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The optimal layouts of multiple bi-modulus materials in a continuum under ill-loaded
cases are found using the scheme of fractional-norm (Q-norm and Q is in (0, 1)) weighting
objective function. The major ideas of the present study are as follows. First, the bi-
modulus material topology optimization is solved using material replacement approach.
Second, the power-law scheme is adopted to express the equivalent stiffness of multiple
materials. Third, the ill-loaded topology optimization is solved by changing the value
of Q. Combining the three techniques, a feasible solution for the ill-loaded structural
optimization can be found even when there are many bi-modulus materials. Numerical
tests are presented to show the characters of the materials layout in the structure.

Keywords: Multi-material layouts; bi-modulus; multiple loading cases; fractional-norm
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1. Introduction

Topology optimization is a powerful computational tool in variety of design fields
such as acoustics structure [Dühring et al., 2008], crashworthiness equipment [Fors-
berg and Nilsson, 2007], fluidics devices [Gersborg-Hansen et al., 2005], micro-
electro- mechanical systems [Jang et al., 2008], and heat transfer system [Zhuang
et al., 2007] during last two decades. In a practical design, two types of problem are
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very popular. One is that there are many materials in the design domain. The other
is that the structure is in operation under different loading conditions. Hence, the
theoretical and numerical study on optimization of such problems is important.

For the first problem, it is a typical multiple materials layout optimization.
To solve such optimization problem, many strategies have been proposed, includ-
ing the solid isotropic microstructure with penalization (SIMP) method [Gibiansky
and Sigmund, 2000; Qin and He, 1995; Sigmund and Torquato, 1999], the level set
method (LSM) [Allaire et al., 2013; Mei and Wang, 2004; Wang and Wang, 2004],
the evolutionary structural optimization (ESO) method (Han and Lee, 2005), the
discrete material optimization (DMO) method [Blasques and Stolpe, 2012; Hve-
jsel and Lund, 2011; Stegmann and Lund, 2005], the phase field method [Wang
and Zhou, 2005; Zhou and Wang, 2006], and the “pseudo-sensitivities” approach
by [Ramani, 2009]. Especially, finding an optimal layout of multiple material with
simple material interfaces is important when considering the manufacturing con-
straints [Guo et al., 2014a, 2014b; Natasha et al., 2014; Zhou and Wang, 2013]. To
the authors’ knowledge, multiple bi-modulus materials layout optimization under
ill-loaded cases is not considered in the work mentioned above.

On the other hand, a bi-modulus material is such a material that its tensile mod-
ulus is not equal to the compressive one in a given direction. It widely exists in prac-
tical engineering, such as the concrete in civil engineering or cast iron in mechanical
engineering. The constitutive curve of a bi-modulus material is piece-wise linear,
which implies that the constitutive property of the material is stress-dependent.
Due to wide applications of such bi-modulus materials as foam [Zenkert and Bur-
man, 2009], graphites [Seldin, 1966], concrete [Bruggi, 2014; Yang et al., 2014], etc.,
many work has been reported in investigating deformation behavior of a bi-modulus
structure since the mid of last century [Ambartsumyan, 1965; Du and Guo, 2014;
Jones, 1977; Kanno, 2011]. Recently, Du and Guo [2014] constructed a variational
principle for modeling such boundary problems. They stated that the accurate defor-
mation of a bi-modulus structure can, theoretically, be found efficiently using the
state-of-the-art variational principles. Besides, topology optimization model of a bi-
modulus structure has also been reported in the past decades. For example, based
on ground structure method [Dorn, 1964], Achtziger [1996] discussed the optimal
topology of a truss structure with different tension/compression properties. Chang
et al. [2007] approximated the original piece-wise linear stress-strain curve with a
derivable nonlinear curve of a bi-modulus material in layout optimization of a ten-
sion/compression only material (e.g., cable or membrane). Similarly, Liu and Qiao
[2010] used Heaviside function to describe the dual tension/compression moduli of
a bi-modulus material proprieties in a structure with large deformation. For layout
optimization with tension/compression-only material, Cai and Shi [2008] presented
a heuristic approach to solve the bi-modulus material problem. After that, Cai et al.
[2013] provide a modified SIMP method to solve the same problem. For a truss-like
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continua, Querin et al. [2010] suggested an optimality criterion (OC) based method
for layout optimization of a bi-modulus material.

