. Impact load mitigation in sandwich beams using local
resonators. J Sandw Struct Mater 2015.

[22] Takahashi D, Tanaka M. Flexural vibration of perforated plates and porous
elastic materials under acoustic loading. J Acoust Soc Am 2002;112:1456–64.

[23] Yang Z, Mei J, Yang M, Chan NH, Sheng P. Membrane-type acoustic
metamaterial with negative dynamic mass. Phys Rev Lett 2008;101:204301.

[24] Nouh M, Aldraihem O, Baz A. Vibration characteristics of metamaterial beams
with periodic local resonances. J Vib Acoust 2014;136:061012.

[25] Nouh M, Aldraihem O, Baz A. Wave propagation in metamaterial plates with
periodic local resonances. J Sound Vib 2015;341:53–73.

[26] Chesnais C, Boutin C, Hans S. Effects of the local resonance in bending on the
longitudinal vibrations of reticulated beams. Wave Motion 2015;57:1–22.

[27] Chesnais C, Boutin C, Hans S. Effects of the local resonance on the wave
propagation in periodic frame structures: generalized Newtonian mechanics. J
Acoust Soc Am 2012;132:2873–86.

[28] Huang HH, Sun CT. Anomalous wave propagation in a one-dimensional
acoustic metamaterial having simultaneously negative mass density and
Young’s modulus. J Acoust Soc Am 2012;132:2887–95.

[29] Su Y, Sun C. Design of double negativity elastic metamaterial. Int J Smart Nano
Mater 2015;6:61–72.

[30] Qin QH. Hybrid-Trefftz finite element method for Reissner plates on an elastic
foundation. Comput Methods Appl Mech Eng 1995;122:379–92.

[31] Graff KF. Wave motion in elastic solids. Dover Publications.
[32] Qin QH. Transient plate bending analysis by hybrid Trefftz element approach.

Commun Numer Meth Eng 1996;12:609–16.
[33] Han L, Zhang Y, Li X-M, Jiang L-H, Chen D. Flexural vibration reduction of

hinged periodic beam–foundation systems. Soil Dynam Earthq Eng 2015;79
(Part A):1–4.

[34] Qin QH. Trefftz finite element method and its applications. Appl Mech Rev
2005;58:316–37.

[35] Qin QH, Wang H. Matlab and C programming for Trefftz finite element
methods. CRC Press; 2008.

http://refhub.elsevier.com/S0003-682X(16)30217-1/h0010
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0010
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0015
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0015
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0020
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0020
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0025
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0025
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0025
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0030
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0030
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0035
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0035
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0040
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0040
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0045
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0045
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0050
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0050
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0055
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0055
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0060
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0060
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0065
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0065
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0070
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0070
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0075
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0075
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0075
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0080
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0080
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0080
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0085
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0085
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0090
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0090
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0090
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0095
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0095
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0100
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0100
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0105
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0105
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0110
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0110
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0115
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0115
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0120
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0120
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0125
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0125
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0130
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0130
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0135
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0135
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0135
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0140
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0140
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0140
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0145
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0145
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0150
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0150
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0160
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0160
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0165
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0165
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0165
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0170
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0170
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0175
http://refhub.elsevier.com/S0003-682X(16)30217-1/h0175

	Flexural wave suppression by an acoustic metamaterial plate
	1 Introduction
	2 Configuration of the negative Young’s modulus substructure
	3 Wave suppression within a continuous metamaterial plate
	3.1 Theoretical derivation
	3.2 Effect of the ratio [$]L/D[$] on the band gaps
	3.3 Effective mass density

	4 Finite element modelling and frequency response analysis of the metamaterial plate
	4.1 Finite element modelling of the metamaterial plate
	4.2 Effect of linear viscous damping on band gaps

	5 Conclusion
	Acknowledgement
	References