It is noted that only stiffness design rather than strength design [Bruggi and
Duysinx, 2013; Luo and Kang, 2013; Luo et al., 2015] has been involved in the
above works. It should also be mentioned that the piece-wise linear property of
a bi-modulus material should also be considered in the deformation analysis of
a structure which such a material is involved in the design using topology opti-
mization. In general, the bi-modulus material shows linear and isotropic when it is
under either pure tension or pure compression state. The accurate deformation of
a continuum structure with isotropic material(s) can, obviously, be found without
reanalysis/iteration. However, if the bi-modulus material is under complex state, i.e.,
neither pure tension nor pure compression, the material shows transversal isotropic
and the normal of isotropic plane depends on the direction of the second princi-
pal stress. It is the major reason for the complexity of deformation analysis of a
bi-modulus structure, i.e., structural reanalysis is required. Fortunately, if the bi-
modulus structure is in a design domain of topology optimization, the iteration for
updating the design variables can also be used for finding the accurate deformation
of the bi-modulus in the design domain, simultaneously. According to this idea,
Cai et al. [2011, 2013] replaced the original bi-modulus material with two isotropic
materials in topology optimization of a bi-modulus structure. This scheme is also
adopted in the present study.

It is noted from above review that very few work was involved in multiple load
cases (MLC). In fact, for most structures/devices, they are run under several types
of loading cases. The optimization of such structures/devices is a typical multi-
objective optimization. In general, a generalized objective function is constructed
to convert the original multi-objective optimization into a single objective opti-
mization. For instance, in the work by Dı́az and Bendsøe [1992], the scheme of a
linear weighted objective function of the mean compliances of structure under MLC
was suggested. Luo et al. [2006] presented a square weighting scheme for topology
optimization by considering both static and dynamic loadings. However, when the
magnitude of the weakest load is far less than that of the strongest load and the
weakest load is not on the load transfer path (LTP) of strongest load, there is no
material to support the weakest load in the final design. Such MLC is usually known
as ill-load cases (ILC). To overcome the difficulty, Sui et al. [2000] classified the loads
into two levels according to load magnitudes, and the topology optimization is car-
ried out on the two levels alternatively. Obviously, the final solution depends on the
classification scheme of the two levels. Cai et al. [2014] presented a fractional-norm
weighting scheme for solving the problem of ill-loaded topology optimization. Their
results indicated that a feasible solution can be found when the order of norm is
in [0.1, 0.5] even if the magnitude of the weakest load is only 0.1% of the strongest
load. But their solution is applied in an isotropic structure under ILC only.
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In this work, a layout optimization model is presented for analyzing multiple
bi-modulus materials under ILC. It is organized as follows: In Sec. 2, details of the
proposed methodology are described. In Sec. 3, four typical examples are studied
numerically. Finally, some conclusions are presented in Sec. 4.

2. Methodology

2.1. Basic equations for linear elasticity problem

Consider a solution domain Ω ⊆ R2 or R3 with Dirichlet boundary (Γ1) and Neu-
mann boundary (Γ2 and Γ1∪Γ2 = ∂Ω), the deformation is governed by the following
equations.

• Equilibrium equation

−∇ · σ(u) = f in Ω. (1)

• Strain–displacement relationship

ε(u) =
1
2
[∇u + (∇u)T ]. (2)

• Constitutive relationship

σ(u) = D : ε(u). (3)

• Displacement boundary condition

u = u0. (4)

• Force boundary condition

σ(u) · n = T, (5)

where u is the displacement vector, σ the stress tensor, f the body force vector,
ε the strain tensor, u0 the specified displacement vector on Γ1, and T the con-
tact force vector on Γ2. D is the elasticity tensor of the material. In the present
work, finite element method (FEM) is utilized to solve the above partial-differential
equations (PDEs).

2.2. Interpolation scheme of multiple materials

In topology optimization of a structure with multiple bi-modulus materials, density-
based method, e.g., the SIMP approach, is adopted after material replacement oper-
ation [Cai et al., 2013] in the present study. Thus, the exact relationship between
the equivalent elasticity of the mixture in a finite element and the properties of the
component materials in the element should be given.
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For a typical topology optimization problem with only one solid material in
design domain, the power-law interpolation scheme is defined as

E(1)(ρ1,j) = ρp
1,jE1. (6)

where ρ1,j ∈ [0, 1] is the design variable of the jth element, E1 is the material
modulus of the solid, and p (typically p =3) is the penalization parameter.

Assume that the total number of materials in design domain is m, whose elastic
moduli are E1 ≥ E2 . . . ≥ Em, respectively. The equivalent modulus E(m) can be
calculated using the following recursion formulation

E(m)(ρ1,j , ρ2,j, . . . , ρm−1,j) = ρp
m−1,j(E

(m−1)) + (1 − ρp
m−1,j)Em. (7)

where ρi,j(i = 1, 2, . . . ,m − 1) is the ratio of the first i types of materials over the
first (i+ 1) types of materials in the jth element in design domain.

2.3. Mathematical formulation for optimization

For a multi-phases material optimization under MLC, the optimization problem
described above can be formulated as

Find {ρi,j |i = 1, 2, . . . ,m− 1; j = 1, 2, . . . , NEL}

min cw =

[
NLC∑
lc=1

(wlcclc)Q

]1/Q

,

s.t.
NEL∑
j=1

ψi, j · vj = V0 · fi, (i = 1, 2, . . . ,m− 1)

NLC∑
lc=1

wlc = 1.0,

Klc · Ulc = Plc, (lc = 1, 2, . . . , NLC)

0 < ρmin ≤ ∀ρi,j ≤ 1,

wlc ≥ 0, Q > 0,

(8)

where cw is the generalized objective function which is the weighted structural
compliance under MLC. wlc is the linear weighting coefficient of the lcth loading
case. Q is the power exponent for weighting scheme. NLC is number of MLC. Plc and
Ulc denote the global nodal force and global displacement vectors in the lcth load
case respectively. Klc is the stiffness matrix which can be formed using the well-
established FEM [Bathe, 2006; Qin, 1994; 1995; 2005], NEL is the total number of
elements in the design domain. m is number of materials. vj is the volume of the
jth element, fi is the volume fraction of the ith material, V0 stands for the total
volume of design domain. ρmin is the minimum relative densities to avoid singularity
(ρmin = 0.001 is used in our analysis). For the case of i = 1, ρ0 is zero. ψi,j is the
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Fig. 1. Diagram of multi-phases materials in a finite element.

volume ratio of the ith material to the jth element (Fig. 1), and the relationship
between ψi,j and ρi,j is expressed as

ψi+1,j =
1 − ρi,j

ρi,j(1 − ρi−1,j)
ψi,j . (9)

2.4. Moduli selection of local isotropic materials

In an uniaxial mechanics test, the elasticity of a bi-modulus material under tension
is different from that of the same sample under compression. Assuming ET to be
the tensile modulus and EC the compressive modulus, the ratio between ET and
EC is defined as

RTCE =
ET

EC
. (10)

To solve topology optimization problem defined in Eq. (8), two levels of iterations
are required. In the inner loop, the accurate deformation of the nonlinear structure
with many bi-modulus materials is obtained, whereas in the outer one the updated
design variables in optimization is implemented. To merge the inner loop into the
outer loop, we adopt the material replacement operation, i.e., to replace the original
bi-modulus materials with corresponding isotropic materials during deformation
analysis before topology optimization is performed. Noted that Fig. 2 shows that
the constitutive relationship of the stress (σs, s = 1, 2, 3) and strain (εs, s = 1, 2, 3)
of a bi-modulus material depends on the local stress state, the modulus should be
selected according to the local stress state. For example:

when 0 ≥ σ1 ≥ σ2 ≥ σ3 (Fig. 2(b)), the material shows isotropic and the
compressive modulus should be chosen;

when σ1 ≥ σ2 ≥ σ3 > 0 (Fig. 2(a)), the material shows isotropic and the tensile
modulus should be chosen;

when an element is under complicated stress state (Fig. 2(c)), i.e., σ1 · σ3 <

0, the material shows transversely isotropic and the unique principal direction of
material should be aligned with that of σ1 if σ2 < 0 or σ3 if σ2 > 0. Using material
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(a) pure tension (b) pure compression (c) complex stress states

Fig. 2. Different stress states (σ1 ≥ σ2 ≥ σ3) of a bi-modulus material and the constitutive mod-
els: (a) Isotropy with tensile modulus; (b) isotropy with compressive modulus and (c) transversely
isotropy.

replacement operation, the elastic modulus depends on the comparison between the
values of the tension SED and compression SED, which considers the influence of
the second principal stress.

We define tension SED (SEDT ) and compression SED (SEDC) as

SEDT =
t∑

u=1

wu ·



∑NG

Gx=1 wGx

∑NG

Gy=1 wGy

∑NG

Gz=1 wGz

×∑3
s=1

(
1
4 (|σs| + σs) · εs

)
GxGyGz∑NG

Gx=1 wGx

∑NG

Gy=1 wGy

∑NG

Gz=1 wGz


, (11)

SEDC =
t∑

u=1

wu ·



∑NG

Gx=1 wGx

∑NG

Gy=1 wGy

∑NG

Gz=1 wGz

×∑3
s=1

(−1
4 (|σs| − σs) · εs

)
GxGyGz∑NG

Gx=1 wGx

∑NG

Gy=1 wGy

∑NG

Gz=1 wGz


. (12)

where NG is the number of one-dimensional Gaussian integral points. wGx is the
weighting coefficient of Gaussian integration. In this study, NG and wGx = wGy =
wGz = 1.

The modulus of the rth bi-modulus material can be obtained by comparing the
tension SED and compression SED, i.e.,

Er
j =



Er

T , if SEDT > SEDC ,

Er
C , if SEDT < SEDC ,

max(Er
T , E

r
C), others.

(13)

2.5. Modification of local stiffness

It is noted that material replacement operation provides no influence on local stiff-
ness only when the local stress state is in pure tension or in pure compression. If
the local stress state is in complex status, the local stiffness changes and the defor-
mation of the local new isotropic material will be different from that of the original
bi-modulus material. Therefore, the local stiffness should be modified so as to obtain
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an accurate displacement field for further optimization. Before modification of the
local stiffness of the jth finite element, two types of SED are calculated.

The “new” SED, which is the SED of the finite element with new isotropic
materials under the current stress state at the kth step (of iteration), is defined as

SEDj,k =
t∑

u=1

wu



∑NG

Gx=1 wGx

∑NG

Gy=1 wGy

∑NG

Gz=1 wGz

∑3
s=1

(
1
2σs · εs

)
GxGyGz∑NG

Gx=1 wGx

∑NG

Gy=1 wGy

∑NG

Gz=1 wGz


.
(14)

The “old” SED, which is SED (effective SED) of the finite element with the old
material (i.e., bi-modulus materials) under the same stress state, is defined as

SEDeffective
j,k =

m−1∑
r=1


ψr ·

t∑
u=1

wu ·

∑NG

Gx=1 wGx

∑NG

Gy=1 wGy

∑NG

Gz=1 wGz

×∑3
s=1

(
1
2 signr(σs) · σs · εs

)
GxGyGz∑NG

Gx=1 wGx

∑NG

Gy=1 wGy

∑NG

Gz=1 wGz




j,k

.

(15)

The value of signr(·) can be calculated by both the current modulus of the rth
material and the stress state by using either Eqs. (16) or (17).

(1) If the finite element has compressive moduli at the (k−1)th iteration and tensile
moduli should be used at the current kth iteration, the value of signr(·) is

signr(σs) =

{
1 if σs ≥ 0,

R
(r)
TCE if σs < 0,

(16)

where R(r)
TCE is the moduli ratio of the rth bi-modulus material.

(2) If the finite element has tensile moduli at the (k−1)th iteration and compressive
moduli should be used at the current kth iteration, the value of signr(·) is

signr(σs) =

{
1 if σs ≥ 0,

R
(r)
TCE if σs < 0.

(17)

The two SED, i.e., SEDj,k and SEDeffective
j,k , are equal when the element is under a

pure tension or pure compression state. If the finite element is under complicated
stress state, the two SEDs are always different. We define

Mf = max

(
10−6,

SEDeffective
j,k

max(SEDj,k, 10−10)

)
, (18)

as the modification factor for the local effective stiffness of the jth element at the
kth iteration.
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The stiffness matrix of the jth element with “new” isotropic materials can be
given as [Qin, 2000]

kj =
∫

vj

BT
j DjBjdv, (19)

where Bj is the strain–displacement operator of element. Dj is the constitutive
matrix.

The modified stiffness matrix is expressed as

k̄j = Mfkj =
∫

vj

BT
j (Mf · Dj)Bjdv. (20)

The modification of the local stiffness can also be understood as a constant to
give the secondary adjustment on the design variables in the jth finite element, and
will be used for calculating the objective function.

For the lcth loading condition, the objective function should be modified as

clc =
NEL∑
j=1

uT
j ((Mf )lckj)uj =

NEL∑
j=1

(Mf )lc · uT
j kjuj. (21)

2.6. Sensitivity analysis

The gradient-based method is used to solve the optimization problem defined in
Eq. (4). For simplicity, the sensitivity analysis of the model with only three phase
bi-modulus materials is carried out.

For m = 3 (two solids plus void), the stiffness matrix of the j-th element is

kj = [ρp
2,j(ρ

p
1,jE1,j + (1 − ρp

1,j)E2,j) + (1 − ρp
2,j)E3,j ]k0

let= A0k0. (22)

Hence, the first order sensitivity of the stiffness matrix of the jth element is
expressed as

∂kj

∂ρ1,j
= (pρp−1

1,j · ρp
2,j · E1,j − pρp−1

1,j · ρp
2,j · E2,j)k0

let= A1k0 =
A1

A0
kj , (23)

∂kj

∂ρ2,j
= {pρp−1

2,j [ρp
1,jE1,j + (1 − ρp

1,j)E2,j ] + (−pρp−1
2,j )E3,j}k0

let=
A2

A0
kj . (24)

Correspondingly, the first-order sensitivity of the structural mean compliance with
respect to ρi.j under the lcth loading condition as(

∂ clc
∂ρ1

∂ clc
∂ρ2

)
j

=
((

∂Mf

∂ρ1

∂Mf

∂ρ2

)
−Mf

(
A1

A0

A2

A0

))
j

· uT
j kjuj, (25)

∂cw
∂ρm

=
∂

∂ρm

[
NLC∑
lc=1

(wlc · clc)Q

]1/Q

=

[
NLC∑
lc=1

(wlc · clc)Q

]1/Q−1 [NLC∑
lc=1

(wlc · clc)Q−1 · wlc
∂ clc
∂ρm

]
, (26)
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where

∂ clc
∂ρm

= −
(
Mf ·Am

A0
uT · k · u

)
lc

, (lc = 1, 2, . . . , NLC;m = 1, 2). (27)

The volume constraint functions is defined as


V1(ρ1,j , ρ2,j) =
n∑

j=1

ρ1,j · ρ2,j · vj − V̄1,

V2(ρ2,j) =
n∑

j=1

ρ2,j · vj − (V̄1 + V̄2).

(28)

And the sensitivities of volume constraints are

∂V1

∂ρ1

∂V1

∂ρ2

∂V2

∂ρ1

∂V2

∂ρ2




j

=

(
ρ2,jvj ρ1,jvj

0 vj

)
. (29)

2.7. Optimization procedure

The Method of Moving Asymptotes (MMA) [Svanberg, 1987] is adopted to solve
the present optimization problem. The PDEs are solved using the finite element
method. In each simulation circle, the initial elastic moduli of elements are the same
tension modulus of the first solid material (M1). All the initial design variables are
considered to be equal. The process of optimization is as follows.

(1) Create finite element model for a structure to be optimized. Let k = 1, and
initialize the design domain;

(2) Perform the finite element analysis of structure under MLC;
(3) Calculate the SED, SEDT , SEDC and the local effective SED (Eqs. (11), (12),

(14) and (15)) of each element;
(4) Update the elastic moduli of materials in each element (Eq. (13));
(5) Obtain Mf for each element according to Eq. (18);
(6) Calculate the objective and constraint functions and their first-order sensitiv-

ities (Eqs. (21), (25), (28) and (29));
(7) Update the design variables using MMA;
(8) Check the convergence: if Eq. (30) is not satisfied, k = k+1 return to step (2),

else go to next step;
(9) Save and stop.

The termination criterion is either defined by maximum iteration number kmax <

150 or the change of compliance of the structure satisfied∣∣∣∣Ct

Ck
− 1
∣∣∣∣ ≤ η, t = k − 1, k − 2, . . . , k − kn. (30)

1650038-10
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The iteration stops when the convergence criterion is satisfied. η is the algorithm
tolerance, which is 0.001 in the present simulations, and kn = 5.

3. Examples and Discussion

In the following examples, the computer code is compiled with MATLAB and inte-
grated with the commercial software ANSYS 12.0 [Ansys, 2013] for structural opti-
mization analysis. The objective is to minimize the compliance of the structure
within the design domain. In each example, there are two bi-modulus solids (M1 in
red and M2 in yellow) and void (M3 in white) in the optimization. The Poisson’s
ratio is 0.2 for both solids. The tensile moduli of the two solids are 80 and 40GPa,
respectively. Except in Example 4, the values of RTCE of M1 and M2 are 2 and
0.5, respectively. It means that the two solids have the same highest magnitude of
modulus and the same lowest magnitude of modulus.

3.1. Example 1

In Fig. 3, a deep wall with 3-m high and 9-m span is discretized into 30× 90 square
plane stress elements. The wall is under three loading cases. In the major load case,
there is a concentrated force, P1, is applied at the central point K1 on the top side
of the wall. In the second load case, a compressive concentrated force P2 = 0.01P1

is applied at point K2 and is normal to the top side. In the third load case, the
tensile force P3 = P2 is applied at point K3 and is normal to the top side, too. All
the loading cases have the same weighting coefficient. The volume ratios of the two
solids (M1 and M2) and void (M3) are 0.15, 0.15 and 0.70, respectively.

Figure 4 shows the final distributions of materials with different values of Q. In
each case, the layouts of solid materials are asymmetry, which is due to two factors.
One is the asymmetry of the three loads on the symmetric structure. The other is
that the volume ratios of the two solids are identical and, simultaneously, the tension
modulus of M1 is equal to the compression modulus of M2. Therefore, the major
part of M1 is layout to support the tensile loads, and most of M2 is on the path for
supporting compressive loads.

Fig. 3. Initial design of a wall.
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(a) Q = 1.0 (b) Q = 0.5

Fig. 4. Diagram of multi-phases materials in a finite element.

However, in the first case (Q = 1), there is no material in the final structure to
support two weak loads, i.e., P2 and P3. If, for example, the two loads are important
in operation of the structure, the final materials layout in Fig. 4(a) is invalid. This
is actually the drawback of traditional (linear) weighting approach for solving ill-
loaded topology optimization.

As we set Q = 0.5, i.e., a fractional norm weighting scheme being adopted, the
final materials layout (Fig. 4(b)) looks reasonable. For example, the two weak loads
are supported by M1 and M2, respectively. P2 is compressive load, and is supported
by M2 which has higher compressive modulus than that of M1. Similarly, P3 is
supported by M3. Because the total amount of the two solids are the same in the
two final structures, the two oblique arms in Fig. 4(b) are thinner than those in
Fig. 4(a).

3.2. Example 2

The structure shown in Fig. 5 is a cantilever beam whose dimension is 0.7m (span)
×0.4m (height)×0.02m (thickness). In numerical analysis, the structure is modeled
with 98 × 56 elements. The whole design domain is divided into four rectangle
subdomains, i.e., I, II, III and IV, with the same side length. There are two loading
cases applied on the structure. In the first case, the concentrated force P1 is applied
at the center (K1) of structure. In the second case, the concentrated force P2 is
applied at the center (K2) of free end. The volume fractions of M1, M2 and M3 are
0.18, 0.18 and 0.64, respectively. Both cases have the same weighting coefficient.

Two schemes are considered. (a) P1 = 0.01P2 = 20N; (b) P1 = 100P2 = 2000N.
In Fig. 6(a), the final structure is obtained when only the load P2 is considered.

Obviously, the structure can also be used to support the load P1 at the center of
structure. Hence, the final structure is always valid whether P2 � P1 or not. At
the same time, the two materials are layout according to the criterion: M1 (red) is
mainly under tension status and M2 (yellow) is under compression status because
of their bi-modulus behavior.

In Fig. 6(b), the final structure is obtained when we only consider the load P1.
We find that the two solids appear in subdomains I and II only. Hence, the structure
cannot be used to support P2.
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Fig. 5. Initial design of a cantilever beam under MLC.

(a) (b)

(c) (d)

Fig. 6. Optimal materials layouts in the final structure under different loading conditions: (a)
Only under P2 = 2000N; (b) only under P1 = 2000N; (c) under MLC with P2 = 2000N (Q = 1);
(d) under MLC with P1 = 2000N (Q = 1).

If the structure is under MLC and P1 	 P2, the final structure is shown in
Fig. 6(c), which is slightly different from Fig. 6(a). The structure can support both
strong and weak loads simultaneously. In this condition, we do not call the structure
is under ill loads. If P2 	 P1, the final structure is shown in Fig. 6(d) at Q = 1.
Obviously, the amount of materials on the path to support P2 is too low. The struc-
ture shown in Fig. 6(d) can be considered under ill loads. If we need a reasonable
solution, the value of Q should be less than 1.0.
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Table 1. Optimal layouts of multiple bi-modulus materials in the final
structure with respect to different values of Q (An element with relative
density less than threshold is shown in white).

Q Threshold is 0 Threshold is 1.0

1.0

0.5

0.25

To achieve a suitable layouts of materials in the structure under ill-loaded cases,
i.e., P1 = 2000N and P2 = 20N, we adopt different values of Q in simulation, and the
final materials layout are shown in Table 1. Hence, the final structure with respect
to Q = 0.5 can be used when we accept the structure with mid-density elements.
Commonly, we do not use such structure as the final design due to complicated
manufacturing. If we set Q = 0.25, the final structure with only solid elements can
be accepted as the final design. From Fig. 7, we find that the values of objective
function are 0.0321 (Q = 1.0), 0.0339 (Q = 0.5) and 0.0391 N.m (Q = 0.25),
respectively. The value of objective function at Q = 0.25 is about 22% higher than
that at Q = 1.0. This is mainly because the amount of material to support P1 at
Q = 0.25 is lower than that at Q = 1.0.

3.3. Example 3

Consider a simply-supported beam shown in Fig. 8 whose dimension is 1.0 (span)×
0.5. The structure is discretized with 100 × 50 finite elements. The structure is
subjected to two loading cases. In the first loading case, the two concentrated forces,
P1 and P2, are applied vertically on the upper side symmetrically, e.g., P1 at point
K1 (1/10 of span) and P2 at point K2 (9/10 of span), respectively. P1 = P2 = 2N.
In the second loading case, a concentrated force, P3 = 1000P2, is applied at the
center of the lower side of the beam. The volume ratios of the two solids and void
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Fig. 7. Iteration histories of structural compliance with respect to different values of Q.

Fig. 8. Design domain of deep beam.

are 0.1, 0.2 and 0.7, respectively. Both weighting coefficients for loading cases are
identical. The effect of the value of Q on the final multi-materials distribution is
investigated.

Figure 9 shows the final materials distribution in the design domain with respect
to different values of Q. As the two forces, P1 and P2, in the first loading case is
far less than P3 in the second case, there is no material to support P1 and P2

(Fig. 9(a)) when the linear weighting scheme is adopted (Q = 1). One can also
find that the solution shown in Fig. 9(b) (with respect to Q = 0.5) are the same
as that in Fig. 9(a). That is because the weak forces still have very small influence
on the materials distribution due to the value of Q being not small enough. When
Q = 0.2, the influence of weak forces on the final distribution increases significantly
and the amount of materials to support them becomes larger. Hence we consider
the solution in Fig. 9(c) to be valid for manufacturing. If we choose much smaller
value of Q, e.g., Q = 0.1, the weak forces (P1 and P2) have greater influence on the
final materials distribution than the stronger force (P3). And the topology of the
structure is different from traditional design (Fig. 9(a)), obviously.
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(a) Q = 1.0 (b) Q = 0.5

(c) Q = 0.2 (d) Q = 0.1

Fig. 9. Optimal materials layout in the beam structure with respect to different values of Q.

As the tensile modulus of M1 (red) is greater than that of M2 (yellow), M1 is
mainly distributed near the bottom of the structure. Because the amount of M2
is greater than M1, most of M2 is under compression, at which state M2 behaves
isotropic with EC > ET . One can also find that the amount of M1 in the inner
oblique bars is much greater than that of M2 as the Q is very small, e.g., Q = 0.1.

3.4. Example 4

The L-shape structure shown in Fig. 10(a) has three square subdomains (I, II and
III) with sizes of 1 m(span)× 1 m(height)× 0.02m (thickness). Each square subdo-
main is meshed with 32× 32 elements. The top side of the structure is fixed. There
are two loading cases applied on the structure. In the first case, the concentrated
force P1 is applied at the point K1. In the second case, the concentrated force P2 is
applied at the point K2. P1 = 100P2 = 20000N. There are three phases (M1, M2
and M3) with the volume fractions of 0.08, 0.22 and 0.7, respectively. The tensile
moduli of the M1 and M2 are 80 and 40GPa, respectively. M3 is void. The values
of RTCE of M1 and M2 are 5 and 0.2, respectively.

As the value of P2 is only 1% of that of P1, there is no material to support
the weaker load, i.e., P2, when using traditional SIMP method (Q = 1.0). Hence,
the present problem is a typical ill-loaded topology optimization problem. When
adopting the present scheme, i.e., fraction-norm scheme, to deal with the problem,
one can find that there will appear material on the path to support the weaker
load. For example, when Q = 0.5, the final materials layout are shown in Fig. 10(c),
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(a) Initial design of L-shape structure (b) Q = 1

(c) Q = 0.5 (d) Q = 0.3

Fig. 10. Materials layout in the L-shape structure: (a) Initial design of the structure; (b)–(d) the
optimal materials layout in the design domain when Q = 1.0, 0.5 and 0.3, respectively.

in which there is a yellow bar existing on the right side of subdomain III. Due to
the lower volume ratio of M2 (yellow) and higher value of Q, the bar seems shorter
than 1. As we reduce the value of Q, for example, to be 0.3, the path to support
the weaker load is very clear. This can be verified when one compares the right side
of subdomain III in Figs. 10(c) and 10(d). Due to more materials are on the path
to support P2, the materials layout in the other two subdomains are also different.
For example, the distances of M2-bar in the subdomain I to the left boundary are
not identical for the three figures with respect to different values of Q.
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4. Conclusion

Major headings should be typeset in boldface with the first letter of important
words capitalized.

For a structure under MLC with ill loads, the scheme of linear weighted gener-
alized objective function is infeasible in solving topology optimization of the struc-
ture with multiple bi-modulus materials. The reason is that the weak loads (i.e., ill
loads) are far less than the stronger loads and, simultaneously, not on the LTP of the
stronger loads. There is no material to support the weak loads in the final structure
obtained using linear weighting scheme. To enhance the influence of weak loads on
the objective function, in this paper, a Q-norm weighting scheme is adopted. Mean-
while, the material replacement approach is used to simplify topology optimization
of bi-modulus materials. Numerical examples demonstrated the feasibility of the
present method and some conclusions can be drawn.

(1) The final solid frame in the design domain mainly depends on the loading cases
and the value of Q. But the final layouts of the bi-modulus materials depends
on the moduli differences among the materials, e.g., the materials with higher
tensile moduli appear on the LTPs under tension state and the materials with
higher compressive moduli are on the path to support compression loads;

(2) The lower value of Q, the higher contribution of the weak loads on the gener-
alized objective function, and, the more material to support the weak loads;

(3) Generally, the value of Q in [0.2, 0.5] are suggested in most ill-loaded cases for
finding a feasible solution.
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